Advertisement
Review| Volume 46, ISSUE 7, P929-940, October 01, 1999

Lithium at 50: have the neuroprotective effects of this unique cation been overlooked?

  • Husseini K Manji
    Correspondence
    Address reprint reques ts to Husseini K. Manji, MD, FRCPC, Director, Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, WSU School of Medicine, UHC 9B, 4201 St. Antoine Blvd., Detroit, MI 48201
    Affiliations
    Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, and Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, Detroit, Michigan, USA
    Search for articles by this author
  • Gregory J Moore
    Affiliations
    Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, and Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, Detroit, Michigan, USA
    Search for articles by this author
  • Guang Chen
    Affiliations
    Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, and Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, Detroit, Michigan, USA
    Search for articles by this author

      Abstract

      Recent advances in cellular and molecular biology have resulted in the identification of two novel, hitherto completely unexpected targets of lithium’s actions, discoveries that may have a major impact on the future use of this unique cation in biology and medicine. Chronic lithium treatment has been demonstrated to markedly increase the levels of the major neuroprotective protein, bcl-2 in rat frontal cortex, hippocampus, and striatum. Similar lithium-induced increases in bcl-2 are also observed in cells of human neuronal origin, and are observed in rat frontal cortex at lithium levels as low as ∼0.3 mmol/L. Bcl-2 is widely regarded as a major neuroprotective protein, and genetic strategies that increase bcl-2 levels have demonstrated not only robust protection of neurons against diverse insults, but have also demonstrated an increase the regeneration of mammalian CNS axons. Lithium has also been demonstrated to inhibit glycogen synthase kinase 3β (GSK-3β), an enzyme known to regulate the levels of phosphorylated tau and β-catenin (both of which may play a role in the neurodegeneration observed in Alzheimer’s disease). Consistent with the increases in bcl-2 levels and inhibition of GSK-3β, lithium has been demonstrated to exert robust protective effects against diverse insults both in vitro and in vivo. These findings suggest that lithium may exert some of its long term beneficial effects in the treatment of mood disorders via underappreciated neuroprotective effects. To date, lithium remains the only medication demonstrated to markedly increase bcl-2 levels in several brain areas; in the absence of other adequate treatments, the potential efficacy of lithium in the long term treatment of certain neurodegenerative disorders may be warranted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams J.M.
        • Cory S.
        The Bcl-2 protein family.
        Science. 1998; 281: 1322-1326
        • Baldessarini R.J.
        • Tondo L.
        • Hennen J.
        Effects of lithium treatment and its discontinuation in bipolar manic-depressive disorders.
        J Clin Psychiatry. 1999; 60: 77-84
      1. Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Manji HK (1999): A preliminary investigation of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania. Arch Gen Psychiatry, in press.

        • Benes F.M.
        • Kwok E.W.
        • Vincent S.L.
        • Todtenkopf M.S.
        A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives.
        Biol Psychiatry. 1998; 15: 44:88-44:97
        • Bonfanti L.
        • Strettoi E.
        • Chierzi S.
        • Cenni M.C.
        • Liu X.H.
        • Martinou J.-C.
        • et al.
        Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice over expressing bcl-2.
        J Neurosci. 1996; 16: 4186-4194
        • Bruckheimer E.M.
        • Cho S.H.
        • Sarkiss M.
        • Herrmann J.
        • McDonnell T.J.
        The Bcl-2 gene family and apoptosis.
        Adv Biochem Eng Biotechnol. 1998; 62: 75-105
        • Chen D.F.
        • Schneider G.E.
        • Martinou J.C.
        • Tonegawa S.
        Bcl-2 promotes regeneration of severed axons in mammalian CNS.
        Nature. 1997; 385: 434-439
        • Chen G.
        • Zeng W.Z.
        • Jiang L.
        • Yuan P.X.
        • Zhao J.
        • Manji H.K.
        The mood stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS.
        J Neurochemistry. 1999; 72: 879-882
        • Chen R.W.
        • Chuang D.M.
        Long term lithium treatment suppresses p53 and Bax expression but increases bcl-2 expression.
        J Biol Chem. 1999; 274: 6039-6042
        • Dale T.C.
        Signal transduction by the Wnt family of ligands.
        Biochem J. 1998; 329: 209-223
        • D’Mello S.R.
        • Anelli R.
        • Calissano P.
        Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons.
        Exp Cell Res. 1994; 211: 332-338
        • Drevets W.C.
        • Price J.L.
        • Simpson Jr, J.R.
        • Todd R.D.
        • Reich T.
        • Vannier M.
        • et al.
        Subgenual prefrontal cortex abnormalities in mood disorders.
        Nature. 1997; 38: 824-827
        • Duman R.S.
        • Heninger G.R.
        • Nestler E.J.
        A molecular and cellular theory of depression.
        Arch Gen Psychiatry. 1997; 54: 597-606
      2. Duman RS (1998): Neural plasticity in the pathophysiology and treatment of depression. Abstracts of the American College of Neuropsychopharmacology annual meeting. Puerto Rico.

        • Eriksson P.S.
        • Perfilieva E.
        • Bjork-Eriksson T.
        • Alborn A.M.
        • Nordborg C.
        • Peterson D.A.
        • et al.
        Neurogenesis in the adult human hippocampus.
        Nat Med. 1998; 4: 1313-1317
        • Goodwin F.K.
        • Ghaemi N.
        Bipolar disorder.
        Dialogues Clin Neurosci. 1999; 1: 41-51
        • Goodwin F.K.
        • Jamison K.R.
        Manic-Depressive Illness. Oxford University Press, New York1990
        • Gould E.
        • Tanapat P.
        • McEwen B.S.
        • Flugge G.
        • Fuchs E.
        Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress.
        Proc Natl Acad Sci U S A. 1998; 95: 3168-3171
        • Grignon S.
        • Levy N.
        • Couraud F.
        • Bruguerolle B.
        Tyrosine kinase inhibitors and cycloheximide inhibit Li+ protection of cerebellar granule neurons switched to non-depolarizing medium.
        Eur J Pharmacology. 1996; 315: 111-114
        • Hasgekar N.N.
        • Gokhale P.P.
        • Amin M.K.
        • Seshadri R.
        • Lalitha V.S.
        Lithium inhibits growth in a murine neural precursor cell line.
        Cell Biol Int. 1996; 20: 781-786
        • Hedgepeth C.M.
        • Conrad L.J.
        • Zhang J.
        • Huang H.C.
        • Lee V.M.
        • Klein P.S.
        Activation of the Wnt signaling pathway.
        Dev Biol. 1997; 185: 82-91
        • Hong M.
        • Chen D.C.
        • Klein P.S.
        • Lee V.M.
        Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3.
        J Biol Chem. 1997; 272: 25326-25332
        • Hyman S.E.
        • Nestler E.J.
        Initiation and adaptation.
        Am J Psychiatry. 1996; 153: 151-162
      3. Ikonomov O, Manji HK (1999): Molecular mechanisms underlying mood stabilization in manic-depressive illness: The phenotype challenge. Am J Psychiatry, in press.

      4. Inouye M, Yamamura H, Nakano A (1995): Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum. J Radiat Res (Tokyo) 36:203–208.

        • Jope R.S.
        • Morrisett R.A.
        • Snead O.C.
        Characterization of lithium potentiation of pilocarpine induced status epilepticus in rats.
        Exp Neurol. 1986; 91: 471-480
        • Jope R.S.
        Anti-bipolar therapy.
        Mol Psychiatry. 1999; 4: 117-128
        • Ketter T.A.
        • George M.S.
        • Kimbrell T.A.
        • Willis M.W.
        • Benson B.E.
        • Post R.M.
        Neuroanatomical models and brain imaging studies.
        in: Joffe R.T. Young L.T. Bipolar Disorder Biological Models and Their Clinical Application. Marcel Dekker, Inc, New York1997: 179-218
        • Klampfer L.
        • Zhang J.
        • Zelenetz A.O.
        • Uchida H.
        • Nimer S.D.
        The AML1/ETO fusion protein activates transcription of Bcl-2.
        Proc Natl Acad Sci USA. 1996; 26: 14059-14064
        • Klein P.S.
        • Melton D.A.
        A molecular mechanism for the effect of lithium on development.
        Proc Natl Acad Sci U S A. 1996; 93: 8455-8459
        • Kostic V.
        • Jackson-Lewis V.
        • de Bilbao F.
        • Dubois-Dauphin M.
        • Przedborski S.
        Bcl-2.
        Science. 1997; 277: 559-562
        • Lawrence M.S.
        • Ho D.Y.
        • Sun G.H.
        • Steinberg G.K.
        • Sapolsky R.M.
        Over expression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo.
        J Neurosci. 1996; 16: 486-496
        • Lenox R.H.
        • Manji H.K.
        Lithium.
        in: Nemeroff C.B. Schatzberg A.F. American Psychiatric Press Textbook of Psychopharmacology. 2nd Edition. American Psychiatric Press, Washington1998: 379-430
        • Li H.
        • Yuan J.
        Deciphering the pathways of life and death.
        Curr Opin Cell Biol. 1999; 11: 261-266
        • Li R.
        • Shen Y.
        • El-Mallakh R.S.
        Lithium protects against ouabain-induced cell death.
        Lithium. 1994; 5: 211-216
        • Liang P.
        • Bauer D.
        • Averboukh L.
        • Warthoe P.
        • Rohrwild M.
        • Muller H.
        • et al.
        Analysis of altered gene expression by differential display.
        Methods Enzymol. 1995; 254: 304-321
        • Lovestone S.
        • Davis D.R.
        • Webster M.T.
        • Kaech S.
        • Brion J.P.
        • Matus A.
        • et al.
        Lithium reduces τ phosphorylation.
        Biol Psychiatry. 1999; 45: 995-1003
        • Lu R.
        • Song L.
        • Jope R.S.
        Lithium attenuates p53 levels in human neuroblastoma SH-SH-SY5Y cells.
        Neuroreport. 1999; 10: 1123-1125
        • Madiehe A.M.
        • Mampuru L.J.
        • Tyobeka E.M.
        Induction of apoptosis in HL-60 cells by lithium.
        Biochem Biophys Res Comm. 1995; 209: 768-774
      5. Manji HK, Chen G, Hsiao JK, Masana MI, Potter WZ (1999): Regulation of signal transduction pathways by mood stabilizing agents: Implications for the pathophysiology and treatment of bipolar affective disorder. In: Manji HK, Bowden CL, Belmaker RH, editors. Bipolar Medications: Mechanisms of Action, Washington, DC: American Psychiatric Press, in press.

      6. Manji HK, Lenox RH (1999): Protein kinase C signaling in the brain: Molecular transduction of mood stabilization in the treatment of bipolar disorder (Ziskind–Somerfeld paper). Biol Psychiatry, in press.

        • Manji H.K.
        • Potter W.Z.
        • Lenox R.H.
        Signal transduction pathways. Molecular targets for lithium’s actions.
        Arch Gen Psychiatry. 1995; 52: 531-543
        • McEwen B.S.
        • Magarinos A.M.
        Stress effects on morphology and function of the hippocampus.
        Ann NY Acad Sci. 1997; 821: 271-284
        • Merry D.E.
        • Korsmeyer S.J.
        Bcl-2 gene family in the nervous system.
        Annu Rev Neurosci. 1997; 20: 245-267
        • Munoz-Montano J.R.
        • Moreno F.J.
        • Avila J.
        • Diaz-Nido J.
        Lithium inhibits Alzheimer’s disease-like τ protein phosphorylation in neurons.
        FEBS Lett. 1997; 411: 183-188
        • Nestler E.J.
        Antidepressant treatments in the 21st century.
        Biol Psychiatry. 1998; 44: 526-533
        • Nibuya M.
        • Nestler E.J.
        • Duman R.S.
        Chronic antidepressant administration increases the expression cAMP response element-binding protein (CREB) in rat hippocampus.
        J Neurosci. 1996; 16: 2365-2372
        • Nishimura M.
        • Yu G.
        • Levesque G.
        • Zhang D.M.
        • Ruel L.
        • Chen F.
        • et al.
        Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex.
        Nat Med. 1999; 5: 164-169
        • Nonaka S.
        • Chuang D.M.
        Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats.
        Neuroreport. 1998; 9: 2081-2084
        • Nonaka S.
        • Hough C.J.
        • Chuang D.M.
        Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx.
        Proc Natl Acad Sci U S A. 1998; 95: 2642-2647
        • Nonaka S.
        • Katsube N.
        • Chuang D.M.
        Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine.
        J Pharmacol Exp Ther. 1998; 286: 539-547
        • Ongur D.
        • Drevets W.C.
        • Price J.L.
        Glial reduction in the subgenual prefrontal cortex in mood disorders.
        Proc Natl Acad Sci U S A. 1998; 95: 13290-13295
        • Pascual T.
        • Gonzalez J.L.
        A protective effect of lithium on rat behaviour altered by ibotenic acid lesions of the basal forebrain cholinergic system.
        Brain Res. 1995; 695: 289-292
        • Raghupathi R.
        • Fernandez S.C.
        • Murai H.
        • Trusko S.P.
        • Scott R.W.
        • Nishioka W.K.
        • et al.
        BCL-2 over expression attenuates cortical cell loss after traumatic brain injury in transgenic mice.
        J Cereb Blood Flow Metab. 1998; 18: 1259-1269
        • Rajkowska G.
        Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients.
        Ann NY Acad Sci. 1997; 836: 253-268
        • Rajkowska G.
        • Miguel-Hidalgo J.J.
        • Wei J.
        • Dilley G.
        • Pittman S.D.
        • Meltzer H.Y.
        • et al.
        Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.
        Biol Psychiatry. 1999; 45: 1085-1098
        • Reifman A.
        • Wyatt R.J.
        Lithium.
        Arch Gen Psychiatry. 1980; 37: 385-388
        • Sadoul R.
        Bcl-2 family members in the development and degenerative pathologies of the nervous system.
        Cell Death Differ. 1998; 5: 805-815
        • Shoulson I.
        Experimental therapeutics of neurodegenerative disorders.
        Science. 1998; 282: 1072-1074
        • Smith M.A.
        • Makino S.
        • Altemus M.
        • Michelson D.
        • Hong S.K.
        • Kvetnansky R.
        • et al.
        Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus.
        Proc Natl Acad Sci U S A. 1995; 92: 8788-8792
        • Soares J.C.
        • Mann J.J.
        The anatomy of mood disorders–-review of structural neuroimaging studies.
        Biol Psychiatry. 1997; 41: 86-106
        • Sparapani M.
        • Virgili M.
        • Ortali F.
        • Contestabile A.
        Effects of chronic lithium treatment on ornithine decarboxylase induction and excitotoxic neuropathology in the rat.
        Brain Res. 1997; 765: 164-168
        • Tsai G.
        • Coyle J.T.
        N-acetylaspartate in neuropsychiatric disorders.
        Prog Neurobiol. 1995; 46: 531-540
        • Volonte C.
        • Rukenstein A.
        Lithium promotes short-term survival of PC12 cells after serum and NGF deprivation.
        Lithium. 1993; 4: 211-219
        • Wang J.F.
        • Young L.T.
        Differential display PCR reveals increased expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase by lithium.
        FEBS Lett. 1996; 386: 225-229
        • Wang J.F.
        • Young L.T.
        • Li P.P.
        • Warsh J.J.
        Signal transduction abnormalities in bipolar disorder.
        in: Young L.T. Joffe R.T. Bipolar Disorder Biological Models and Their Clinical Applications. Marcel Dekker, New York1997: 41-79
        • Willert K.
        • Nusse R.
        Beta-catenin.
        Curr Opin Genet Dev. 1998; 8: 95-102
        • Wilson M.R.
        Apoptosis.
        Cell Death Differ. 1998; 5: 646-652
        • Yang L.
        • Matthews R.T.
        • Schulz J.B.
        • Klockgether T.
        • Liao A.W.
        • Martinou J.C.
        • et al.
        1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice over expressing bcl-2.
        J Neurosci. 1998; 18: 8145-8152
        • Zhang Z.
        • Hartmann H.
        • Do V.M.
        • Abramowski D.
        • Sturchler-Pierrat C.
        • Staufenbiel M.
        • et al.
        Destabilization of beta catenin by mutations in presenilin-1 potentiates neuronal apoptosis.
        Nature. 1998; 395: 698-702