Advertisement

Role of norepinephrine in the pathophysiology and treatment of mood disorders

  • Kerry J Ressler
    Affiliations
    Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
    Search for articles by this author
  • Charles B Nemeroff
    Correspondence
    Address reprint requests to: Charles B. Nemeroff, MD, PhD, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Drive, Suite 4000, Atlanta GA, USA, 30322
    Affiliations
    Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
    Search for articles by this author

      Abstract

      For four decades, norepinephrine (NE) has been postulated to play an important, possibly primary, role in the pathophysiology and subsequent treatment of mood disorders. The long-held hypothesis was that depression and pathological elation are direct functions of low and high activity of norepinephrine-containing neurons, respectively. Decades of research in this field have been devoted to further clarifying this relationship. However, there continues to be inconsistencies in the data, with different studies finding significant differences in NE metabolites and changes in receptor populations. Furthermore, antidepressants that do not act directly on the NE system appear to be quite effective in the treatment of depression. Although differential NE activity and treatment response may be partially due to different subtypes of depression, this clearly does not explain all the data.
      This review attempts to consolidate the relevant physiology of the NE system with the pathological changes found in depression. Norepinephrine clearly has an important role in this disease, but absolute changes in its activity are less likely to be the primary cause of the disorder. Evidence for dysregulation of the locus ceruleus–NE system in depression is quite apparent, however, contributing to disrupted attention, concentration, memory, arousal, and sleep. Homeostatic changes likely occur after chronic treatment with antidepressants, allowing a new regulatory state to occur in which NE modulation is once again effective. The availability of new tools such as selective ligands for the NE transporter that can be utilized with positron emission tomography imaging will undoubtedly advance the field.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amara S.
        • Kuhar M.
        Neurotransmitter transporters.
        Ann Rev Neurosci. 1993; 16: 73-93
        • Andrade R.
        • Aghajanian G.K.
        Opiate and a2-adrenoceptor induced hyperpolarization of locus coeruleus neurons in brain slices.
        J Neurosci. 1985; 5: 2359-2364
        • Andrews J.
        • Ninan P.T.
        • Nemeroff C.B.
        Venlafaxine.
        Depression. 1996; 4: 48-56
        • Arango V.
        • Underwood M.D.
        • Mann J.J.
        Fewer pigmented locus coeruleus neurons in suicide victims.
        Biol Psychiatry. 1996; 39: 112-120
        • Arborelius L.
        • Owens M.J.
        • Plotsky P.M.
        • Nemeroff C.B.
        The role of corticotropin-releasing factor (CRF) in depression and anxiety disorders.
        J Endocrinol. 1999; 160: 1-12
        • Ascher J.A.
        • Cole J.A.
        • Colin S.N.
        • et al.
        Bupropion.
        J Clin Psych. 1995; 56: 395-401
        • Aston-Jones G.
        • Chiang C.
        • Alexinsky T.
        Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance.
        Prog Brain Res. 1991; 88: 501-520
        • Aston-Jones G.
        • Shipley M.
        • Chouvet G.
        • et al.
        Afferent regulation of locus coeruleus neurons.
        Prog Brain Res. 1991; 85: 47-75
        • Axelrod J.
        • Whitby L.
        • Hertting G.
        Effect of psychotropic drugs on the uptake of 3H-Norepinephrine by tissues.
        Science. 1961; 133: 383-384
        • Baron B.
        • Ogden A.
        • Siegel B.
        Rapid down-regulation of B-adrenoceptors by co-administration of desipramine and fluoxetine.
        Eur J Pharmacol. 1988; 154: 125-134
        • Bellivier F.
        • Leboyer M.
        • Courtet P.
        • et al.
        Association between the tryptophan hydroxylase gene and manic-depressive illness.
        Arch Gen Psychiatry. 1998; 55: 33-37
        • Berman R.
        • Krystal J.
        • Charney D.
        Mechanism of action of antidepressants.
        in: Watson S. Biology of Schizophrenia and Affective Disease. American Psychiatric Press Inc, Washington, DC1996: 295-368
        • Biegon A.
        • Fieldust S.
        Reduced tyrosine hydroxylase immunoreactivity in locus coeruleus of suicide victims.
        Synapse. 1992; 10: 79-82
        • Blomberg P.
        • Kopin I.
        • Gordon E.
        • Markey S.
        • Ebert M.
        Conversion of MHPG to vanillylmandelic acid.
        Arch Gen Psychiatry. 1980; 37: 1095-1098
        • Bunney W.E.
        • Davis J.M.
        Norepinephrine in depressive reactions.
        Arch Gen Psychiatry. 1965; 13: 483-494
        • Chan-Palay V.
        • Asan E.
        Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression.
        J Comp Neurol. 1989; 287: 357-372
        • Charney D.
        Monoamine dysfunction and the pathophysiology and treatment of depression.
        J Clin Psychiatry. 1998; 59: 11-14
        • Charney D.
        • Heninger G.
        • Sternberg D.
        • et al.
        Presynaptic adrenergic receptor sensitivity in depression.
        Arch Gen Psychiatry. 1981; 38: 1334-1340
        • Cleare A.
        • Murray R.
        • O’Keane V.
        Do noradrenergic reuptake inhibitors affect serotonergic function in depression?.
        Psychopharmacology. 1997; 134: 406-410
        • Cole B.
        • Robbins T.
        Forebrain norepinephrine.
        Neuropsychopharmacology. 1992; 7: 129-141
        • Costa E.
        • Sandler M.
        Monoamine Oxidase. Raven Press, New York1972
        • DeBellis M.
        • Geracioti T.
        • Altemus M.
        • et al.
        Cerebrospinal fluid monoamine metabolites in fluoxetine-treated patients with major depression and in healthy volunteers.
        Biol Psychiatry. 1993; 33: 636-641
        • deBoer T.
        The pharmacologic profile of mirtazepine.
        J Clin Psychiatry. 1996; 57: 19-25
        • Delgado P.
        • Charney D.
        • Price L.
        • et al.
        Serotonin function and the mechanism of antidepressant action.
        Arch Gen Psychiatry. 1990; 47: 411-418
        • Delgado P.
        • Miller H.
        • Salomon R.
        • et al.
        Monoamines and the mechanism of antidepressant action.
        Psychopharmacol Bull. 1993; 29: 389-396
        • DeParmentier F.
        • Cheetham S.
        • Crompton M.
        • Katona C.
        • Horton R.
        Brain beta-adrenoceptor binding sites in antidepressant-free depressed suicide victims.
        Brain Res. 1990; 525: 71-77
        • Drevets W.
        Functional neuroimaging studies of depression.
        Ann Rev Med. 1998; 49: 341-361
        • Duman R.
        • Heninger G.
        • Nestler E.
        A molecular and cellular theory of depression.
        Arch Gen Psychiatry. 1997; 54: 597-606
        • Epstein C.
        • Figiel G.
        • McDonald W.
        • Amazon-Leece J.
        • Figiel L.
        Rapid rate transcranial magnetic stimulation in young and middle-aged refractory depressed patients.
        Psych Annals. 1998; 28: 36-39
        • Foote S.
        • Aston-Jones G.
        Pharmacology and physiology of central noradrenergic systems.
        in: Bloom F. Kupfer D. Psychopharmacology The Fourth Generation of Progress. Raven Press Ltd, New York1995: 335-345
        • Freis E.
        Mental depression in hypertensives treated for long periods with large doses of reserpine.
        N Engl J Med. 1954; 251: 1006-1008
        • Garcia-Sevilla J.
        • Zis A.
        • Hollingsworth P.
        • Greden J.
        • Smith C.
        Platelet alpha2-adrenergic receptors in major depressive disorders.
        Arch Gen Psychiatry. 1981; 38: 1327-1333
        • Geracioti T.
        • Loosen P.
        • Ekhator N.
        • et al.
        Uncoupling of serotonergic and noradrenergic systems in depression.
        Depress Anxiety. 1997; 6: 89-94
        • Ghosh A.
        • Carnahan J.
        • Greenberg M.
        Requirement for BDNF in activity-dependent survival of cortical neurons.
        Science. 1994; 263: 1618-1623
        • Glowinski J.
        • Axelrod J.
        Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds.
        Nature. 1964; 204: 1318-1319
        • Goodman C.S.
        • Shatz C.J.
        Developmental mechanisms that generate precise patterns of neuronal connectivity.
        Cell. 1993; 10: 77-98
        • Goodwin F.K.
        • Bunney W.E.
        Depressions following reserpine.
        Semin Psychiatry. 1971; 3: 435-448
        • Greenhoff J.
        • Nisell M.
        • Ferre S.
        • Aston-Jones G.
        • Svensson T.
        Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat.
        J Neural Transm. 1993; 93: 11-25
        • Heninger G.
        • Delgado P.
        • Charney D.
        The revised monoamine theory of depression.
        Pharmacopsychiatry. 1996; 29: 2-11
        • Hosada K.
        • Duman R.
        Regulation of beta-1-adrenergic receptor mRNA and ligand binding by antidepressant treatment and norepinephrine depletion in rat frontal cortex.
        J Neurochem. 1993; 60: 1335-1343
        • Javaid J.
        • Rubinstein J.
        • Davis J.
        Effects of pharmacological agents on MHPG.
        in: Maas J. MHPG Basic Mechanisms and Psychopathology. Academic Press, New York1983: 45-67
        • Karege F.
        • Bovier P.
        • Gaillard J.
        • Tissot R.
        Plasma MHPG and AMDP depression relations, evolution and drug effect in a follow up study of depressed patients.
        Hum Psychopharmacol. 1991; 6: 11-17
        • Karege F.
        • Bovier P.
        • Widmer J.
        • Gaillard J.
        • Tissot R.
        Platelet membrane alpha-2-adrenergic receptors in depression.
        Psychiatry Res. 1992; 43: 243-252
        • Kasamatsu T.
        • Itakura T.
        • Johnson G.
        • et al.
        Neuronal plasticity in cat visual cortex.
        in: Descarries L. Reader T. Jasper H. Monoamine Innervation of Cerebral Cortex. Alan R Liss Inc, New York1984: 301-320
        • Kelly C.
        • Cooper S.
        Differences and variability in plasma noradrenaline between depressive and anxiety disorders.
        J Psychopharmacol. 1998; 12: 161-167
        • Kitayama I.
        • Nakamura S.
        • Yaga T.
        • et al.
        Degeneration of locus coeruleus axons in stress-induced depression model.
        Brain Res Bull. 1994; 35: 573-580
        • Kitayama I.
        • Yaga T.
        • Kayahara T.
        • et al.
        Long-term stress degenerates, but imipramine regenerates, noradrenergic axons in the rat cerebral cortex.
        Biol Psychiatry. 1997; 42: 687-696
        • Klimek V.
        • Stockmeier C.
        • Overholser J.
        • Meltzer H.Y.
        • Kalka S.
        • Dilley G.
        • Ordway G.
        Reduced levels of norepinephrine transporters in the locus coeruleus in major depression.
        J Neurosci. 1997; 17: 8451-8458
        • Kuhn R.
        The treatment of depressive states with G22355 (Imipramine Hydrochloride).
        Am J Psychiatry. 1958; 115: 459-464
        • Kunugi H.
        • Vallada H.
        • Hoda F.
        • et al.
        No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene.
        Biol Psychiatry. 1997; 42: 282-285
        • Leonard B.
        The role of noradrenaline in depression.
        J Psychopharmacol. 1997; 11: S39-S47
        • Lesch K.P.
        • Bengel D.
        • Heils A.
        • Sabol S.Z.
        • Greenberg B.D.
        • Petri S.
        • Benjamin J.
        • Muller C.R.
        • Hamer D.H.
        • Murphy D.L.
        Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region.
        Science. 1996; 274: 1527-1531
        • Levitt P.
        • Rakic P.
        • Goldman-Rakic P.
        Comparative assessment of monoamine afferents in mammalian cerebral cortex.
        in: Descarries L. Reader T. Jasper H. Monoamine Innervation of Cerebral Cortex. Alan R Liss Inc, New York1984: 41-60
        • Lindvall O.
        • Bjorklund A.
        General organization of cortical monoamine systems.
        in: Descarries L. Reader T. Jasper H. Monoamine Innervation of Cerebral Cortex. Alan R Liss Inc, New York1984: 9-40
        • Lingjaerde O.
        Tetrabenazine (Nitroman) in the treatment of psychoses.
        Acta Psychiatr Scand. 1963; 39: 1-109
        • Loomer J.
        • Sunders J.
        • Kline N.
        A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer.
        Psychiat Res Rep Am. 1957; 8: 129-141
        • Maas J.
        • Fawcett J.
        • Dekirmenjian H.
        Catecholamine metabolism, depressive illness and drug response.
        Arch Gen Psychiatry. 1972; 26: 252-262
        • Mann J.
        • Underwood M.
        • Arango V.
        Postmortem studies of suicide victims.
        in: Watson S. Biology of Schizophrenia and Affective Disease. American Psychiatric Press Inc, Washington, DC1996: 197-222
        • Matussek N.
        • Ackenheil M.
        • Hippius H.
        • et al.
        Effects of clonidine on growth hormone release in psychiatric patients and controls.
        Psychiatry Res. 1980; 2: 25-36
        • McGuffin P.
        • Katz R.
        The genetics of depression and manic depressive disorder.
        Br J Psychiatry. 1989; 155: 294-304
        • Meana J.
        • Barturen F.
        • Garcia-Sevilla J.
        a2-adrenoceptors in the brains of suicide victims.
        Biol Psychiatry. 1992; 31: 471-490
        • Melia K.R.
        • Nestler E.J.
        • Duman R.S.
        Chronic imipramine treatment normalizes levels of tyrosine hydroxylase in the locus coeruleus of chronically stressed rats.
        Psychopharmacol. 1992; 108: 23-26
        • Moldin S.
        • Reich T.
        • Rice J.
        Current perspectives on the genetics of unipolar depression.
        Behav Genet. 1991; 21: 211-242
        • Mongeau R.
        • Blier P.
        • de Montigny C.
        The serotonergic and noradrenergic systems of the hippocampus.
        Brain Res Brain Res Rev. 1997; 23: 145-195
        • Montgomery S.
        Reboxetine.
        J Psychopharmacol. 1997; 11: S9-S15
        • Muller J.
        • Pryer W.
        • Gibbons J.
        • Orgain E.
        Depression and anxiety occurring during Rauwolfia therapy.
        JAMA. 1955; 159: 836-839
        • Muscettola G.
        • Potter W.
        • Pickar D.
        • et al.
        Urinary 3-methoxy-4-hydroxyphenylglycol and major affective disorders.
        Arch Gen Psychiatry. 1984; 41: 337-342
        • Muth E.
        • Haskins J.
        • Moyer J.
        • et al.
        Antidepressant biochemical profile of the novel bicyclic compound WY-45,030, an ethyl-cyclohexanol derivative.
        Biochem Pharmacol. 1986; 35: 4493-4497
        • Nathan K.
        • Musselman D.
        • Schatzberg A.
        • Nemeroff C.
        Biology of mood disorders.
        in: Schatzberg A. Nemeroff C. Textbook of Psychopharmacology. American Psychiatric Press Inc, Washington, DC1995: 439-477
        • Nestler E.
        • McMahon A.
        • Sabban E.
        • Tallman J.
        • Duman R.
        Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus.
        Proc Natl Acad Sci U S A. 1990; 87: 7522-7526
        • Nibuya M.
        • Morinobu S.
        • Duman R.
        Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.
        J Neurosci. 1995; 15: 7539-7547
        • Nibuya M.
        • Nestler E.
        • Duman R.
        Chronic antidepressant administration increases the expression of cAMP response element-binding protein (CREB) in rat hippocampus.
        J Neurosci. 1996; 16: 2365-2372
        • Ohara K.
        • Nagai M.
        • Suzuki Y.
        • Ohara K.
        Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression.
        Neuroreport. 1998; 9: 1305-1308
        • Ordway G.A.
        • Smith K.S.
        • Haycock J.W.
        Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims.
        J Neurochem. 1994; 62: 680-685
        • Ordway G.A.
        • Widowson P.S.
        • Smith K.S.
        • Halaris A.E.
        Agonist binding to α2 adrenoceptors is elevated in the locus coeruleus from victims of suicide.
        J Neurochem. 1994; 63: 617-624
        • Owens M.J.
        Molecular and cellular mechanisms of antidepressant drugs.
        Depress Anxiety. 1997; 4: 153-159
        • Owens M.J.
        • Morgan W.N.
        • Plott S.J.
        • Nemeroff C.B.
        Neurotransmitter receptor and transporter binding profile of antidepressant and their metabolites.
        J Pharmacol Exp Ther. 1997; 283: 1305-1322
        • Owens M.J.
        • Ieni J.R.
        • Knight D.L.
        • Winders K.
        • Nemeroff C.B.
        The serotonergic antidepressant nefazodone inhibits the serotonin transporter.
        Life Sci. 1995; 57: 373-380
        • Papadopoulos G.
        • Parnavelas J.
        • Buijs R.
        Monoaminergic fibers form conventional synapses in the cerebral cortex.
        Neurosci Lett. 1990; 76: 275-279
        • Papolos D.
        • Veit S.
        • Faedda G.
        • Saito T.
        • Lachman H.
        Ultra-ultra rapid cycling bipolar disorder is associated with the low activity catecholamine-O-methyltransferase allele.
        Mol Psychiatry. 1998; 3: 346-349
        • Piletz J.
        • Halaris A.
        Involvement of I1-imidazoline receptors in mood disorders.
        Ann N Y Acad Sci. 1995; 763: 510-519
        • Piletz J.
        • Schubert D.
        • Halaris A.
        Evaluation of studies in platelet alpha2-adrenoceptors in depressive illness.
        Life Sci. 1986; 39: 1589-1616
        • Pitts W.
        • Fann W.
        • Halaris A.
        • et al.
        Bupropion in depression.
        J Clin Psychiatry. 1983; 44: 95-100
        • Plaznik A.
        • Danysz W.
        • Kostowski W.
        • Bidzinski A.
        • Hauptmann M.
        Interaction between noradrenergic and serotonergic brain systems as evidenced by microinjections of adrenergic agonists and antagonists into the median raphe nucleus.
        Pharmacol Biochem Behav. 1983; 19: 7-32
        • Plotsky P.
        • Owens M.
        • Nemeroff C.
        Psychoneuroendocrinology of depression.
        Psychoneuroendocrinology. 1998; 21: 293-307
        • Potter W.
        • Grossman G.
        • Rudorfer M.
        Noradrenergic function in depressive disorders.
        in: Mann J. Kupfer D. Biology of Depressive Disorders, Part A A Systems Perspective. Plenum Press, New York1993: 1-27
      1. Potter W, Muscettola G, Goodwin F (1983): Sources of variance in clinical studies in MHPG. In Maas J (editor). MHPG: Basic Mechanisms and Psychopathology. New York: Academic Press, pp 145–165.

        • Potter W.
        • Scheinin M.
        • Golden R.
        • et al.
        Selective antidepressant and cerebrospinal fluid.
        Arch Gen Psychiatry. 1985; 42: 1171-1177
        • Prange A.
        The pharmacology and biochemistry of depression.
        Dis Nerv Syst. 1964; 25: 217-221
        • Robbins T.
        • Everitt B.
        Central norepinephrine neurons and behavior.
        in: Bloom F. Kupfer D. Psychopharmacology The Fourth Generation of Progress. Raven Press Ltd, New York1995: 363-372
        • Roy A.
        • Nielsen D.
        • Rylander G.
        • Sarchiapone M.
        • Segal N.
        Genetics of suicide in depression.
        J Clin Psychiatry. 1999; 60: 12-17
        • Sackeim H.
        • Prudic J.
        • Devanand D.
        • et al.
        Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy.
        N Eng J Med. 1993; 328: 839-846
        • Schatzberg A.
        Noradrenergic vs. serotonergic antidepressants.
        J Clin Psychiatry. 1998; 59: 15-18
        • Schatzberg A.
        • Samson J.
        • Bloomingdale K.
        • et al.
        Toward a biochemical classification of depressive disorders, X.
        Arch Gen Psychiatry. 1989; 46: 260-268
        • Schatzberg A.
        • Schildkraut J.
        Recent studies on norepinephrine systems in mood disorders.
        in: Bloom F. Kupfer D. Psychopharmacology The Fourth Generation of Progress. Raven Press Ltd, New York1995: 911-920
        • Schildkraut J.
        The catecholamine hypothesis of affective disorders.
        Am J Psychiatry. 1965; 122: 509-522
        • Schildkraut J.
        • Orsulak P.
        • Labrie R.
        • et al.
        Toward a biochemical classification of depressive disorders. II. Application of multivariate discriminant function analysis to data on urinary catecholamines and metabolites.
        Arch Gen Psychiatry. 1978; 35: 1436-1439
        • Schweizer E.
        • Feighner J.
        • Mandos L.
        • et al.
        Comparison of venlafaxine and imipramine in the acute treatment of major depression in outpatients.
        J Clin Psychiatry. 1994; 55: 104-108
        • Serova L.
        • Sabbau E.L.
        • Zangea A.
        • Overstreet D.H.
        • Yadid G.
        Altered gene expression for catecholamine biosynthetic enzymes and stress response in a rat genetic model of depression.
        Brain Res Mol Brain Res. 1998; 63: 133-138
        • Serreti A.
        • Maccaiardi F.
        • Verga M.
        • Cusin C.
        • Pedrini S.
        • Smeraldi E.
        Tyrosine hydroxylase gene associated with depressive symptomatology in mood disorder.
        Am J Med Genetics. 1998; 81: 127-130
        • Shatz C.J.
        Impulse activity and the patterning of connections during CNS development.
        Neuron. 1990; 5: 745-756
        • Siever L.
        • Trestman R.
        • Coccaro E.
        The growth hormone response to clonidine in acute and remitted depressed male patients.
        Neuropsychopharmacology. 1992; 6: 165-177
        • Spector S.
        • Sjoerdsma A.
        • Udenfriend S.
        Blockade of endogenous norepinephrine synthesis by a-methyl-tyrosine, an inhibitor of tyrosine hydroxylase.
        J Pharmacol Exp Ther. 1965; 147: 86-95
        • Spyraki C.
        • Fibiger H.
        Functional evidence for subsensitivity of noradrenergic alpha2receptors after chronic desipramine treatment.
        Life Sci. 1980; 27: 186-1867
        • Sulser F.
        • Bickel M.
        • Brodie B.
        The action of desmethylimipramine in counteracting sedation and cholinergic effects of reserpine-like drugs.
        J Pharmacol Exp Ther. 1964; 144: 321-330
        • Valentino R.
        • Aston-Jones G.
        Physiological and anatomical determinants of locus coeruleus discharge.
        in: Bloom F. Kupfer D. Psychopharmacology The Fourth Generation of Progress. Raven Press Ltd, New York1995: 373-385
        • Valentino R.
        • Foote S.
        • Page M.
        The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses.
        Ann N Y Acad Sci. 1993; 697: 171-187
        • Vetulani J.
        • Sulser F.
        Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generation system in limbic forebrain.
        Nature. 1975; 257: 495-496
        • Wang P.
        • Kitayama I.
        • Nomura J.
        Tyrosine hydroxylase gene expression in the locus coeruleus of depression-model rats and rats exposed to short-term and long-term forced walking stress.
        Life Sci. 1998; 62: 2083-2092
        • Waterhouse B.
        • Sessler F.
        • Cheng H.
        • Woodward D.
        • Azizi A.
        • Moises H.
        New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain.
        Brain Res Bull. 1988; 21: 425-432
        • Weiner N.
        • Molinoff P.
        Catecholamines.
        in: Siegel G. Agranoff B. Albers R. Molinoff P. Basic Neurochemistry Molecular, Cellular, and Medical Aspects. 5th edition. Raven Press Ltd, New York1994: 261-281
        • Weiss J.
        • Demetrikopoulos M.
        • West C.
        • Bonsall R.
        Hypothesis linking the noradrenergic and dopaminergic systems in depression.
        Depression. 1996; 3: 225-245
        • Wheatley D.
        • van Moffaert M.
        • Timmerman L.
        • Kremer C.
        • Group M.-F.S.
        Mirtazapine.
        J Clin Psychiatry. 1998; 59: 306-312