Advertisement

Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles

      Abstract

      Background: Catechol-O-methyltransferase (COMT) has been investigated as a candidate gene in many neurologic disorders involving catecholaminergic systems. The NlaIII restriction site polymorphism (RSP) at COMT is a G↔A (site absent↔site present) single nucleotide polymorphism (SNP) at nucleotide 322/472 (in the short or long mRNA) that results in a Val↔Met polymorphism at amino acid 108/158 (in soluble or membrane-bound) COMT protein and different enzyme activity levels, high for Val, low for Met. COMT enzyme activity is known to vary among ethnic groups, presumably as a result of different population frequencies of these COMT alleles. We have undertaken a direct survey of allele frequencies of this polymorphism in a global sample of populations.
      Methods: We typed 1314 individuals from 30 different populations using PCR of the relevant region followed by digestion with NlaIII and electrophoresis.
      Results: The frequencies of the low activity allele (COMT∗L, NlaIII site-present) vary significantly from 0.01 to 0.62. Europeans have nearly equal frequencies of the two alleles while the COMT∗H allele is much more common in populations in all other parts of the world. Sequencing in nonhuman primates indicates that COMT∗H is the ancestral allele in humans.
      Conclusions: This is the first global survey of the COMT∗L and COMT∗H allele frequencies, confirming and extending earlier studies to show significant world-wide variation. This is also the first study establishing the COMT∗L allele as the derived allele unique to humans. Henceforth, in any population-based association studies of this polymorphism, the control allele frequencies should be in agreement with these published values for corresponding ethnic groups.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bertocci B
        • Miggiano V
        • Da Prada M
        • Dembic Z
        • Lahm H.W
        • Malherbe P
        Human catechol-O-methyltransferase.
        Proc Natl Acad Sci U S A. 1991; 88: 1416-1420
        • Bowcock A.M
        • Kidd J.R
        • Mountain J.L
        • Hebert J.M
        • Carotenuto L
        • Kidd K.K
        • et al.
        Drift, admixture, and selection in human evolution.
        Proc Natl Acad Sci U S A. 1991; 88: 839-843
        • Calafell F
        • Shuster A
        • Speed W
        • Kidd J
        • Kidd K
        Short tandem repeat polymorphism evolution in humans.
        Eur J Hum Genet. 1998; 6: 38-49
        • Castiglione C.M
        • Dienard A.S
        • Speed W.C
        • Sirugo G
        • Rosenbaum H.C
        • Zhang Z
        • et al.
        Evolution of haplotypes at the DRD2 locus.
        Am J Hum Genet. 1995; 57: 1445-1456
        • Cavalli-Sforza L.L
        • Menozzi P
        • Piazza A
        The History and Geography of Human Genes. Princeton University Press, Princeton1994
        • Chen C.H
        • Lee Y.R
        • Wei F.C
        • Koong F.J
        • Hwu H.G
        • Hsiao K.J
        Association study of NlaIII and MspI genetic polymorphisms of catechol-O-methyltransferase gene and susceptibility to schizophrenia.
        Biol Psychiatry. 1997; 41: 985-987
        • Cooper J.R
        • Bloom F.E
        • Roth R.H
        The Biochemical Basis of Neuropharmacology. 7th ed. Oxford University Press, New York1996
        • Craddock N
        • Spurlock G
        • McGuffin P
        • Owen M.J
        • Nostenbertrand M
        • Bellivier F
        • et al.
        No association between bipolar disorder and alleles at a functional polymorphism in the COMT gene—Biomed European Bipolar Collaborative Group.
        British Journal of Psychiatry. 1997; 170: 526-528
        • Daniels J.K
        • Williams N.M
        • Williams J
        • Jones L.A
        • Cardno A.G
        • Murphy K.C
        • et al.
        No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol-O-methyltransferase activity.
        Am J Psychiatry. 1996; 153: 268-270
        • Goldstein J.L
        • Brown M.S
        The clinical investigator.
        J Clin Invest. 1997; 99: 2803-2812
        • Grossman M.H
        • Emanuel B.S
        • Budarf M.L
        Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1–q11.2.
        Genomics. 1992; 12: 822-825
        • Gutierrez B
        • Bertranpetit J
        • Guillamat R
        • Valles V
        • Arranz M.J
        • Kerwin R
        • et al.
        Association analysis of the catechol O-methyltransferase gene and bipolar affective disorder.
        Am J Psychiatry. 1997; 154: 113-115
        • Hartl D.L
        • Clark A.G
        Principles of Population Genetics. 3rd ed. Sinauer Associates, Inc, Sunderland, MA, USA1997
        • Hoda F
        • Nicholl D
        • Bennett P
        • Arranz M
        • Aitchison K.J
        • al-Chalabi A
        • et al.
        No association between Parkinson’s disease and low-activity alleles of catechol-O-methyltransferase.
        Biochem Biophys Res Commun. 1996; 228: 780-784
        • Karayiorgou M
        • Altemus M
        • Galke B.L
        • Goldman D
        • Murphy D.L
        • Ott J
        • et al.
        Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessive-compulsive disorder.
        Proc Natl Acad Sci U S A. 1997; 94: 4572-4575
        • Karayiorgou M
        • Gogos J.A
        • Galke B.L
        • Wolyniec P.S
        • Nestadt G
        • Antonarakis S.E
        • et al.
        Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility.
        Biol Psychiatry. 1998; 43: 425-431
        • Kennedy G
        • German M
        • Rutter W
        The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription.
        Nature Genetics. 1995; 9: 293-298
        • Kidd K
        Associations of disease with genetic markers.
        Am J Med Genet. 1993; 48: 71-73
        • Kidd K.K
        • Kidd J.R
        A nuclear perspective on human evolution.
        in: Boyce A.J Mascie-Taylor C.G.N Molecular Biology and Human Diversity. Cambridge University Press, Cambridge1996: 242-264
        • Kidd J.R
        • Kidd K.K
        Autosomal DNA haplotype diversity within and among Amerind-speaking populations.
        Am J Phys Anthro–Suppl. 1999; 28: 168
        • Kidd J
        • Pakstis A
        • Kidd K
        Global levels of DNA variation.
        in: Proceedings from the Fourth International Symposium on Human Identification. Promega Corp, Madison, WI1993: 21-30
        • Klemetsdal B
        • Straume B
        • Giverhaug T
        • Aarbakke J
        Low catechol-O-methyltransferase activity in a Saami population.
        Eur J Clin Pharmacol. 1994; 46: 231-235
        • Kunugi H
        • Nanko S
        • Ueki A
        • Otsuka E
        • Hattori M
        • Hoda F
        • et al.
        High and low activity alleles of catechol-O-methyltransferase gene.
        Neurosci Lett. 1997; 221: 202-204
        • Kunugi H
        • Vallada H.P
        • Hoda F
        • Kirov G
        • Gill M
        • Aitchison K.J
        • et al.
        No evidence for an association of affective disorders with high- or low-activity allele of catechol-O-methyltransferase gene.
        Biol Psychiatry. 1997; 42: 282-285
        • Lachman H.M
        • Kelsoe J
        • Moreno L
        • Katz S
        • Papolos D.F
        Lack of association of catechol-O-methyltransferase (COMT) functional polymorphism in bipolar affective disorder.
        Psychiatr Genet. 1997; 7: 13-17
        • Lachman H.M
        • Morrow B
        • Shprintzen R
        • Veit S
        • Parsia S.S
        • Faedda G
        • et al.
        Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome.
        Am J Med Genet. 1996; 67: 468-472
        • Lachman H.M
        • Nolan K
        • Mohr P
        • Saito T
        • Volavka J
        Association between catechol-O-methyltransferase genotype and violence in schizophrenia and schizoaffective disorder.
        Am J Psychiatry. 1998; 155: 835-837
        • Lachman H.M
        • Papolos D.F
        • Saito T
        • Yu Y.M
        • Szumlanski C.L
        • Weinshilboum R.M
        Human catechol-O-methyltransferase pharmacogenetics.
        Pharmacogenetics. 1996; 6: 243-250
        • Li T
        • Vallada H
        • Curtis D
        • Arranz M
        • Xu K
        • Cai G
        • et al.
        Catechol-O-methyltransferase Val158Met polymorphism.
        Pharmacogenetics. 1997; 7: 349-353
        • Lotta T
        • Vidgren J
        • Tilgmann C
        • Ulmanen I
        • Melen K
        • Julkunen I
        • et al.
        Kinetics of human soluble and membrane-bound catechol-O-methyltransferase.
        Biochem. 1995; 34: 4202-4210
        • Lundstrom K
        • Salminen M
        • Jalanko A
        • Savolainen R
        • Ulmanen I
        Cloning and characterization of human placental catechol-O-methyltransferase cDNA.
        DNA Cell Biol. 1991; 10: 181-189
        • Lundstrom K
        • Tenhunen J
        • Tilgmann C
        • Karhunen T
        • Panula P
        • Ulmanen I
        Cloning, expression and structure of catechol-O-methyltransferase.
        Biochim Biophys Acta. 1995; 1251: 1-10
        • Malherbe P
        • Bertocci B
        • Caspers P
        • Zurcher G
        • Da Prada M
        Expression of functional membrane-bound and soluble catechol-O-methyltransferase in Escherichia coli and a mammalian cell line.
        J Neurochem. 1992; 58: 1782-1789
        • McLeod H.L
        • Fang L
        • Luo X
        • Scott E.P
        • Evans W.E
        Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans.
        J Pharmacol Exp Ther. 1994; 270: 26-29
        • Ohara K
        • Nagai M
        • Suzuki Y
        • Ohara K
        Low activity allele of catechol-O-methyltransferase gene and Japanese unipolar depression.
        Neuroreport. 1998; 9: 1305-1308
        • Ohmori O
        • Shinkai T
        • Kojima H
        • Terao T
        • Suzuki T
        • Mita T
        • et al.
        Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics.
        Neurosci Lett. 1998; 243: 109-112
        • Pakstis A.J
        • Carter A
        • Castiglione C.M
        • Speed W.C
        • Ogura T
        • Kidd J.R
        • et al.
        At the HOXBα-NGFR loci, the relationship between linkage disequilibrium and physical distance varies across human populations.
        Am J Hum Genet–Suppl. 1997; 61: 79
        • Poduslo S
        • Riggs D
        • Schwankhaus J
        • Osborne A
        • Crawford F
        • Mullan M
        Association of apolipoprotein E but not B with Alzheimer’s disease.
        Hum Genet. 1995; 96: 597-600
        • Rivera-Calimlim L
        • Reilly D.K
        Difference in erythrocyte catechol-O-methyltransferase activity between Orientals and Caucasians.
        Clin Pharmacol Ther. 1984; 35: 804-809
        • Rogers A.R
        • Jorde L.B
        Ascertainment bias in estimates of average heterozygosity.
        Am J Hum Genet. 1996; 58: 1033-1041
        • Strous R.D
        • Bark N
        • Woerner M
        • Lachman H.M
        Lack of association of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia.
        Biol Psychiatry. 1997; 41: 493-495
        • Syvanen A.C
        • Tilgmann C
        • Rinne J
        • Ulmanen I
        Genetic polymorphism of catechol-O-methyltransferase (COMT).
        Pharmacogenetics. 1997; 7: 65-71
        • Tenhunen J
        • Salminen M
        • Lundstrom K
        • Kiviluoto T
        • Savolainen R
        • Ulmanen I
        Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters.
        Eur J Biochem. 1994; 223: 1049-1059
        • Tishkoff S.A
        • Dietzsch E
        • Speed W
        • Pakstis W.C
        • Kidd J.R
        • Cheung K
        • et al.
        Global patterns of linkage disequilibrium at the CD4 locus and modern human origins.
        Science. 1996; 271: 1380-1387
        • Vandenbergh D.J
        • Rodriguez L.A
        • Miller I.T
        • Uhl G.R
        • Lachman H.M
        High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers.
        Am J Med Genet. 1997; 74: 439-442
        • Weinshilboum R.M
        Human biochemical genetics of plasma dopamine-beta-hydroxylase and erythrocyte catechol-O-methyltransferase.
        Hum Genet Suppl. 1978; 1: 101-112
        • Weinshilboum R.M
        • Raymond F.A
        Inheritance of low erythrocyte catechol-O-methyltransferase activity in man.
        Am J Hum Genet. 1977; 29: 125-135
        • Winqvist R
        • Lundstrom K
        • Salminen M
        • Laatikainen M
        • Ulmanen I
        The human catechol-O-methyltransferase (COMT) gene maps to band q11.2 of chromosome 22 and shows a frequent RFLP with BglI.
        Cytogenet Cell Genet. 1992; 59: 253-257
        • Wright S
        Evolution and the Genetics of Populations. vol 2. The University of Chicago Press, Chicago1969
        • Xie T
        • Ho S.L
        • Li L.S.W
        • Ma O.C.K
        G/A1947 polymorphism in catechol-O-methyltransferase (COMT) gene in Parkinson’s disease.
        Mov Disord. 1997; 12: 426-427