Advertisement
Archival Report|Articles in Press

NMDAR-Arc signaling is required for Memory Updating and is disrupted in Alzheimer’s Disease

Published:February 14, 2023DOI:https://doi.org/10.1016/j.biopsych.2023.02.008

      Abstract

      Background

      Memory deficits are central to many neuropsychiatric diseases. During acquisition of new information memories can become vulnerable to interference, yet mechanisms that underlie interference are unknown.

      Methods

      We describe a novel transduction pathway that links NMDAR to AKT signaling via the IEG Arc, and evaluate its role in memory. The signaling pathway is validated using biochemical tools and genetic animals, and function is evaluated in assays of synaptic plasticity and behavior. The translational relevance is evaluated in human postmortem brain.

      Results

      Arc is dynamically phosphorylated by CaMKII and binds the NMDA receptor (NMDAR) subunits NR2A/NR2B and a previously unstudied PI3K adaptor p55PIK (PIK3R3) in vivo in response to novelty or tetanic stimulation in acute slices. NMDAR-Arc-p55PIK recruits p110α PI3K and mTORC2 to activate AKT. NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT assembly occurs within minutes of exploratory behavior and localizes to sparse synapses throughout hippocampus and cortical regions. Studies using conditional (Nestin-Cre) p55PIK deletion mice indicate that NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT functions to inhibit GSK3 and mediates input-specific metaplasticity that protects potentiated synapses from subsequent depotentiation. p55PIK cKO mice perform normally in multiple behaviors including working-memory and long-term memory tasks but exhibit deficits indicative of increased vulnerability to interference in both short-term and long-term paradigms. The NMDAR-AKT transduction complex is reduced in postmortem brain of individuals with early Alzheimer’s disease.

      Conclusions

      A novel function of Arc mediates synapse-specific NMDAR-AKT signaling and metaplasticity that contributes to memory updating and is disrupted in human cognitive disease.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dringenberg H.C.
        The history of long‐term potentiation as a memory mechanism: Controversies, confirmation, and some lessons to remember.
        Hippocampus. 2020 Sep; 30: 987-1012
        • Josselyn S.A.
        • Tonegawa S.
        Memory engrams: Recalling the past and imagining the future.
        Science. 2020 Jan 3; 367: eaaw4325
        • Lisman J.
        Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling.
        Phil Trans R Soc B. 2017 Mar 5; 37220160260
      1. Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008 May;9(5):387–387.

      2. Gross C, Bassell GJ. Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders. Front Mol Neurosci [Internet]. 2014 [cited 2022 Aug 29];7. Available from: http://journal.frontiersin.org/article/10.3389/fnmol.2014.00012/abstract

        • Pons S.
        • Asano T.
        • Glasheen E.
        • Miralpeix M.
        • Zhang Y.
        • Fisher T.L.
        • et al.
        The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase.
        Molecular and Cellular Biology. 1995 Aug; 15: 4453-4465
        • Dewar M.
        • Garcia Y.F.
        • Cowan N.
        • Della Sala S.
        Delaying interference enhances memory consolidation in amnesic patients.
        Neuropsychology. 2009 Sep; 23: 627-634
        • Dewar M.
        • Pesallaccia M.
        • Cowan N.
        • Provinciali L.
        • Della Sala S.
        Insights into spared memory capacity in amnestic MCI and Alzheimer’s Disease via minimal interference.
        Brain and Cognition. 2012 Apr; 78: 189-199
        • Huang C.C.
        • Liang Y.C.
        • Hsu K.S.
        Characterization of the Mechanism Underlying the Reversal of Long Term Potentiation by Low Frequency Stimulation at Hippocampal CA1 Synapses.
        Journal of Biological Chemistry. 2001 Dec; 276: 48108-48117
        • Wang H.
        • Ardiles A.O.
        • Yang S.
        • Tran T.
        • Posada-Duque R.
        • Valdivia G.
        • et al.
        Metabotropic Glutamate Receptors Induce a Form of LTP Controlled by Translation and Arc Signaling in the Hippocampus.
        J Neurosci. 2016 Feb 3; 36: 1723-1729
        • Zhang W.
        • Wu J.
        • Ward M.D.
        • Yang S.
        • Chuang Y.A.
        • Xiao M.
        • et al.
        Structural Basis of Arc Binding to Synaptic Proteins: Implications for Cognitive Disease.
        Neuron. 2015 Apr; 86: 490-500
        • Chowdhury S.
        • Shepherd J.D.
        • Okuno H.
        • Lyford G.
        • Petralia R.S.
        • Plath N.
        • et al.
        Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking.
        Neuron. 2006 Nov; 52: 445-459
        • Huang C.H.
        • Mandelker D.
        • Schmidt-Kittler O.
        • Samuels Y.
        • Velculescu V.E.
        • Kinzler K.W.
        • et al.
        The Structure of a Human p110α/p85α Complex Elucidates the Effects of Oncogenic PI3Kα Mutations.
        Science. 2007 Dec 14; 318: 1744-1748
        • Miled N.
        • Yan Y.
        • Hon W.C.
        • Perisic O.
        • Zvelebil M.
        • Inbar Y.
        • et al.
        Mechanism of Two Classes of Cancer Mutations in the Phosphoinositide 3-Kinase Catalytic Subunit.
        Science. 2007 Jul 13; 317: 239-242
        • Fruman D.A.
        • Chiu H.
        • Hopkins B.D.
        • Bagrodia S.
        • Cantley L.C.
        • Abraham R.T.
        The PI3K Pathway in Human Disease.
        Cell. 2017 Aug; 170: 605-635
        • Frias M.A.
        • Thoreen C.C.
        • Jaffe J.D.
        • Schroder W.
        • Sculley T.
        • Carr S.A.
        • et al.
        mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s.
        Current Biology. 2006 Sep; 16: 1865-1870
        • Jacinto E.
        • Facchinetti V.
        • Liu D.
        • Soto N.
        • Wei S.
        • Jung S.Y.
        • et al.
        SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity.
        Cell. 2006 Oct; 127: 125-137
        • Liu P.
        • Gan W.
        • Chin Y.R.
        • Ogura K.
        • Guo J.
        • Zhang J.
        • et al.
        PtdIns(3,4,5) P 3 -Dependent Activation of the mTORC2 Kinase Complex.
        Cancer Discov. 2015 Nov; 5: 1194-1209
        • Sutton G.
        • Chandler L.J.
        Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures.
        J Neurochem. 2002 Sep; 82: 1097-1105
        • Chen Q.
        • He S.
        • Hu X.L.
        • Yu J.
        • Zhou Y.
        • Zheng J.
        • et al.
        Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Activity-Dependent Brain-Derived Neurotrophic Factor Gene Regulation and Limbic Epileptogenesis.
        Journal of Neuroscience. 2007 Jan 17; 27: 542-552
        • Zhang W.
        • Chuang Y.A.
        • Na Y.
        • Ye Z.
        • Yang L.
        • Lin R.
        • et al.
        Arc Oligomerization Is Regulated by CaMKII Phosphorylation of the GAG Domain: An Essential Mechanism for Plasticity and Memory Formation.
        Molecular Cell. 2019 Jul; 75: 13-25.e5
        • Alam M.S.
        Proximity Ligation Assay (PLA).
        Current Protocols in Immunology. 2018 Nov; 123: e58
        • Lu R.
        • Liang Y.
        • Meng G.
        • Zhou P.
        • Svoboda K.
        • Paninski L.
        • et al.
        Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
        Nat Methods. 2020 Mar; 17: 291-294
        • Guzowski J.F.
        • McNaughton B.L.
        • Barnes C.A.
        • Worley P.F.
        Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles.
        Nat Neurosci. 1999 Dec; 2: 1120-1124
        • Kauvar I.V.
        • Machado T.A.
        • Yuen E.
        • Kochalka J.
        • Choi M.
        • Allen W.E.
        • et al.
        Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions.
        Neuron. 2020 Jul 22; 107: 351-367.e19
        • Peineau S.
        • Taghibiglou C.
        • Bradley C.
        • Wong T.P.
        • Liu L.
        • Lu J.
        • et al.
        LTP inhibits LTD in the hippocampus via regulation of GSK3beta.
        Neuron. 2007 Mar 1; 53: 703-717
        • Alonso A.
        • van der Meij J.
        • Tse D.
        • Genzel L.
        Naïve to expert: Considering the role of previous knowledge in memory.
        Brain and Neuroscience Advances. 2020 Jan; 4239821282094868
        • Fernández G.
        • Morris R.G.M.
        Memory, Novelty and Prior Knowledge.
        Trends in Neurosciences. 2018 Oct; 41: 654-659
        • Fillenbaum G.G.
        • van Belle G.
        • Morris J.C.
        • Mohs R.C.
        • Mirra S.S.
        • Davis P.C.
        • et al.
        Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years.
        Alzheimers Dement. 2008 Mar; 4: 96-109
        • Braak H.
        • Alafuzoff I.
        • Arzberger T.
        • Kretzschmar H.
        • Del Tredici K.
        Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry.
        Acta Neuropathol. 2006 Oct; 112: 389-404
        • Redondo R.L.
        • Morris R.G.M.
        Making memories last: the synaptic tagging and capture hypothesis.
        Nat Rev Neurosci. 2011 Jan; 12: 17-30
        • Okuno H.
        • Akashi K.
        • Ishii Y.
        • Yagishita-Kyo N.
        • Suzuki K.
        • Nonaka M.
        • et al.
        Inverse Synaptic Tagging of Inactive Synapses via Dynamic Interaction of Arc/Arg3.1 with CaMKIIβ.
        Cell. 2012 May; 149: 886-898
        • Steward O.
        • Wallace C.S.
        • Lyford G.L.
        • Worley P.F.
        Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites.
        Neuron. 1998 Oct; 21: 741-751
        • Na Y.
        • Park S.
        • Lee C.
        • Kim D.K.
        • Park J.M.
        • Sockanathan S.
        • et al.
        Real-Time Imaging Reveals Properties of Glutamate-Induced Arc/Arg 3.1 Translation in Neuronal Dendrites.
        Neuron. 2016 Aug; 91: 561-573
        • Park J.M.
        • Hu J.H.
        • Milshteyn A.
        • Zhang P.W.
        • Moore C.G.
        • Park S.
        • et al.
        A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization.
        Cell. 2013 Aug 1; 154: 637-650
        • Vazdarjanova A.
        • McNaughton B.L.
        • Barnes C.A.
        • Worley P.F.
        • Guzowski J.F.
        Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks.
        J Neurosci. 2002 Dec 1; 22: 10067-10071
        • Marton T.M.
        • Hussain Shuler M.G.
        • Worley P.F.
        Homer 1a and mGluR5 phosphorylation in reward-sensitive metaplasticity: A hypothesis of neuronal selection and bidirectional synaptic plasticity.
        Brain Res. 2015 Dec 2; 1628: 17-28
        • Hardt O.
        • Nader K.
        • Nadel L.
        Decay happens: the role of active forgetting in memory.
        Trends in Cognitive Sciences. 2013 Mar; 17: 111-120
        • Schiller D.
        • Monfils M.H.
        • Raio C.M.
        • Johnson D.C.
        • Ledoux J.E.
        • Phelps E.A.
        Preventing the return of fear in humans using reconsolidation update mechanisms.
        Nature. 2010 Jan 7; 463: 49-53
        • Wang S.H.
        • Morris R.G.M.
        Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation.
        Annu Rev Psychol. 2010; 61: C1-4
      3. Flesch T, Balaguer J, Dekker R, Nili H, Summerfield C. Comparing continual task learning in minds and machines. Proc Natl Acad Sci USA [Internet]. 2018 Oct 30 [cited 2023 Jan 30];115(44). Available from: https://pnas.org/doi/full/10.1073/pnas.1800755115

        • Fayek H.M.
        • Cavedon L.
        • Wu H.R.
        Progressive learning: A deep learning framework for continual learning.
        Neural Netw. 2020 Aug; 128: 345-357
        • Poll S.
        • Mittag M.
        • Musacchio F.
        • Justus L.C.
        • Giovannetti E.A.
        • Steffen J.
        • et al.
        Memory trace interference impairs recall in a mouse model of Alzheimer’s disease.
        Nat Neurosci. 2020 Aug; 23: 952-958