Advertisement

The Cutting Edge of Epigenetic Clocks: In Search of Mechanisms Linking Aging and Mental Health

Published:February 08, 2023DOI:https://doi.org/10.1016/j.biopsych.2023.02.001

      Abstract

      Individuals with psychiatric disorders are at increased risk of age-related diseases and early mortality. Recent studies demonstrate that this link between mental health and aging is reflected in epigenetic clocks, aging biomarkers based on DNA methylation. The reported relationships between epigenetic clocks and mental health are mostly correlational, and the mechanisms are poorly understood. Here, we review recent progress concerning the molecular and cellular processes underlying epigenetic clocks, as well as novel technologies enabling further studies of the causes and consequences of epigenetic aging. We then review the current literature on how epigenetic clocks relate to specific aspects of mental health, such as stress, medications, substance use, health behaviors, and symptom clusters. We propose an integrated framework where mental health and epigenetic aging are each broken down into multiple distinct processes which are then linked to each other, using stress and schizophrenia as examples. This framework incorporates the heterogeneity and complexity of both mental health conditions and aging, may help reconcile conflicting results, and provides a basis for further hypothesis-driven research in humans and model systems to investigate potentially causal mechanisms linking aging and mental health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Walker E.R.
        • McGee R.E.
        • Druss B.G.
        Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis.
        JAMA Psychiatry. 2015; 72: 334-341
        • Lawrence D.
        • Hancock K.J.
        • Kisely S.
        The gap in life expectancy from preventable physical illness in psychiatric patients in Western Australia: retrospective analysis of population based registers.
        BMJ. 2013; 346: f2539
        • Richmond-Rakerd L.S.
        • D’Souza S.
        • Milne B.J.
        • Caspi A.
        • Moffitt T.E.
        Longitudinal Associations of Mental Disorders With Dementia: 30-Year Analysis of 1.7 Million New Zealand Citizens.
        JAMA Psychiatry. 2022; 79: 333-340
        • Lambert A.M.
        • Parretti H.M.
        • Pearce E.
        • Price M.J.
        • Riley M.
        • Ryan R.
        • et al.
        Temporal trends in associations between severe mental illness and risk of cardiovascular disease: A systematic review and meta-analysis.
        PLoS Med. 2022; 19e1003960
        • López-Otín C.
        • Blasco M.A.
        • Partridge L.
        • Serrano M.
        • Kroemer G.
        The hallmarks of aging.
        Cell. 2013; 153: 1194-1217
        • Campisi J.
        • Kapahi P.
        • Lithgow G.J.
        • Melov S.
        • Newman J.C.
        • Verdin E.
        From discoveries in ageing research to therapeutics for healthy ageing.
        Nature. 2019; 571: 183-192
        • Xie K.
        • Fuchs H.
        • Scifo E.
        • Liu D.
        • Aziz A.
        • Aguilar-Pimentel J.A.
        • et al.
        Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice.
        Nat Commun. 2022; 13: 6830
        • Ferrucci L.
        • Levine M.E.
        • Kuo P.-L.
        • Simonsick E.M.
        Time and the Metrics of Aging.
        Circ Res. 2018; 123: 740-744
        • Rutledge J.
        • Oh H.
        • Wyss-Coray T.
        Measuring biological age using omics data.
        Nat Rev Genet. 2022; https://doi.org/10.1038/s41576-022-00511-7
        • Higgins-Chen A.T.
        • Thrush K.L.
        • Levine M.E.
        Aging biomarkers and the brain.
        Semin Cell Dev Biol. 2021; 116: 180-193
        • Horvath S.
        • Raj K.
        DNA methylation-based biomarkers and the epigenetic clock theory of ageing.
        Nat Rev Genet. 2018; 19: 371-384
        • Seale K.
        • Horvath S.
        • Teschendorff A.
        • Eynon N.
        • Voisin S.
        Making sense of the ageing methylome.
        Nat Rev Genet. 2022; https://doi.org/10.1038/s41576-022-00477-6
        • Kabacik S.
        • Lowe D.
        • Fransen L.
        • Leonard M.
        • Ang S.-L.
        • Whiteman C.
        • et al.
        The relationship between epigenetic age and the hallmarks of aging in human cells.
        Nature Aging. 2022; 2: 484-493
      1. Jansen R, Han LKM, Verhoeven JE, Aberg KA, van den Oord ECGJ, Milaneschi Y, Penninx BWJH (2021): An integrative study of five biological clocks in somatic and mental health. Elife 10: e59479–e59479.

        • Li X.
        • Ploner A.
        • Wang Y.
        • Magnusson P.K.
        • Reynolds C.
        • Finkel D.
        • et al.
        Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up.
        Elife. 2020; 9: 1-20
        • Palma-Gudiel H.
        • Fañanás L.
        • Horvath S.
        • Zannas A.S.
        Psychosocial stress and epigenetic aging.
        Int Rev Neurobiol. 2020; 150: 107-128
        • Wolf E.J.
        • Morrison F.G.
        Traumatic Stress and Accelerated Cellular Aging: From Epigenetics to Cardiometabolic Disease.
        Curr Psychiatry Rep. 2017; 19: 75
        • Jylhävä J.
        • Pedersen N.L.
        • Hägg S.
        Biological Age Predictors.
        EBioMedicine. 2017; 21: 29-36
        • Oblak L.
        • van der Zaag J.
        • Higgins-Chen A.T.
        • Levine M.E.
        • Boks M.P.
        A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration.
        Ageing Res Rev. 2021; 69101348
        • Cohen A.A.
        • Ferrucci L.
        • Fülöp T.
        • Gravel D.
        • Hao N.
        • Kriete A.
        • et al.
        A complex systems approach to aging biology.
        Nature Aging. 2022; : 1-12
        • Kozak M.J.
        • Cuthbert B.N.
        The NIMH Research Domain Criteria Initiative: Background, Issues, and Pragmatics.
        Psychophysiology. 2016; 53: 286-297
        • Ahadi S.
        • Zhou W.
        • Schüssler-Fiorenza Rose S.M.
        • Sailani M.R.
        • Contrepois K.
        • Avina M.
        • et al.
        Personal aging markers and ageotypes revealed by deep longitudinal profiling.
        Nat Med. 2020; 26: 83-90
      2. Thrush KL, Higgins-Chen AT, Liu Z, Levine ME (2022, July 16): R methylCIPHER: A Methylation Clock Investigational Package for Hypothesis-Driven Evaluation & Research. BioRxiv. p 2022.07.13.499978.

        • Raj K.
        • Horvath S.
        Current perspectives on the cellular and molecular features of epigenetic ageing.
        Exp Biol Med. 2020; 245: 1532-1542
        • Suzuki M.M.
        • Bird A.
        DNA methylation landscapes: provocative insights from epigenomics.
        Nat Rev Genet. 2008; 9: 465-476
      3. Moqri M, Cipriano A, Nachun D, Murty T, de Sena Brandine G, Rasouli S, et al. (2022): PRC2 clock: a universal epigenetic biomarker of aging and rejuvenation. bioRxiv 2022.06.03.494609-2022.06.03.494609.

        • Zhu T.
        • Zheng S.C.
        • Paul D.S.
        • Horvath S.
        • Teschendorff A.E.
        Cell and tissue type independent age-associated DNA methylation changes are not rare but common.
        Aging. 2018; 10: 3541-3557
        • Li Y.
        • Zheng H.
        • Wang Q.
        • Zhou C.
        • Wei L.
        • Liu X.
        • et al.
        Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys.
        Genome Biol. 2018; 19: 1-16
        • Keenan C.R.
        Heterochromatin and Polycomb as regulators of haematopoiesis.
        Biochem Soc Trans. 2021; 49: 805-814
        • Teschendorff A.E.
        A comparison of epigenetic mitotic-like clocks for cancer risk prediction.
        Genome Med. 2020; 12: 56
        • Slieker R.C.
        • van Iterson M.
        • Luijk R.
        • Beekman M.
        • Zhernakova D.V.
        • Moed M.H.
        • et al.
        Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms.
        Genome Biol. 2016; 17: 191
        • Pérez R.F.
        • Tejedor J.R.
        • Bayón G.F.
        • Fernández A.F.
        • Fraga M.F.
        Distinct chromatin signatures of DNA hypomethylation in aging and cancer.
        Aging Cell. 2018; 17e12744
        • Zhou W.
        • Dinh H.Q.
        • Ramjan Z.
        • Weisenberger D.J.
        • Nicolet C.M.
        • Shen H.
        • et al.
        DNA methylation loss in late-replicating domains is linked to mitotic cell division.
        Nat Genet. 2018; 50: 591-602
        • Endicott J.L.
        • Nolte P.A.
        • Shen H.
        • Laird P.W.
        Cell division drives DNA methylation loss in late-replicating domains in primary human cells.
        Nat Commun. 2022; 13: 6659
        • Lee J.-H.
        • Kim E.W.
        • Croteau D.L.
        • Bohr V.A.
        Heterochromatin: an epigenetic point of view in aging.
        Exp Mol Med. 2020; 52: 1466-1474
        • Piunti A.
        • Shilatifard A.
        The roles of Polycomb repressive complexes in mammalian development and cancer.
        Nat Rev Mol Cell Biol. 2021; 22: 326-345
        • Lee J.-Y.
        • Davis I.
        • Youth E.H.H.
        • Kim J.
        • Churchill G.
        • Godwin J.
        • et al.
        Misexpression of genes lacking CpG islands drives degenerative changes during aging.
        Sci Adv. 2021; 7eabj9111
        • Yuan T.
        • Jiao Y.
        • de Jong S.
        • Ophoff R.A.
        • Beck S.
        • Teschendorff A.E.
        An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging.
        PLoS Genet. 2015; 11e1004996
        • Bergstedt J.
        • Azzou S.A.K.
        • Tsuo K.
        • Jaquaniello A.
        • Urrutia A.
        • Rotival M.
        • et al.
        The immune factors driving DNA methylation variation in human blood.
        Nat Commun. 2022; 13: 5895
        • Chen B.H.
        • Marioni R.E.
        • Colicino E.
        • Peters M.J.
        • Ward-Caviness C.K.
        • Tsai P.C.
        • et al.
        DNA methylation-based measures of biological age: Meta-analysis predicting time to death.
        Aging. 2016; 8: 1844-1865
        • Salas L.A.
        • Zhang Z.
        • Koestler D.C.
        • Butler R.A.
        • Hansen H.M.
        • Molinaro A.M.
        • et al.
        Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling.
        Nat Commun. 2022; 13: 761
        • Simon A.K.
        • Hollander G.A.
        • McMichael A.
        Evolution of the immune system in humans from infancy to old age.
        Proceedings of the Royal Society B: Biological Sciences. 2015; 282https://doi.org/10.1098/rspb.2014.3085
        • Jaiswal S.
        • Ebert B.L.
        Clonal hematopoiesis in human aging and disease.
        Science. 2019; 366https://doi.org/10.1126/science.aan4673
        • Nachun D.
        • Lu A.T.
        • Bick A.G.
        • Natarajan P.
        • Weinstock J.
        • Szeto M.D.
        • et al.
        Clonal hematopoiesis associated with epigenetic aging and clinical outcomes.
        Aging Cell. 2021; 20e13366
        • Martincorena I.
        Somatic mutation and clonal expansions in human tissues.
        Genome Med. 2019; 11: 35
      4. Levine ME, Leung D, Minteer C, Gonzalez J (2019): A DNA Methylation Fingerprint of Cellular Senescence. bioRxiv. https://doi.org/10.1101/674580

        • Lu A.T.
        • Seeboth A.
        • Tsai P.C.
        • Sun D.
        • Quach A.
        • Reiner A.P.
        • et al.
        DNA methylation-based estimator of telomere length.
        Aging. 2019; 11: 5895-5923
        • Liu Z.
        • Leung D.
        • Thrush K.
        • Zhao W.
        • Ratliff S.
        • Tanaka T.
        • et al.
        Underlying features of epigenetic aging clocks in vivo and in vitro.
        Aging Cell. 2020; 19e13229
        • Walker 2nd, W.H.
        • Walton J.C.
        • DeVries A.C.
        • Nelson R.J.
        Circadian rhythm disruption and mental health.
        Transl Psychiatry. 2020; 10: 28
        • Penninx B.W.J.H.
        • Lange S.M.M.
        Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications.
        Dialogues Clin Neurosci. 2018; 20: 63-73
        • Picard M.
        • McEwen B.S.
        Psychological Stress and Mitochondria: A Conceptual Framework.
        Psychosom Med. 2018; 80: 126-140
        • Castellani C.A.
        • Longchamps R.J.
        • Sumpter J.A.
        • Newcomb C.E.
        • Lane J.A.
        • Grove M.L.
        • et al.
        Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs.
        Genome Med. 2020; 12: 84
        • Sturm G.
        • Karan K.R.
        • Monzel A.
        • Santhanam B.S.
        • Taivassalo T.
        • Bris C.
        • et al.
        OxPhos Dysfunction Causes Hypermetabolism and Reduces Lifespan in Cells and in Patients with Mitochondrial Diseases.
        Communications Biology. 2022; https://doi.org/10.1101/2021.11.29.470428
        • Fiorito G.
        • Caini S.
        • Palli D.
        • Bendinelli B.
        • Saieva C.
        • Ermini I.
        • et al.
        DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study.
        Aging Cell. 2021; 20e13439
        • Belsky D.W.
        • Caspi A.
        • Corcoran D.L.
        • Sugden K.
        • Poulton R.
        • Arseneault L.
        • et al.
        DunedinPACE, a DNA methylation biomarker of the pace of aging.
        Elife. 2022; 11https://doi.org/10.7554/eLife.73420
        • Wang T.
        • Tsui B.
        • Kreisberg J.F.
        • Robertson N.A.
        • Gross A.M.
        • Yu M.K.
        • et al.
        Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment.
        Genome Biol. 2017; 18: 57
        • Minteer C.
        • Morselli M.
        • Meer M.
        • Cao J.
        • Higgins-Chen A.
        • Lang S.M.
        • et al.
        Tick tock, tick tock: Mouse culture and tissue aging captured by an epigenetic clock.
        Aging Cell. 2022; 21e13553
        • Liu G.Y.
        • Sabatini D.M.
        mTOR at the nexus of nutrition, growth, ageing and disease.
        Nat Rev Mol Cell Biol. 2020; 21: 183-203
        • Oh G.
        • Koncevičius K.
        • Ebrahimi S.
        • Carlucci M.
        • Groot D.E.
        • Nair A.
        • et al.
        Circadian oscillations of cytosine modification in humans contribute to epigenetic variability, aging, and complex disease.
        Genome Biol. 2019; 20: 2
        • Salminen A.
        • Kaarniranta K.
        • Hiltunen M.
        • Kauppinen A.
        Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.
        Cell Signal. 2014; 26: 1598-1603
        • Covarrubias A.J.
        • Perrone R.
        • Grozio A.
        • Verdin E.
        NAD+ metabolism and its roles in cellular processes during ageing.
        Nat Rev Mol Cell Biol. 2021; 22: 119-141
        • Loughman A.
        • Staudacher H.M.
        • Rocks T.
        • Ruusunen A.
        • Marx W.
        • O Apos Neil A.
        • Jacka F.N.
        Diet and mental health.
        Mod Trends Psychiatry. 2021; 32: 100-112
      5. Levine ME, Higgins-Chen A, Thrush K, Minteer C, Niimi P (2022): Clock Work: Deconstructing the Epigenetic Clock Signals in Aging, Disease, and Reprogramming. bioRxiv 2022.02.13.480245-2022.02.13.480245.

        • Fahy G.M.
        • Brooke R.T.
        • Watson J.P.
        • Good Z.
        • Vasanawala S.S.
        • Maecker H.
        • et al.
        Reversal of epigenetic aging and immunosenescent trends in humans.
        Aging Cell. 2019; 18e13028
        • Fitzgerald K.N.
        • Hodges R.
        • Hanes D.
        • Stack E.
        • Cheishvili D.
        • Szyf M.
        • et al.
        Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial.
        Aging. 2021; 13: 9419-9432
        • Higgins-Chen A.T.
        • Thrush K.L.
        • Wang Y.
        • Minteer C.J.
        • Kuo P.-L.
        • Wang M.
        • et al.
        A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking.
        Nature Aging. 2022; 2: 644-661
        • Arneson A.
        • Haghani A.
        • Thompson M.J.
        • Pellegrini M.
        • Kwon S.B.
        • Vu H.
        • et al.
        A mammalian methylation array for profiling methylation levels at conserved sequences.
        Nat Commun. 2022; 13: 783
        • Lu A.T.
        • Fei Z.
        • Haghani A.
        • Robeck T.R.
        • Zoller J.A.
        • Li C.Z.
        • et al.
        Universal DNA methylation age across mammalian tissues.
        bioRxiv. 2021; : 1-28
        • Trapp A.
        • Kerepesi C.
        • Gladyshev V.N.
        Profiling epigenetic age in single cells.
        Nature Aging. 2021; 1: 1189-1201
        • Zheng S.C.
        • Breeze C.E.
        • Beck S.
        • Teschendorff A.E.
        Identification of differentially methylated cell types in epigenome-wide association studies.
        Nat Methods. 2018; 15: 1059-1066
      6. Ying K, Liu H, Tarkhov AE, Lu AT, Horvath S, Kutalik Z, et al. (2022, October 8): Causal Epigenetic Age Uncouples Damage and Adaptation. BioRxiv. p 2022.10.07.511382.

        • Nuñez J.K.
        • Chen J.
        • Pommier G.C.
        • Cogan J.Z.
        • Replogle J.M.
        • Adriaens C.
        • et al.
        Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing.
        Cell. 2021; 184: 2503-2519.e17
        • Horvath S.
        DNA methylation age of human tissues and cell types.
        Genome Biol. 2013; 14: R115
        • Lu Y.
        • Brommer B.
        • Tian X.
        • Krishnan A.
        • Meer M.
        • Wang C.
        • et al.
        Reprogramming to recover youthful epigenetic information and restore vision.
        Nature. 2020; 588: 124-129
        • Bell C.G.
        • Lowe R.
        • Adams P.D.
        • Baccarelli A.A.
        • Beck S.
        • Bell J.T.
        • et al.
        DNA methylation aging clocks: challenges and recommendations.
        Genome Biol. 2019; 20: 249
        • Shireby G.L.
        • Davies J.P.
        • Francis P.T.
        • Burrage J.
        • Walker E.M.
        • Neilson G.W.A.
        • et al.
        Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex.
        Brain. 2020; https://doi.org/10.1093/brain/awaa334
        • Thrush K.L.
        • Bennett D.A.
        • Gaiteri C.
        • Horvath S.
        • van Dyck C.H.
        • Higgins-Chen A.T.
        • Levine M.E.
        Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease.
        Aging. 2022; 14: 5641-5668
      7. Levine M, Lu A, Quach A, Chen B, Assimes T, Bandinelli S, et al. (2018): An epigenetic biomarker of aging for lifespan and healthspan. Aging 10: 276162–276162.

        • Lu A.T.
        • Quach A.
        • Wilson J.G.
        • Reiner A.P.
        • Aviv A.
        • Raj K.
        • et al.
        DNA methylation GrimAge strongly predicts lifespan and healthspan.
        Aging. 2019; 11: 303-327
        • Gadd D.A.
        • Hillary R.F.
        • McCartney D.L.
        • Shi L.
        • Stolicyn A.
        • Robertson N.A.
        • et al.
        Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health.
        Nat Commun. 2022; 13: 4670
      8. Epel ES (2020): The geroscience agenda: Toxic stress, hormetic stress, and the rate of aging. Ageing Res Rev 63: 101167–101167.

        • Lim S.
        • Nzegwu D.
        • Wright M.L.
        The Impact of Psychosocial Stress from Life Trauma and Racial Discrimination on Epigenetic Aging-A Systematic Review.
        Biol Res Nurs. 2022; 24: 202-215
        • Harvanek Z.M.
        • Fogelman N.
        • Xu K.
        • Sinha R.
        Psychological and biological resilience modulates the effects of stress on epigenetic aging.
        Transl Psychiatry. 2021; 11: 601
        • Rampersaud R.
        • Protsenko E.
        • Yang R.
        • Reus V.
        • Hammamieh R.
        • Wu G.W.Y.
        • et al.
        Dimensions of childhood adversity differentially affect biological aging in major depression.
        Transl Psychiatry. 2022; 12: 431
        • Schmitz L.L.
        • Zhao W.
        • Ratliff S.M.
        • Goodwin J.
        • Miao J.
        • Lu Q.
        • et al.
        The Socioeconomic Gradient in Epigenetic Ageing Clocks: Evidence from the Multi-Ethnic Study of Atherosclerosis and the Health and Retirement Study.
        Epigenetics. 2022; 17: 589-611
        • Jung J.
        • McCartney D.L.
        • Wagner J.
        • Yoo J.
        • Bell A.S.
        • Mavromatis L.A.
        • et al.
        Additive effects of stress and alcohol exposure on accelerated epigenetic aging in Alcohol Use Disorder.
        Biol Psychiatry. 2022; https://doi.org/10.1016/j.biopsych.2022.06.036
        • Vetter V.M.
        • Drewelies J.
        • Sommerer Y.
        • Kalies C.H.
        • Regitz-Zagrosek V.
        • Bertram L.
        • et al.
        Epigenetic aging and perceived psychological stress in old age.
        Transl Psychiatry. 2022; 12: 410
        • Na P.J.
        • Montalvo-Ortiz J.L.
        • Nagamatsu S.T.
        • Southwick S.M.
        • Krystal J.H.
        • Gelernter J.
        • Pietrzak R.H.
        Association of Symptoms of Posttraumatic Stress Disorder and GrimAge, an Epigenetic Marker of Mortality Risk, in US Military Veterans.
        J Clin Psychiatry. 2022; 83https://doi.org/10.4088/JCP.21br14309
        • Rentscher K.E.
        • Carroll J.E.
        • Mitchell C.
        Psychosocial Stressors and Telomere Length: A Current Review of the Science.
        Annu Rev Public Health. 2020; 41: 223-245
        • Boks M.P.
        • van Mierlo H.C.
        • Rutten B.P.F.
        • Radstake T.R.D.J.
        • De Witte L.
        • Geuze E.
        • et al.
        Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder.
        Psychoneuroendocrinology. 2015; 51: 506-512
        • Young E.S.
        • Farrell A.K.
        • Carlson E.A.
        • Englund M.M.
        • Miller G.E.
        • Gunnar M.R.
        • et al.
        The Dual Impact of Early and Concurrent Life Stress on Adults’ Diurnal Cortisol Patterns: A Prospective Study.
        Psychol Sci. 2019; 30: 739-747
        • Copeland W.E.
        • Shanahan L.
        • McGinnis E.W.
        • Aberg K.A.
        • van den Oord E.J.C.G.
        Early adversities accelerate epigenetic aging into adulthood: a 10-year, within-subject analysis.
        J Child Psychol Psychiatry. 2022; https://doi.org/10.1111/jcpp.13575
        • Lawn R.B.
        • Anderson E.L.
        • Suderman M.
        • Simpkin A.J.
        • Gaunt T.R.
        • Teschendorff A.E.
        • et al.
        Psychosocial adversity and socioeconomic position during childhood and epigenetic age: analysis of two prospective cohort studies.
        Hum Mol Genet. 2018; 27: 1301-1308
        • McEwen B.S.
        • Stellar E.
        Stress and the individual. Mechanisms leading to disease.
        Arch Intern Med. 1993; 153: 2093-2101
        • Cohen S.
        • Gianaros P.J.
        • Manuck S.B.
        A Stage Model of Stress and Disease.
        Perspect Psychol Sci. 2016; 11: 456-463
        • Mehta D.
        • Bruenig D.
        • Lawford B.
        • Harvey W.
        • Carrillo-Roa T.
        • Morris C.P.
        • et al.
        Accelerated DNA methylation aging and increased resilience in veterans: The biological cost for soldiering on.
        Neurobiol Stress. 2018; 8: 112-119
        • Hawn S.E.
        • Zhao X.
        • Sullivan D.R.
        • Logue M.
        • Fein-Schaffer D.
        • Milberg W.
        • et al.
        For whom the bell tolls: psychopathological and neurobiological correlates of a DNA methylation index of time-to-death.
        Transl Psychiatry. 2022; 12https://doi.org/10.1038/s41398-022-02164-w
        • Katrinli S.
        • Stevens J.
        • Wani A.H.
        • Lori A.
        • Kilaru V.
        • van Rooij S.J.H.
        • et al.
        Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity.
        Neuropsychopharmacology. 2020; 45: 1609-1616
        • Wolf E.J.
        • Logue M.W.
        • Stoop T.B.
        • Schichman S.A.
        • Stone A.
        • Sadeh N.
        • et al.
        Accelerated DNA Methylation Age: Associations With Posttraumatic Stress Disorder and Mortality.
        Psychosom Med. 2018; 80: 42-48
        • Wolf E.J.
        • Logue M.W.
        • Morrison F.G.
        • Wilcox E.S.
        • Stone A.
        • Schichman S.A.
        • et al.
        Posttraumatic psychopathology and the pace of the epigenetic clock: a longitudinal investigation.
        Psychol Med. 2019; 49: 791-800
        • Zannas A.S.
        • Arloth J.
        • Carrillo-Roa T.
        • Iurato S.
        • Röh S.
        • Ressler K.J.
        • et al.
        Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling.
        Genome Biol. 2015; 16: 266
      9. Dammering F, Martins J, Dittrich K, Czamara D, Rex-Haffner M, Overfeld J, et al. (2021): The pediatric buccal epigenetic clock identifies significant ageing acceleration in children with internalizing disorder and maltreatment exposure. Neurobiology of Stress 15: 100394–100394.

        • Sturm G.
        • Monzel A.S.
        • Karan K.R.
        • Michelson J.
        • Ware S.A.
        • Cardenas A.
        • et al.
        A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations.
        Sci Data. 2022; 9: 751
        • Suarez A.
        • Lahti J.
        • Czamara D.
        • Lahti-Pulkkinen M.
        • Girchenko P.
        • Andersson S.
        • et al.
        The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents.
        Clin Epigenetics. 2018; 10: 96
        • Shenk C.E.
        • Felt J.M.
        • Ram N.
        • O’Donnell K.J.
        • Sliwinski M.J.
        • Pokhvisneva I.
        • et al.
        Cortisol trajectories measured prospectively across thirty years of female development following exposure to childhood sexual abuse: Moderation by epigenetic age acceleration at midlife.
        Psychoneuroendocrinology. 2022; 136105606
      10. Bobba-Alves N, Sturm G, Lin J, Ware SA, Karan KR, Monzel AS, et al. (2022, May 7): Chronic Glucocorticoid Stress Reveals Increased Energy Expenditure and Accelerated Aging as Cellular Features of Allostatic Load. BioRxiv. p 2022.02.22.481548.

        • Harrell C.S.
        • Gillespie C.F.
        • Neigh G.N.
        Energetic stress: The reciprocal relationship between energy availability and the stress response.
        Physiol Behav. 2016; 166: 43-55
        • Zannas A.S.
        • Jia M.
        • Hafner K.
        • Baumert J.
        • Wiechmann T.
        • Pape J.C.
        • et al.
        Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk.
        Proc Natl Acad Sci U S A. 2019; 116: 11370-11379
        • Carroll J.E.
        • Ross K.M.
        • Horvath S.
        • Okun M.
        • Hobel C.
        • Rentscher K.E.
        • et al.
        Postpartum sleep loss and accelerated epigenetic aging.
        Sleep Health. 2021; 7: 362-367
        • Acosta-Rodríguez V.A.
        • Rijo-Ferreira F.
        • Green C.B.
        • Takahashi J.S.
        Importance of circadian timing for aging and longevity.
        Nat Commun. 2021; 12: 2862
        • Saha S.
        • Chant D.
        • McGrath J.
        A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time?.
        Arch Gen Psychiatry. 2007; 64: 1123-1131
        • Kirkpatrick B.
        • Messias E.
        • Harvey P.D.
        • Fernandez-Egea E.
        • Bowie C.R.
        Is schizophrenia a syndrome of accelerated aging?.
        Schizophr Bull. 2008; 34: 1024-1032
        • Nguyen T.T.
        • Eyler L.T.
        • Jeste D.V.
        Systemic Biomarkers of Accelerated Aging in Schizophrenia: A Critical Review and Future Directions.
        Schizophr Bull. 2018; 44: 398-408
        • Kahn R.S.
        • Sommer I.E.
        • Murray R.M.
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        • Cannon T.D.
        • et al.
        Schizophrenia.
        Nat Rev Dis Primers. 2015; 115067
        • Hannon E.
        • Dempster E.L.
        • Mansell G.
        • Burrage J.
        • Bass N.
        • Bohlken M.M.
        • et al.
        DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia.
        Elife. 2021; 10https://doi.org/10.7554/eLife.58430
        • McKinney B.C.
        • Lin H.
        • Ding Y.
        • Lewis D.A.
        • Sweet R.A.
        DNA methylation age is not accelerated in brain or blood of subjects with schizophrenia.
        Schizophr Res. 2018; 196: 39-44
        • Wu X.
        • Ye J.
        • Wang Z.
        • Zhao C.
        Epigenetic Age Acceleration Was Delayed in Schizophrenia.
        Schizophr Bull. 2021; 47: 803-811
      11. Ori A, Loohuis LO, Guintivano J, Clair DS, McQuillin A, Mill J, et al. (2019): Schizophrenia is characterized by age- and sex-specific effects on epigenetic aging. bioRvix. https://doi.org/10.1016/j.euroneuro.2019.07.171

        • Talarico F.
        • Xavier G.
        • Ota V.K.
        • Spindola L.M.
        • Maurya P.K.
        • Tempaku P.F.
        • et al.
        Aging biological markers in a cohort of antipsychotic-naïve first-episode psychosis patients.
        Psychoneuroendocrinology. 2021; 132105350
        • Iftimovici A.
        • Kebir O.
        • Jiao C.
        • He Q.
        • Krebs M.-O.
        • Chaumette B.
        Dysmaturational Longitudinal Epigenetic Aging During Transition to Psychosis.
        Schizophr Bull Open. 2022; 3sgac030
        • Higgins-Chen A.T.
        • Boks M.P.
        • Vinkers C.H.
        • Kahn R.S.
        • Levine M.E.
        Schizophrenia and Epigenetic Aging Biomarkers: Increased Mortality, Reduced Cancer Risk, and Unique Clozapine Effects.
        Biol Psychiatry. 2020; 88: 224-235
        • Teeuw J.
        • Ori A.P.S.
        • Brouwer R.M.
        • de Zwarte S.M.C.
        • Schnack H.G.
        • Hulshoff Pol H.E.
        • Ophoff R.A.
        Accelerated aging in the brain, epigenetic aging in blood, and polygenic risk for schizophrenia.
        Schizophr Res. 2021; 231: 189-197
        • Taipale H.
        • Tanskanen A.
        • Mehtälä J.
        • Vattulainen P.
        • Correll C.U.
        • Tiihonen J.
        20-year follow-up study of physical morbidity and mortality in relationship to antipsychotic treatment in a nationwide cohort of 62,250 patients with schizophrenia (FIN20).
        World Psychiatry. 2020; 19: 61-68
        • Hodgson R.
        • Wildgust H.J.
        • Bushe C.J.
        Cancer and schizophrenia: is there a paradox?.
        J Psychopharmacol. 2010; 24: 51-60
        • Dada O.
        • Adanty C.
        • Dai N.
        • Jeremian R.
        • Alli S.
        • Gerretsen P.
        • et al.
        Biological aging in schizophrenia and psychosis severity: DNA methylation analysis.
        Psychiatry Res. 2021; 296113646
        • Clementz B.A.
        • Sweeney J.A.
        • Hamm J.P.
        • Ivleva E.I.
        • Ethridge L.E.
        • Pearlson G.D.
        • et al.
        Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers.
        Am J Psychiatry. 2016; 173: 373-384
        • Chen J.
        • Patil K.R.
        • Weis S.
        • Sim K.
        • Nickl-Jockschat T.
        • Zhou J.
        • et al.
        Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization: An International Machine Learning Study.
        Biol Psychiatry. 2020; 87: 282-293
        • Okazaki S.
        • Numata S.
        • Otsuka I.
        • Horai T.
        • Kinoshita M.
        • Sora I.
        • et al.
        Decelerated epigenetic aging associated with mood stabilizers in the blood of patients with bipolar disorder.
        Transl Psychiatry. 2020; 10: 129
        • Du J.
        • Nakachi Y.
        • Fujii A.
        • Fujii S.
        • Bundo M.
        • Iwamoto K.
        Antipsychotics function as epigenetic age regulators in human neuroblastoma cells.
        Schizophrenia (Heidelb). 2022; 8: 69
        • Weeks K.R.
        • Dwyer D.S.
        • Aamodt E.J.
        Clozapine and lithium require Caenorhabditis elegans β-arrestin and serum- and glucocorticoid-inducible kinase to affect Daf-16 (Foxo) localization.
        J Neurosci Res. 2011; 89: 1658-1665
        • Ye X.
        • Linton J.M.
        • Schork N.J.
        • Buck L.B.
        • Petrascheck M.
        A pharmacological network for lifespan extension in Caenorhabditis elegans.
        Aging Cell. 2014; 13: 206-215
        • Janssens G.E.
        • Lin X.X.
        • Millan-Ariño L.
        • Kavšek A.
        • Sen I.
        • Seinstra R.I.
        • et al.
        Transcriptomics-Based Screening Identifies Pharmacological Inhibition of Hsp90 as a Means to Defer Aging.
        Cell Rep. 2019; 27: 467-480.e6
        • Li Z.
        • Hu M.
        • Zong X.
        • He Y.
        • Wang D.
        • Dai L.
        • et al.
        Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naïve schizophrenia.
        Sci Rep. 2015; 5: 1-7
        • Vucicevic L.
        • Misirkic-Marjanovic M.
        • Harhaji-Trajkovic L.
        • Maric N.
        • Trajkovic V.
        Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs.
        Cell Stress Chaperones. 2018; 2: 282-291
        • Bug G.
        • Gül H.
        • Schwarz K.
        • Pfeifer H.
        • Kampfmann M.
        • Zheng X.
        • et al.
        Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells.
        Cancer Res. 2005; 65: 2537-2541
        • Stapel B.
        • Sieve I.
        • Falk C.S.
        • Bleich S.
        • Hilfiker-Kleiner D.
        • Kahl K.G.
        Second generation atypical antipsychotics olanzapine and aripiprazole reduce expression and secretion of inflammatory cytokines in human immune cells.
        J Psychiatr Res. 2018; 105: 95-102
        • Feiner B.
        • Chase K.A.
        • Melbourne J.K.
        • Rosen C.
        • Sharma R.P.
        Risperidone effects on heterochromatin: the role of kinase signaling.
        Clin Exp Immunol. 2019; 196: 67-75
        • Johnstone A.L.
        • O’Reilly J.J.
        • Patel A.J.
        • Guo Z.
        • Andrade N.S.
        • Magistri M.
        • et al.
        EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia.
        Neurobiol Dis. 2018; 119: 149-158
        • Miller H.A.
        • Huang S.
        • Dean E.S.
        • Schaller M.L.
        • Tuckowski A.M.
        • Munneke A.S.
        • et al.
        Serotonin and dopamine modulate aging in response to food odor and availability.
        Nat Commun. 2022; 13: 3271
        • Boks M.P.
        • de Jong N.M.
        • Kas M.J.H.
        • Vinkers C.H.
        • Fernandes C.
        • Kahn R.S.
        • et al.
        Current status and future prospects for epigenetic psychopharmacology.
        Epigenetics. 2012; 7: 20-28
        • Fetterman J.L.
        • Sammy M.J.
        • Ballinger S.W.
        Mitochondrial toxicity of tobacco smoke and air pollution.
        Toxicology. 2017; 391: 18-33
        • Phillips D.H.
        Smoking-related DNA and protein adducts in human tissues.
        Carcinogenesis. 2002; 23: 1979-2004
        • De Leon J.
        • Diaz F.J.
        A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors.
        Schizophr Res. 2005; 76: 135-157
        • You C.
        • Wu S.
        • Zheng S.C.
        • Zhu T.
        • Jing H.
        • Flagg K.
        • et al.
        A cell-type deconvolution meta-analysis of whole blood EWAS reveals lineage-specific smoking-associated DNA methylation changes.
        Nat Commun. 2020; 11: 4779
        • Legge S.E.
        • Santoro M.L.
        • Periyasamy S.
        • Okewole A.
        • Arsalan A.
        • Kowalec K.
        Genetic architecture of schizophrenia: a review of major advancements.
        Psychol Med. 2021; 51: 2168-2177
        • Kowalec K.
        • Hannon E.
        • Mansell G.
        • Burrage J.
        • Ori A.P.S.
        • Ophoff R.A.
        • et al.
        Methylation age acceleration does not predict mortality in schizophrenia.
        Transl Psychiatry. 2019; 9: 157
        • Hillary R.F.
        • Stevenson A.J.
        • Cox S.R.
        • McCartney D.L.
        • Harris S.E.
        • Seeboth A.
        • et al.
        An epigenetic predictor of death captures multi-modal measures of brain health.
        Mol Psychiatry. 2019; https://doi.org/10.1038/s41380-019-0616-9
        • McCrory C.
        • Fiorito G.
        • Hernandez B.
        • Polidoro S.
        • O’Halloran A.M.
        • Hever A.
        • et al.
        GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality.
        J Gerontol A Biol Sci Med Sci. 2021; 76: 741-749
        • Lima C.N.C.
        • Suchting R.
        • Scaini G.
        • Cuellar V.A.
        • Favero-Campbell A.D.
        • Walss-Bass C.
        • et al.
        Epigenetic GrimAge acceleration and cognitive impairment in bipolar disorder.
        Eur Neuropsychopharmacol. 2022; 62: 10-21
        • Fransquet P.D.
        • Lacaze P.
        • Saffery R.
        • Shah R.C.
        • Vryer R.
        • Murray A.
        • et al.
        Accelerated Epigenetic Aging in Peripheral Blood does not Predict Dementia Risk.
        Curr Alzheimer Res. 2021; 18: 443-451