Advertisement
Archival Report|Articles in Press

Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the UK Biobank

Published:February 08, 2023DOI:https://doi.org/10.1016/j.biopsych.2023.01.028

      Abstract

      Background

      Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited.

      Methods

      The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289).

      Results

      CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs.

      Conclusions

      CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Freeman J.L.
        • Perry G.H.
        • Feuk L.
        • Redon R.
        • McCarroll S.A.
        • Altshuler D.M.
        • et al.
        Copy number variation: New insights in genome diversity.
        Genome Res. 2006; 16: 949-961
        • Zarrei M.
        • MacDonald J.R.
        • Merico D.
        • Scherer S.W.
        A copy number variation map of the human genome.
        Nat Rev Genet. 2015; 16: 172-183
        • Sudmant P.H.
        • Kitzman J.O.
        • Antonacci F.
        • Alkan C.
        • Malig M.
        • Tsalenko A.
        • et al.
        Diversity of human copy number variation and multicopy genes.
        Science. 2010; 330: 641-646
        • Glessner J.T.
        • Li J.
        • Wang D.
        • March M.
        • Lima L.
        • Desai A.
        • et al.
        Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders.
        Genome Med. 2017; 9: 106
        • Merikangas A.K.
        • Corvin A.P.
        • Gallagher L.
        Copy-number variants in neurodevelopmental disorders: Promises and challenges.
        Trends Genet. 2009; 25: 536-544
        • Asadollahi R.
        • Oneda B.
        • Joset P.
        • Azzarello-Burri S.
        • Bartholdi D.
        • Steindl K.
        • et al.
        The clinical significance of small copy number variants in neurodevelopmental disorders.
        J Med Genet. 2014; 51: 677-688
        • Sebat J.
        • Lakshmi B.
        • Malhotra D.
        • Troge J.
        • Lese-Martin C.
        • Walsh T.
        • et al.
        Strong association of de novo copy number mutations with autism.
        Science. 2007; 316: 445-449
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Council on Children With Disabilities, Section on Developmental Behavioral Pediatrics, Bright Futures Steering Committee, Medical Home Initiatives for Children With Special Needs Project Advisory Committee
        Identifying infants and young children with developmental disorders in the medical home: An algorithm for developmental surveillance and screening.
        Pediatrics. 2006; 118: 405-420
        • Hyman S.L.
        • Levy S.E.
        • Myers S.M.
        • Council on children with disabilities, section on developmental and behavioral pediatrics
        Identification, evaluation, and management of children with autism spectrum disorder.
        Pediatrics. 2020; 145e20193447
        • Marshall C.R.
        • Howrigan D.P.
        • Merico D.
        • Thiruvahindrapuram B.
        • Wu W.
        • Greer D.S.
        • et al.
        Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.
        Nat Genet. 2017; 49: 27-35
        • Kirov G.
        • Rees E.
        • Walters J.T.
        • Escott-Price V.
        • Georgieva L.
        • Richards A.L.
        • et al.
        The penetrance of copy number variations for schizophrenia and developmental delay.
        Biol Psychiatry. 2014; 75: 378-385
        • Murphy K.C.
        Schizophrenia and velo-cardio-facial syndrome.
        Lancet. 2002; 359: 426-430
        • Tsuang M.T.
        • Stone W.S.
        • Faraone S.V.
        Schizophrenia: A review of genetic studies.
        Harv Rev Psychiatry. 1999; 7: 185-207
        • Green E.K.
        • Rees E.
        • Walters J.T.
        • Smith K.G.
        • Forty L.
        • Grozeva D.
        • et al.
        Copy number variation in bipolar disorder.
        Mol Psychiatry. 2016; 21: 89-93
        • Charney A.W.
        • Stahl E.A.
        • Green E.K.
        • Chen C.Y.
        • Moran J.L.
        • Chambert K.
        • et al.
        Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases.
        Biol Psychiatry. 2019; 86: 110-119
        • Grozeva D.
        • Kirov G.
        • Conrad D.F.
        • Barnes C.P.
        • Hurles M.
        • Owen M.J.
        • et al.
        Reduced burden of very large and rare CNVs in bipolar affective disorder.
        Bipolar Disord. 2013; 15: 893-898
        • Bergen S.E.
        • O’dushlaine C.T.
        • Ripke S.
        • Lee P.H.
        • Ruderfer D.M.
        • Akterin S.
        • et al.
        Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder.
        Mol Psychiatry. 2012; 17: 880-886
        • Kendall K.M.
        • Rees E.
        • Bracher-Smith M.
        • Legge S.
        • Riglin L.
        • Zammit S.
        • et al.
        Association of rare copy number variants with risk of depression.
        JAMA Psychiatry. 2019; 76: 818-825
        • O’Dushlaine C.
        • Ripke S.
        • Ruderfer D.M.
        • Hamilton S.P.
        • Fava M.
        • Iosifescu D.V.
        • et al.
        Rare copy number variation in treatment-resistant major depressive disorder.
        Biol Psychiatry. 2014; 76: 536-541
        • Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium Ruderfer DM
        • Ripke S.
        • McQuillin A.
        • Boocock J.
        • Stahl E.A.
        • Pavlides J.M.W.
        Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes.
        Cell. 2018; 173: 1705-1715.e16
        • Grove J.
        • Ripke S.
        • Als T.D.
        • Mattheisen M.
        • Walters R.K.
        • Won H.
        • et al.
        Identification of common genetic risk variants for autism spectrum disorder.
        Nat Genet. 2019; 51: 431-444
        • Stahl E.A.
        • Breen G.
        • Forstner A.J.
        • McQuillin A.
        • Ripke S.
        • Trubetskoy V.
        • et al.
        Genome-wide association study identifies 30 loci associated with bipolar disorder.
        Nat Genet. 2019; 51: 793-803
        • Howard D.M.
        • Adams M.J.
        • Clarke T.K.
        • Hafferty J.D.
        • Gibson J.
        • Shirali M.
        • et al.
        Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.
        Nat Neurosci. 2019; 22: 343-352
        • Nievergelt C.M.
        • Maihofer A.X.
        • Klengel T.
        • Atkinson E.G.
        • Chen C.-Y.
        • Choi K.W.
        • et al.
        International meta-analysis of PTSD genome-wide association studies identifies sex-and ancestry-specific genetic risk loci.
        Nat Commun. 2019; 10: 1-16
        • Jacquemont S.
        • Huguet G.
        • Klein M.
        • Chawner S.J.R.A.
        • Donald K.A.
        • van den Bree M.B.M.
        • et al.
        Genes to mental health (G2MH): A framework to map the combined effects of rare and common variants on dimensions of cognition and psychopathology.
        Am J Psychiatry. 2022; 179: 189-203
        • Klein M.
        • Glahn D.
        • Kendall K.
        Copy number variation and their interaction with polygenic risk scores in psychiatric disorders.
        Eur Neuropsychopharmacol. 2022; 63: e40-e41
        • Sebat J.
        Characterization of the combined effects of rare variants and polygenic risk by whole genome analysis of psychiatric disorders and quantitative traits.
        Eur Neuropsychopharmacol. 2022; 63: e315
        • Martin J.
        • O’Donovan M.C.
        • Thapar A.
        • Langley K.
        • Williams N.
        The relative contribution of common and rare genetic variants to ADHD.
        Transl Psychiatry. 2015; 5e506
        • Taniguchi S.
        • Ninomiya K.
        • Kushima I.
        • Saito T.
        • Shimasaki A.
        • Sakusabe T.
        • et al.
        Polygenic risk scores in schizophrenia with clinically significant copy number variants.
        Psychiatry Clin Neurosci. 2020; 74: 35-39
        • Lehner B.
        Molecular mechanisms of epistasis within and between genes.
        Trends Genet. 2011; 27: 323-331
        • Cleynen I.
        • Engchuan W.
        • Hestand M.S.
        • Heung T.
        • Holleman A.M.
        • Johnston H.R.
        • et al.
        Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion.
        Mol Psychiatry. 2021; 26: 4496-4510
        • Wang K.
        • Li M.
        • Hadley D.
        • Liu R.
        • Glessner J.
        • Grant S.F.
        • et al.
        PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
        Genome Res. 2007; 17: 1665-1674
        • Colella S.
        • Yau C.
        • Taylor J.M.
        • Mirza G.
        • Butler H.
        • Clouston P.
        • et al.
        QuantiSNP: An Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data.
        Nucleic Acids Res. 2007; 35: 2013-2025
        • Huguet G.
        • Schramm C.
        • Douard E.
        • Jiang L.
        • Labbe A.
        • Tihy F.
        • et al.
        Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples.
        JAMA Psychiatry. 2018; 75: 447-457
        • Huguet G.
        • Schramm C.
        • Douard E.
        • Tamer P.
        • Main A.
        • Monin P.
        • et al.
        Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability.
        Mol Psychiatry. 2021; 26: 2663-2676
        • Sanders S.J.
        • He X.
        • Willsey A.J.
        • Ercan-Sencicek A.G.
        • Samocha K.E.
        • Cicek A.E.
        • et al.
        Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci.
        Neuron. 2015; 87: 1215-1233
        • Cooper G.M.
        • Coe B.P.
        • Girirajan S.
        • Rosenfeld J.A.
        • Vu T.H.
        • Baker C.
        • et al.
        A copy number variation morbidity map of developmental delay.
        Nat Genet. 2011; 43: 838-846
        • Coe B.P.
        • Witherspoon K.
        • Rosenfeld J.A.
        • Van Bon B.W.
        • Vulto-van Silfhout A.T.
        • Bosco P.
        • et al.
        Refining analyses of copy number variation identifies specific genes associated with developmental delay.
        Nat Genet. 2014; 46: 1063-1071
        • Moreno-De-Luca D.
        • Sanders S.J.
        • Willsey A.J.
        • Mulle J.G.
        • Lowe J.K.
        • Geschwind D.H.
        • et al.
        Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts.
        Mol Psychiatry. 2013; 18: 1090-1095
        • Stefansson H.
        • Meyer-Lindenberg A.
        • Steinberg S.
        • Magnusdottir B.
        • Morgen K.
        • Arnarsdottir S.
        • et al.
        CNVs conferring risk of autism or schizophrenia affect cognition in controls.
        Nature. 2014; 505: 361-366
        • Frankish A.
        • Diekhans M.
        • Ferreira A.M.
        • Johnson R.
        • Jungreis I.
        • Loveland J.
        • et al.
        GENCODE reference annotation for the human and mouse genomes.
        Nucleic Acids Res. 2019; 47: D766-D773
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • Cummings B.B.
        • Alföldi J.
        • Wang Q.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581: 434-443
        • Schultz L.M.
        • Merikangas A.K.
        • Ruparel K.
        • Jacquemont S.
        • Glahn D.C.
        • Gur R.E.
        • et al.
        Stability of polygenic scores across discovery genome-wide association studies. bioRxiv.
        HGG Adv. 2021; 3100091
        • Das S.
        • Forer L.
        • Schönherr S.
        • Sidore C.
        • Locke A.E.
        • Kwong A.
        • et al.
        Next-generation genotype imputation service and methods.
        Nat Genet. 2016; 48: 1284-1287
        • Ge T.
        • Chen C.Y.
        • Ni Y.
        • Feng Y.-C.A.
        • Smoller J.W.
        Polygenic prediction via Bayesian regression and continuous shrinkage priors.
        Nat Commun. 2019; 10: 1776
        • Levey D.F.
        • Gelernter J.
        • Polimanti R.
        • Zhou H.
        • Cheng Z.
        • Aslan M.
        • et al.
        Reproducible genetic risk loci for anxiety: Results from ∼200,000 participants in the Million Veteran Program.
        Am J Psychiatry. 2020; 177: 223-232
        • Levey D.F.
        • Stein M.B.
        • Wendt F.R.
        • Pathak G.A.
        • Zhou H.
        • Aslan M.
        • et al.
        Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in > 1.2 million individuals highlight new therapeutic directions.
        Nat Neurosci. 2021; 24: 954-963
        • Reise S.P.
        • Moore T.M.
        • Haviland M.G.
        Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores.
        J Pers Assess. 2010; 92: 544-559
        • Muthén L.
        • Muthén B.
        Mplus – The Comprehensive Modelling Program for Applied Researchers: User’s Guide. 5. Muthén & Muthén, Los Angeles, CA2015
        • Benjamini Y.
        • Yekutieli D.
        The control of the false discovery rate in multiple testing under dependency.
        Ann Statist. 2001; 29: 1165-1188
        • Bergen S.E.
        • Ploner A.
        • Howrigan D.
        • CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium, O’Donovan MC, Smoller JW, et al
        Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia.
        Am J Psychiatry. 2019; 176: 29-35
        • Tansey K.E.
        • Rees E.
        • Linden D.E.
        • Ripke S.
        • Chambert K.D.
        • Moran J.L.
        • et al.
        Common alleles contribute to schizophrenia in CNV carriers.
        Mol Psychiatry. 2016; 21: 1085-1089
        • LaBianca S.
        • LaBianca J.
        • Pagsberg A.K.
        • Jakobsen K.D.
        • Appadurai V.
        • Buil A.
        • Werge T.
        Copy number variants and polygenic risk scores predict need of care in autism and/or ADHD families.
        J Autism Dev Disord. 2021; 51: 276-285
        • Yang L.
        • Neale B.M.
        • Liu L.
        • Lee S.H.
        • Wray N.R.
        • Ji N.
        • et al.
        Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: Genome-wide association study of both common and rare variants.
        Am J Med Genet. 2013; 162: 419-430
        • Davies R.W.
        • Fiksinski A.M.
        • Breetvelt E.J.
        • Williams N.M.
        • Hooper S.R.
        • Monfeuga T.
        • et al.
        Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 Deletion syndrome.
        Nat Med. 2020; 26: 1912-1918
        • Douard E.
        • Zeribi A.
        • Schramm C.
        • Tamer P.
        • Loum M.A.
        • Nowak S.
        • et al.
        Effect sizes of deletions and duplications on autism risk across the genome.
        Am J Psychiatry. 2021; 178: 87-98
        • Alexander-Bloch A.
        • Huguet G.
        • Schultz L.M.
        • Huffnagle N.
        • Jacquemont S.
        • Seidlitz J.
        • et al.
        Copy number variant risk scores associated with cognition, psychopathology, and brain structure in youths in the Philadelphia neurodevelopmental cohort.
        JAMA Psychiatry. 2022; 79: 699-709