Advertisement

Baby brains at work: how task-fMRI can illuminate the early emergence of psychiatric risk

      Abstract

      Psychiatric disorders are complex, often emerging from multiple atypical processes within specified domains over the course of development. Characterizing the development of the neural circuits supporting these domains may help break down the components of complex disorders and reveal variation in functioning associated with psychiatric risk. This review highlights the current and potential role of infant task-fMRI in elucidating the developmental neurobiology of psychiatric disorders. Task-fMRI measures evoked brain activity in response to specific stimuli through changes in the blood oxygen level dependent signal. First, we review extant studies employing task-fMRI from birth through the first years of life and synthesize current evidence for when, where, and how different neural computations are performed across the infant brain. Neural circuits for sensory perception, the perception of abstract categories, and the detection of statistical regularities have been characterized with task-fMRI in infants, providing developmental context for identifying and interpreting variation in the functioning of neural circuits related to psychiatric risk. Next, we discuss studies that specifically examine variation in the functioning of these neural circuits during infancy in relation to risk for psychiatric disorders. These studies reveal when maturation of specific neural circuits diverges, the influence of environmental risk factors, and the potential utility for task-fMRI to facilitate early treatment or prevention of later psychiatric problems. Finally, we provide considerations for future infant task-fMRI studies with the potential to advance understanding of both functioning of neural circuits during infancy and subsequent risk for psychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akil H.
        • Brenner S.
        • Kandel E.
        • Kendler K.S.
        • King M.C.
        • Scolnick E.
        • et al.
        The future of psychiatric research: genomes and neural circuits.
        Science. 2010; 327: 1580-1581
        • Duval E.R.
        • Javanbakht A.
        • Liberzon I.
        Neural circuits in anxiety and stress disorders: a focused review.
        Therapeutics and clinical risk management. 2015; 11: 115
        • Rodman A.M.
        • Jenness J.L.
        • Weissman D.G.
        • Pine D.S.
        • McLaughlin K.A.
        Neurobiological markers of resilience to depression following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion.
        Biological psychiatry. 2019; 86: 464-473
        • Knudsen E.I.
        Sensitive periods in the development of the brain and behavior.
        Journal of cognitive neuroscience. 2004; 16: 1412-1425
        • Blakemore C.
        • Cooper G.F.
        Development of the brain depends on the visual environment.
        Nature. 1970; 228: 477-478
        • Johnson M.H.
        Sensitive periods in functional brain development: problems and prospects.
        Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology. 2005; 46: 287-292
        • Workalemahu T.
        • Grantz K.L.
        • Grewal J.
        • Zhang C.
        • Louis G.M.B.
        • Tekola-Ayele F.
        Genetic and environmental influences on fetal growth vary during sensitive periods in pregnancy.
        Scientific reports. 2018; 8: 1-8
        • Ogawa S.
        • Tank D.W.
        • Menon R.
        • Ellermann J.M.
        • Kim S.G.
        • Merkle H.
        • Ugurbil K.
        Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
        Proceedings of the National Academy of Sciences. 1992; 89: 5951-5955
        • Bandettini P.A.
        • Wong E.C.
        • Hinks R.S.
        • Tikofsky R.S.
        • Hyde J.S.
        Time course EPI of human brain function during task activation.
        Magnetic resonance in medicine. 1992; 25: 390-397
        • Kwong K.K.
        • Belliveau J.W.
        • Chesler D.A.
        • Goldberg I.E.
        • Weisskoff R.M.
        • Poncelet B.P.
        • et al.
        Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
        Proceedings of the National Academy of Sciences. 1992; 89: 5675-5679
        • Sylvester C.M.
        • Kaplan S.
        • Myers M.J.
        • Gordon E.M.
        • Schwarzlose R.F.
        • Alexopoulos D.
        • et al.
        Network-specific selectivity of functional connections in the neonatal brain.
        Cerebral Cortex. 2022;
        • Nielsen A.N.
        • Kaplan S.
        • Meyer D.
        • Alexopoulos D.
        • Kenley J.K.
        • Smyser T.A.
        • et al.
        Maturation of large-scale brain systems over the first month of life.
        Cerebral Cortex. 2022;
        • Kardan O.
        • Kaplan S.
        • Wheelock M.D.
        • Feczko E.
        • Day T.K.
        • Miranda-Domínguez Ó.
        • et al.
        Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds.
        Developmental Cognitive Neuroscience. 2022; 56101123
        • Graham A.M.
        • Marr M.
        • Buss C.
        • Sullivan E.L.
        • Fair D.A.
        Understanding vulnerability and adaptation in early brain development using network neuroscience.
        Trends in neurosciences. 2021; 44: 276-288
        • Power J.D.
        • Cohen A.L.
        • Nelson S.M.
        • Wig G.S.
        • Barnes K.A.
        • Church J.A.
        • et al.
        Functional network organization of the human brain.
        Neuron. 2011; 72: 665-678
        • Gordon E.M.
        • Laumann T.O.
        • Adeyemo B.
        • Huckins J.F.
        • Kelley W.M.
        • et al.
        Generation and evaluation of a cortical area parcellation from resting-state correlations.
        Cerebral cortex. 2016; 26: 288-303
        • Gordon E.M.
        • Laumann T.O.
        • Gilmore A.W.
        • Newbold D.J.
        • Greene
        • et al.
        Precision functional mapping of individual human brains.
        Neuron. 2017; 95: 791-807
      1. Gordon, E. M., Chauvin, R. J., Van, A. N., Rajesh, A., Nielsen, A., Newbold, D. J., et al. (2022). A mind-body interface alternates with effector-specific regions in motor cortex. bioRxiv.

        • Cusack R.
        • McCuaig O.
        • Linke A.C.
        Methodological challenges in the comparison of infant fMRI across age groups.
        Developmental Cognitive Neuroscience. 2018; 33: 194-205
        • Pollatou A.
        • Filippi C.A.
        • Aydin E.
        • Vaughn K.
        • Thompson D.
        • Korom M.
        • et al.
        An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field.
        Developmental Cognitive Neuroscience. 2022; 54101083
        • Korom M.
        • Camacho M.C.
        • Filippi C.A.
        • Licandro R.
        • Moore L.A.
        • Dufford A.
        • et al.
        Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies.
        Developmental cognitive neuroscience. 2022; 53101055
        • Kozberg M.
        • Hillman E.
        Neurovascular coupling and energy metabolism in the developing brain.
        Progress in brain research. 2016; 225: 213-242
        • Graham A.M.
        • Pfeifer J.H.
        • Fisher P.A.
        • Lin W.
        • Gao W.
        • Fair D.A.
        The potential of infant fMRI research and the study of early life stress as a promising exemplar.
        Developmental cognitive neuroscience. 2015; 12: 12-39
        • Yates T.S.
        • Ellis C.T.
        • Turk-Browne N.B.
        The promise of awake behaving infant fMRI as a deep measure of cognition.
        Current Opinion in Behavioral Sciences. 2021; 40: 5-11
        • Ellis C.T.
        • Turk-Browne N.B.
        Infant fMRI: a model system for cognitive neuroscience.
        Trends in cognitive sciences. 2018; 22: 375-387
        • van den Boogert F.
        • Klein K.
        • Spaan P.
        • Sizoo B.
        • Bouman Y.H.
        • Hoogendijk W.J.
        • Roza S.J.
        Sensory processing difficulties in psychiatric disorders: A meta-analysis.
        Journal of Psychiatric Research. 2022;
        • Perino M.T.
        • Yu Q.
        • Myers M.J.
        • Harper J.C.
        • Baumel W.T.
        • Petersen S.E.
        • et al.
        Attention alterations in pediatric anxiety: evidence from behavior and neuroimaging.
        Biological psychiatry. 2021; 89: 726-734
        • Roy A.K.
        • Dennis T.A.
        • Warner C.M.
        A critical review of attentional threat bias and its role in the treatment of pediatric anxiety disorders.
        Journal of Cognitive Psychotherapy. 2015; 29: 171-184
        • McTeague L.M.
        • Laplante M.C.
        • Bulls H.W.
        • Shumen J.R.
        • Lang P.J.
        • Keil A.
        Face perception in social anxiety: visuocortical dynamics reveal propensities for hypervigilance or avoidance.
        Biological psychiatry. 2018; 83: 618-628
        • Gentili C.
        • Cristea I.A.
        • Angstadt M.
        • Klumpp H.
        • Tozzi L.
        • Phan K.L.
        • Pietrini P.
        Beyond emotions: A meta-analysis of neural response within face processing system in social anxiety.
        Experimental Biology and Medicine. 2016; 241: 225-237
        • Manguno-Mire G.M.
        • Constans J.I.
        • Geer J.H.
        Anxiety-related differences in affective categorizations of lexical stimuli.
        Behaviour research and therapy. 2005; 43: 197-213
        • Lissek S.
        • Levenson J.
        • Biggs A.L.
        • Johnson L.L.
        • Ameli R.
        • Pine D.S.
        • Grillon C.
        Elevated fear conditioning to socially relevant unconditioned stimuli in social anxiety disorder.
        American Journal of Psychiatry. 2008; 165: 124-132
        • Cornwell B.R.
        • Garrido M.I.
        • Overstreet C.
        • Pine D.S.
        • Grillon C.
        The unpredictive brain under threat: a neurocomputational account of anxious hypervigilance.
        Biological psychiatry. 2017; 82: 447-454
        • Anderson A.W.
        • Marois R.
        • Colson E.R.
        • Peterson B.S.
        • Duncan C.C.
        • Ehrenkranz R.A.
        • et al.
        Neonatal auditory activation detected by functional magnetic resonance imaging.
        Magnetic resonance imaging. 2001; 19: 1-5
        • Redcay E.
        • Kennedy D.P.
        • Courchesne E.
        fMRI during natural sleep as a method to study brain function during early childhood.
        Neuroimage. 2007; 38: 696-707
        • Williams G.
        • Fabrizi L.
        • Meek J.
        • Jackson D.
        • Tracey I.
        • Robertson N.
        • et al.
        Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain.
        Acta paediatrica. 2015; 104: 158-166
        • Goksan S.
        • Hartley C.
        • Emery F.
        • Cockrill N.
        • Poorun R.
        • Moultrie F.
        • et al.
        fMRI reveals neural activity overlap between adult and infant pain.
        elife. 2015; 4e06356
        • Goksan S.
        • Baxter L.
        • Moultrie F.
        • Duff E.
        • Hathway G.
        • Hartley C.
        • et al.
        The influence of the descending pain modulatory system on infant pain-related brain activity.
        Elife. 2018; 7
        • Duff E.P.
        • Moultrie F.
        • van der Vaart M.
        • Goksan S.
        • Abos A.
        • Fitzgibbon S.P.
        • et al.
        Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study.
        The Lancet Digital Health. 2020; 2: e458-e467
        • Baxter L.
        • Fitzgibbon S.
        • Moultrie F.
        • Goksan S.
        • Jenkinson M.
        • Smith S.
        • et al.
        Optimising neonatal fMRI data analysis: design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
        Neuroimage. 2019; 186: 286-300
        • Wild C.J.
        • Linke A.C.
        • Zubiaurre-Elorza L.
        • Herzmann C.
        • Duffy H.
        • Han V.K.
        • et al.
        Adult-like processing of naturalistic sounds in auditory cortex by 3-and 9-month old infants.
        NeuroImage. 2017; 157: 623-634
        • Dall’Orso S.
        • Steinweg J.
        • Allievi A.G.
        • Edwards A.D.
        • Burdet E.
        • Arichi T.
        Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain.
        Cerebral cortex. 2018; 28: 2507-2515
        • Ellis C.T.
        • Yates T.S.
        • Skalaban L.J.
        • Bejjanki V.R.
        • Arcaro M.J.
        • Turk-Browne N.B.
        Retinotopic organization of visual cortex in human infants.
        Neuron. 2021; 109: 2616-2626
        • Biagi L.
        • Crespi S.A.
        • Tosetti M.
        • Morrone M.C.
        BOLD response selective to flow-motion in very young infants.
        PLoS biology. 2015; 13e1002260
        • Streri A.
        Tactile discrimination of shape and intermodal transfer in 2‐to 3‐month‐old infants.
        British Journal of Developmental Psychology. 1987; 5: 213-220
        • Streri A.
        • Molina M.
        Visual–tactual and tactual–visual transfer between objects and pictures in 2-month-old infants.
        Perception. 1993; 22: 1299-1318
        • Streri A.
        • Féron J.
        The development of haptic abilities in very young infants: From perception to cognition.
        Infant Behavior and Development. 2005; 28: 290-304
        • Dehaene-Lambertz G.
        • Dehaene S.
        • Hertz-Pannier L.
        Functional neuroimaging of speech perception in infants.
        science. 2002; 298: 2013-2015
        • Redcay E.
        • Courchesne E.
        Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder.
        Biological psychiatry. 2008; 64: 589-598
        • Redcay E.
        • Haist F.
        • Courchesne E.
        Functional neuroimaging of speech perception during a pivotal period in language acquisition.
        Developmental science. 2008; 11: 237-252
        • Dehaene-Lambertz G.
        • Montavont A.
        • Jobert A.
        • Allirol L.
        • Dubois J.
        • Hertz-Pannier L.
        • Dehaene S.
        Language or music, mother or Mozart? Structural and environmental influences on infants’ language networks.
        Brain and language. 2010; 114: 53-65
        • Blasi A.
        • Mercure E.
        • Lloyd-Fox S.
        • Thomson A.
        • Brammer M.
        • Sauter D.
        • et al.
        Early specialization for voice and emotion processing in the infant brain.
        Current biology. 2011; 21: 1220-1224
        • Perani D.
        • Saccuman M.C.
        • Scifo P.
        • Anwander A.
        • Spada D.
        • Baldoli C.
        • et al.
        Neural language networks at birth.
        Proceedings of the National Academy of Sciences. 2011; 108: 16056-16061
        • Eyler L.T.
        • Pierce K.
        • Courchesne E.
        A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism.
        Brain. 2012; 135: 949-960
        • Graham A.M.
        • Fisher P.A.
        • Pfeifer J.H.
        What sleeping babies hear: A functional MRI study of interparental conflict and infants’ emotion processing.
        Psychological science. 2013; 24: 782-789
        • Baldoli C.
        • Scola E.
        • Della Rosa P.A.
        • Pontesilli S.
        • Longaretti R.
        • Poloniato A.
        • et al.
        Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development.
        Brain Structure and Function. 2015; 220: 3733-3751
        • Blasi A.
        • Lloyd-Fox S.
        • Sethna V.
        • Brammer M.J.
        • Mercure E.
        • Murray L.
        • et al.
        Atypical processing of voice sounds in infants at risk for autism spectrum disorder.
        cortex. 2015; 71: 122-133
        • Lombardo M.V.
        • Pierce K.
        • Eyler L.T.
        • Barnes C.C.
        • Ahrens-Barbeau C.
        • Solso S.
        • et al.
        Different functional neural substrates for good and poor language outcome in autism.
        Neuron. 2015; 86: 567-577
        • Deen B.
        • Richardson H.
        • Dilks D.D.
        • Takahashi A.
        • Keil B.
        • Wald L.L.
        • et al.
        Organization of high-level visual cortex in human infants.
        Nature communications. 2017; 8: 1-10
        • Kosakowski H.L.
        • Cohen M.A.
        • Takahashi A.
        • Keil B.
        • Kanwisher N.
        • Saxe R.
        Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants.
        Current Biology. 2022; 32: 265-274
      2. Yates, T. S., Ellis, C. T., & Turk-Browne, N. B. (2022). Face processing in the infant brain after pandemic lockdown. bioRxiv.

      3. Yates, T. S., Skalaban, L. J., Ellis, C. T., Bracher, A. J., Baldassano, C., & Turk-Browne, N. B. (2022). Neural event segmentation of continuous experience in human infants. bioRxiv, 2021-06.

        • Grossmann T.
        The development of emotion perception in face and voice during infancy.
        Restorative neurology and neuroscience. 2010; 28: 219-236
        • Sylvester C.M.
        • Myers M.J.
        • Perino M.T.
        • Kaplan S.
        • Kenley J.K.
        • Smyser T.A.
        • et al.
        Neonatal brain response to deviant auditory stimuli and relation to maternal trait anxiety.
        American Journal of Psychiatry. 2021; 178: 771-778
        • Dall'Orso S.
        • Fifer W.P.
        • Balsam P.D.
        • Brandon J.
        • O’Keefe C.
        • Poppe T.
        • et al.
        Cortical processing of multimodal sensory learning in human neonates.
        Cerebral Cortex. 2021; 31: 1827-1836
        • Ellis C.T.
        • Skalaban L.J.
        • Yates T.S.
        • Bejjanki V.R.
        • Córdova N.I.
        • Turk-Browne N.B.
        Evidence of hippocampal learning in human infants.
        Current Biology. 2021; 31: 3358-3364
        • Prabhakar J.
        • Johnson E.G.
        • Nordahl C.W.
        • Ghetti S.
        Memory-related hippocampal activation in the sleeping toddler.
        Proceedings of the National Academy of Sciences. 2018; 115: 6500-6505
        • Mooney L.N.
        • Johnson E.G.
        • Prabhakar J.
        • Ghetti S.
        Memory-related hippocampal activation during sleep and temporal memory in toddlers.
        Developmental cognitive neuroscience. 2021; 47100908
        • Ellis C.T.
        • Skalaban L.J.
        • Yates T.S.
        • Turk-Browne N.B.
        Attention recruits frontal cortex in human infants.
        Proceedings of the National Academy of Sciences. 2021; 118e2021474118
      4. Boucher, J. (2003, November). Language development in autism. In International Congress Series (Vol. 1254, pp. 247-253). Elsevier.

      5. Takeuchi, M., Harada, M., Matsuzaki, K., Nishitani, H., & Mori, K. (2004). Difference of signal change by a language task on autistic patients using functional MRI. The Journal of Medical Investigation, 51(1, 2), 59-62.

      6. Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Child development, 1440-1453.

        • Müller R.A.
        • Behen M.E.
        • Rothermel R.D.
        • Chugani D.C.
        • Muzik O.
        • Mangner T.J.
        • Chugani H.T.
        Brain mapping of language and auditory perception in high-functioning autistic adults: a PET study.
        Journal of autism and developmental disorders. 1999; 29: 19-31
        • Gage N.M.
        • Siegel B.
        • Roberts T.P.
        Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation.
        Developmental Brain Research. 2003; 144: 201-209
        • Gabard-Durnam L.J.
        • McLaughlin K.A.
        Do sensitive periods exist for exposure to adversity?.
        Biological psychiatry. 2019; 85: 789-791
        • Luby J.L.
        • Baram T.Z.
        • Rogers C.E.
        • Barch D.M.
        Neurodevelopmental optimization after early-life adversity: cross-species studies to elucidate sensitive periods and brain mechanisms to inform early intervention.
        Trends in neurosciences. 2020; 43: 744-751
        • Nugent N.R.
        • Tyrka A.R.
        • Carpenter L.L.
        • Price L.H.
        Gene–environment interactions: early life stress and risk for depressive and anxiety disorders.
        Psychopharmacology. 2011; 214: 175-196
        • Waxman J.
        • J Van Lieshout R.
        • A Schmidt L.
        Early adversity and mental health: linking extremely low birth weight, emotion regulation, and internalizing disorders.
        Current Pediatric Reviews. 2014; 10: 208-215
        • Thomas E.
        • Buss C.
        • Rasmussen J.M.
        • Entringer S.
        • Ramirez J.S.
        • Marr M.
        • et al.
        Newborn amygdala connectivity and early emerging fear.
        Developmental cognitive neuroscience. 2019; 37100604
        • Barker E.D.
        • Copeland W.
        • Maughan B.
        • Jaffee S.R.
        • Uher R.
        Relative impact of maternal depression and associated risk factors on offspring psychopathology.
        The British Journal of Psychiatry. 2012; 200: 124-129
        • Glover V.
        • O'Connor T.G.
        Effects of antenatal stress and anxiety: implications for development and psychiatry.
        The British Journal of Psychiatry. 2002; 180: 389-391
        • Lawrence P.J.
        • Murayama K.
        • Creswell C.
        Systematic review and meta-analysis: anxiety and depressive disorders in offspring of parents with anxiety disorders.
        Journal of the American Academy of Child & Adolescent Psychiatry. 2019; 58: 46-60
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of common neural circuit disruptions in cognitive control across psychiatric disorders.
        American Journal of Psychiatry. 2017; 174: 676-685
        • Zhang H.
        • Shen D.
        • Lin W.
        Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts.
        Neuroimage. 2019; 185: 664-684
        • Wakschlag L.S.
        • Roberts M.Y.
        • Flynn R.M.
        • Smith J.D.
        • Krogh-Jespersen S.
        • Kaat A.J.
        • et al.
        Future directions for early childhood prevention of mental disorders: A road map to mental health, earlier.
        Journal of Clinical Child & Adolescent Psychology. 2019; 48: 539-554
        • Lordier L.
        • Loukas S.
        • Grouiller F.
        • Vollenweider A.
        • Vasung L.
        • Meskaldij D.E.
        • et al.
        Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI.
        Neuroimage. 2019; 185: 857-864
        • Marek S.
        • Tervo-Clemmens B.
        • Calabro F.J.
        • Montez D.F.
        • Kay B.P.
        • Hatoum A.S.
        • et al.
        Reproducible brain-wide association studies require thousands of individuals.
        Nature. 2022; 603: 654-660
        • Finn E.S.
        Is it time to put rest to rest?.
        Trends in cognitive sciences. 2021; 25: 1021-1032
        • Finn E.S.
        • Scheinost D.
        • Finn D.M.
        • Shen X.
        • Papademetris X.
        • Constable R.T.
        Can brain state be manipulated to emphasize individual differences in functional connectivity?.
        Neuroimage. 2017; 160: 140-151
        • Monroy C.
        • Domínguez‐Martínez E.
        • Taylor B.
        • Marin O.P.
        • Parise E.
        • Reid V.M.
        Understanding the causes and consequences of variability in infant ERP editing practices.
        Developmental Psychobiology. 2021; 63e22217
        • Picciotto M.
        Analytical transparency and reproducibility in human neuroimaging studies.
        Journal of Neuroscience. 2018; 38: 3375-3376
        • Klapwijk E.T.
        • van den Bos W.
        • Tamnes C.K.
        • Raschle N.M.
        • Mills K.L.
        Opportunities for increased reproducibility and replicability of developmental neuroimaging.
        Developmental Cognitive Neuroscience. 2021; 47100902
        • Flournoy J.C.
        • Vijayakumar N.
        • Cheng T.W.
        • Cosme D.
        • Flannery J.E.
        • Pfeifer J.H.
        Improving practices and inferences in developmental cognitive neuroscience.
        Developmental Cognitive Neuroscience. 2020; 45100807
      7. Mooney, M. A., Hermosillo, R. J., Feczko, E., Miranda-Dominguez, O., Moore, L. A., Perrone, A., et al. Cumulative Effects of Resting-state Connectivity Across All Brain Networks Significantly Correlate with ADHD Symptoms. MedRxiv.

        • Mitra A.
        • Snyder A.Z.
        • Tagliazucchi E.
        • Laufs H.
        • Elison J.
        • Emerson R.W.
        • et al.
        Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.
        PloS one. 2017; 12e0188122
        • Xu D.
        • Chen X.
        • Tian Y.
        • Wan X.
        • Lei X.
        Lying posture affects sleep structures and cortical activities: a simultaneous EEG-fMRI imaging of the sleeping and waking brain.
        Brain Imaging and Behavior. 2021; 15: 2178-2186
        • Ellis C.T.
        • Skalaban L.J.
        • Yates T.S.
        • Bejjanki V.R.
        • Córdova N.I.
        • Turk-Browne N.B.
        Re-imagining fMRI for awake behaving infants.
        Nature Communications. 2020; 11: 1-12
        • Galland B.C.
        • Taylor B.J.
        • Elder D.E.
        • Herbison P.
        Normal sleep patterns in infants and children: a systematic review of observational studies.
        Sleep medicine reviews. 2012; 16: 213-222