A ventromedial prefrontal-to-lateral entorhinal cortex pathway modulates the gain of behavioral responding during threat.



      The ability to correctly associate cues and contexts with threat is critical for survival, while the inability to do so can result in threat-related disorders such as PTSD. The prefrontal cortex (PFC) and hippocampus are well known to play critical roles in cued and contextual threat memory processing. However, the circuits that mediate prefrontal-hippocampal modulation of context discrimination during cued threat processing are less understood. Here we demonstrate the role of a previously unexplored projection from the ventromedial region of PFC (vmPFC) to the lateral entorhinal cortex (LEC) in modulating the gain of behavior in response to contextual information during threat retrieval and encoding.


      We employ optogenetics followed by in vivo calcium imaging in male C57/B6J mice to manipulate and monitor vmPFC-LEC activity in response to threat-associated cues in different contexts. We then investigate the inputs to, and outputs from, vmPFC-LEC cells using Rabies tracing and channelrhodopsin-assisted electrophysiology.
      Results: vmPFC-LEC cells flexibly and bidirectionally shape behavior during threat expression, shaping sensitivity to contextual information to increase or decrease the gain of behavioral output in response to a threatening or neutral context, respectively.


      Glutamatergic vmPFC-LEC cells are a key player in behavioral gain control in response to contextual information during threat processing and may provide a future target for intervention in threat-based disorders.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bowers M.E.
        • Ressler K.J.
        An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials.
        Biol Psychiatry. 2015; 78: E15-E27
        • Fenster R.J.
        • Lebois L.A.M.
        • Ressler K.J.
        • Suh J.
        Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man.
        Nat Rev Neurosci. 2018; 19: 535-551
        • Vidal-Gonzalez I.
        • Vidal-Gonzalez B.
        • Rauch S.L.
        • Quirk G.J.
        Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear.
        Learning & Memory. 2006; 13: 728-733
        • Sierra-Mercado D.
        • Corcoran K.A.
        • Lebrón-Milad K.
        • Quirk G.J.
        Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction.
        European Journal of Neuroscience. 2006; 24: 1751-1758
        • Do-Monte F.H.
        • Manzano-Nieves G.
        • Quinones-Laracuente K.
        • Ramos-Medina L.
        • Quirk G.J.
        Revisiting the Role of Infralimbic Cortex in Fear Extinction with Optogenetics.
        Journal of Neuroscience. 2015; 35: 3607-3615
        • Burgos-Robles A.
        • Vidal-Gonzalez I.
        • Santini E.
        • Quirk G.J.
        Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex.
        Neuron. 2007; 53: 871-880
        • Pennington Z.T.
        • Anderson A.S.
        • Fanselow M.S.
        The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing?.
        Learning & Memory. 2017; 24: 400-406
        • Zelikowsky M.
        • Hersman S.
        • Chawla M.K.
        • Barnes C.A.
        • Fanselow M.S.
        Neuronal Ensembles in Amygdala, Hippocampus, and Prefrontal Cortex Track Differential Components of Contextual Fear.
        Journal of Neuroscience. 2014; 34: 8462-8466
        • Zelikowsky M.
        • Bissiere S.
        • Hast T.A.
        • Bennett R.Z.
        • Abdipranoto A.
        • Vissel B.
        • et al.
        Prefrontal microcircuit underlies contextual learning after hippocampal loss.
        Proceedings of the National Academy of Sciences. 2013; 110: 9938-9943
        • Maren S.
        • Phan K.L.
        • Liberzon I.
        The contextual brain: implications for fear conditioning, extinction and psychopathology.
        Nat Rev Neurosci. 2013; 14: 417-428
      1. Josselyn, S. A. & Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science (1979) 367, (2020).

        • Guthman E.M.
        • Garcia J.D.
        • Ma M.
        • Chu P.
        • Baca S.M.
        • Smith K.R.
        • et al.
        Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition.
        Elife. 2020; 9
        • Vandrey B.
        • Garden D.L.F.
        • Ambrozova V.
        • McClure C.
        • Nolan M.F.
        • Ainge J.A.
        Fan Cells in Layer 2 of the Lateral Entorhinal Cortex Are Critical for Episodic-like Memory.
        Current Biology. 2020; 30: 169-175.e5
        • Wilson D.I.G.
        • Langston R.F.
        • Schlesiger M.I.
        • Wagner M.
        • Watanabe S.
        • Ainge J.A.
        Lateral entorhinal cortex is critical for novel object‐context recognition.
        Hippocampus. 2013; 23: 352-366
        • Wilson D.I.G.
        • Watanabe S.
        • Milner H.
        • Ainge J.A.
        Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory.
        Hippocampus. 2013; 23: 1280-1290
        • Morrissey M.D.
        • Takehara-Nishiuchi K.
        Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies.
        Neurobiol Learn Mem. 2014; 115: 95-107
      2. Fernández-Ruiz, A. Oliva A, Soula M, Rocha-Almeida F, Nagy GA, Martin-Vazquez G, et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science (1979) 372, (2021).

        • Montchal M.E.
        • Reagh Z.M.
        • Yassa M.A.
        Precise temporal memories are supported by the lateral entorhinal cortex in humans.
        Nat Neurosci. 2019; 22: 284-288
        • Khan U.A.
        • Liu L.
        • Provenzano F.A.
        • Berman D.E.
        • Profaci C.P.
        • Sloan R.
        • et al.
        Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease.
        Nat Neurosci. 2014; 17: 304-311
        • Maass A.
        • Lockhart S.N.
        • Harrison T.M.
        • Bell R.K.
        • Mellinger T.
        • Swinnerton K.
        • et al.
        Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.
        The Journal of Neuroscience. 2018; 38: 530-543
        • Maren S.
        • Fanselow M.S.
        Electrolytic Lesions of the Fimbria/Fornix, Dorsal Hippocampus, or Entorhinal Cortex Produce Anterograde Deficits in Contextual Fear Conditioning in Rats.
        Neurobiol Learn Mem. 1997; 67: 142-149
        • Phillips R.
        • LeDoux J.
        Lesions of the fornix but not the entorhinal or perirhinal cortex interfere with contextual fear conditioning.
        The Journal of Neuroscience. 1995; 15: 5308-5315
        • Majchrzak M.
        • Ferry B.
        • Marchand A.R.
        • Herbeaux K.
        • Seillier A.
        • Barbelivien A.
        Entorhinal cortex lesions disrupt fear conditioning to background context but spare fear conditioning to a tone in the rat.
        Hippocampus. 2006; 16: 114-124
        • Ji J.
        • Maren S.
        Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.
        Behavioural Brain Research. 2008; 194: 201-206
        • East B.S.
        • Brady L.R.
        • Quinn J.J.
        Differential Effects of Lateral and Medial Entorhinal Cortex Lesions on Trace, Delay and Contextual Fear Memories.
        Brain Sci. 2021; 12: 34
        • Gao Y.
        • Hisey E.
        • Bradshaw T.W.A.
        • Erata E.
        • Brown W.E.
        • Courtland J.L.
        • et al.
        Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering.
        Neuron. 2019; 103: 583-597.e8
        • Purkey A.M.
        • Woolfrey K.M.
        • Crosby K.C.
        • Stich D.G.
        • Chick W.S.
        • Aoto J.
        • et al.
        AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca2+-Permeable AMPA Receptors to Control LTP.
        Cell Rep. 2018; 25: 974-987.e4
        • Sotres-Bayon F.
        • Quirk G.J.
        Prefrontal control of fear: more than just extinction.
        Curr Opin Neurobiol. 2010; 20: 231-235
        • Shimizu T.
        • Minami C.
        • Mitani A.
        Effect of electrical stimulation of the infralimbic and prelimbic cortices on anxiolytic-like behavior of rats during the elevated plus-maze test, with particular reference to multiunit recording of the behavior-associated neural activity.
        Behavioural Brain Research. 2018; 353: 168-175
        • Liu W.-Z.
        • Zhang W.H.
        • Zheng Z.H.
        • Zou J.X.
        • Liu X.X.
        • Huang S.H.
        • et al.
        Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety.
        Nat Commun. 2020; 11: 2221
        • Bloodgood D.W.
        • Sugam J.A.
        • Holmes A.
        • Kash T.L.
        Fear extinction requires infralimbic cortex projections to the basolateral amygdala.
        Transl Psychiatry. 2018; 8: 60
        • Kim H.-S.
        • Cho H.-Y.
        • Augustine G.J.
        • Han J.-H.
        Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction.
        Neuropsychopharmacology. 2016; 41: 1261-1273
        • Marek R.
        • Jin J.
        • Goode T.D.
        • Giustino T.F.
        • Wang Q.
        • Acca G.M.
        • et al.
        Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.
        Nat Neurosci. 2018; 21: 384-392
        • Gonzalez S.T.
        • Fanselow M.S.
        The role of the ventromedial prefrontal cortex and context in regulating fear learning and extinction.
        Psychol Neurosci. 2020; 13: 459-472
      3. Sun, C. & Chang, C. Aberrant orbitofrontal cortical activation interferes with encoding of Pavlovian fear conditioning. Front. Behav. Neurosci. Aug. 22 eCollection (2022).