Advertisement

Preclinical Models of Chronic Stress: Adaptation or Pathology?

  • Jason J. Radley
    Affiliations
    Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52245
    Search for articles by this author
  • James P. Herman
    Correspondence
    Corresponding Author: James P. Herman, Department of Pharmacology & Systems Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA.
    Affiliations
    Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237

    Cincinnati Veterans Administration Medical Center, Cincinnati, OH 45221
    Search for articles by this author
Published:November 08, 2022DOI:https://doi.org/10.1016/j.biopsych.2022.11.004

      Abstract

      The experience of prolonged stress changes how the individual interacts with its environment and processes interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result chronic stress has been employed as a translational ‘model’ for diseases such as depression. While of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is at its core adaptive in nature. Transition to pathology occurs only after the adaptive capacity of the organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Schmidt M.V.
        Animal models for depression and the mismatch hypothesis of disease.
        Psychoneuroendocrinology. 2011; 36: 330-338
        • Koolhaas J.M.
        • Bartolomucci A.
        • Buwalda B.
        • de Boer S.F.
        • Flugge G.
        • Korte S.M.
        • et al.
        Stress revisited: a critical evaluation of the stress concept.
        Neurosci Biobehav Rev. 2011; 35: 1291-1301
        • Milic M.
        • Schmitt U.
        • Lutz B.
        • Muller M.B.
        Individual baseline behavioral traits predict the resilience phenotype after chronic social defeat.
        Neurobiol Stress. 2021; 14100290
        • Ayash S.
        • Schmitt U.
        • Muller M.B.
        Chronic social defeat-induced social avoidance as a proxy of stress resilience in mice involves conditioned learning.
        J Psychiatr Res. 2020; 120: 64-71
        • Selye H.
        Stress and the general adaptation syndrome.
        Br Med J. 1950; 1: 1383-1392
        • McEwen B.S.
        Stress, adaptation, and disease. Allostasis and allostatic load.
        Ann N Y Acad Sci. 1998; 840: 33-44
        • McEwen B.S.
        • Stellar E.
        Stress and the individual. Mechanisms leading to disease.
        Arch Intern Med. 1993; 153: 2093-2101
        • Packard A.E.
        • Ghosal S.
        • Herman J.P.
        • Woods S.C.
        • Ulrich-Lai Y.M.
        Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes.
        Psychoneuroendocrinology. 2014; 47: 178-188
        • Hatton-Jones K.
        • Cox A.J.
        • Peart J.N.
        • Headrick J.P.
        • du Toit E.F.
        Stress-induced body weight loss and improvements in cardiometabolic risk factors do not translate to improved myocardial ischemic tolerance in western diet-fed mice.
        Physiol Rep. 2022; 10e15170
        • Jene T.
        • Ruiz de Azua I.
        • Hasch A.
        • Klupfel J.
        • Deuster J.
        • Maas M.
        • et al.
        Chronic social stress lessens the metabolic effects induced by a high-fat diet.
        J Endocrinol. 2021; 249: 19-30
        • Herman J.P.
        Neural control of chronic stress adaptation.
        Front Behav Neurosci. 2013; 7: 61
        • Herman J.P.
        • McKlveen J.M.
        • Ghosal S.
        • Kopp B.
        • Wulsin A.
        • Makinson R.
        • et al.
        Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response.
        Compr Physiol. 2016; 6: 603-621
        • Hardy M.P.
        • Sottas C.M.
        • Ge R.
        • McKittrick C.R.
        • Tamashiro K.L.
        • McEwen B.S.
        • et al.
        Trends of reproductive hormones in male rats during psychosocial stress: role of glucocorticoid metabolism in behavioral dominance.
        Biol Reprod. 2002; 67: 1750-1755
        • Nair B.B.
        • Khant Aung Z.
        • Porteous R.
        • Prescott M.
        • Glendining K.A.
        • Jenkins D.E.
        • et al.
        Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice.
        J Neuroendocrinol. 2021; 33e12972
        • Marti O.
        • Gavalda A.
        • Jolin T.
        • Armario A.
        Effect of regularity of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat.
        Psychoneuroendocrinology. 1993; 18: 67-77
        • Pace S.A.
        • Christensen C.
        • Schackmuth M.K.
        • Wallace T.
        • McKlveen J.M.
        • Beischel W.
        • et al.
        Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress.
        Neurobiol Stress. 2020; 13100274
        • Chiba S.
        • Numakawa T.
        • Ninomiya M.
        • Richards M.C.
        • Wakabayashi C.
        • Kunugi H.
        Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.
        Prog Neuropsychopharmacol Biol Psychiatry. 2012; 39: 112-119
        • Willner P.
        The chronic mild stress (CMS) model of depression: History, evaluation and usage.
        Neurobiol Stress. 2017; 6: 78-93
      1. de Kloet ER, Molendijk ML (2016): Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast. 2016:6503162.

        • Schwabe L.
        • Wolf O.T.
        Stress and multiple memory systems: from 'thinking' to 'doing.
        Trends Cogn Sci. 2013; 17: 60-68
        • Dias-Ferreira E.
        • Sousa J.C.
        • Melo I.
        • Morgado P.
        • Mesquita A.R.
        • Cerqueira J.J.
        • et al.
        Chronic stress causes frontostriatal reorganization and affects decision-making.
        Science. 2009; 325: 621-625
        • Herman J.P.
        • Adams D.
        • Prewitt C.
        Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm.
        Neuroendocrinology. 1995; 61: 180-190
        • Willner P.
        Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation.
        Psychopharmacology (Berl). 1997; 134: 319-329
        • Ortiz J.
        • Fitzgerald L.W.
        • Lane S.
        • Terwilliger R.
        • Nestler E.J.
        Biochemical adaptations in the mesolimbic dopamine system in response to repeated stress.
        Neuropsychopharmacol. 1996; 14: 443-452
        • Watanabe Y.
        • Gould E.
        • McEwen B.S.
        Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons.
        Brain Res. 1992; 588: 341-345
        • Dias C.
        • Feng J.
        • Sun H.
        • Shao N.Y.
        • Mazei-Robison M.S.
        • Damez-Werno D.
        • et al.
        beta-catenin mediates stress resilience through Dicer1/microRNA regulation.
        Nature. 2014; 516: 51-55
        • Lopez J.P.
        • Fiori L.M.
        • Cruceanu C.
        • Lin R.
        • Labonte B.
        • Cates H.M.
        • et al.
        MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes.
        Nat Commun. 2017; 815497
        • Torres-Berrio A.
        • Lopez J.P.
        • Bagot R.C.
        • Nouel D.
        • Dal Bo G.
        • Cuesta S.
        • et al.
        DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218.
        Biol Psychiatry. 2017; 81: 306-315
        • Grippo A.J.
        • Moffitt J.A.
        • Johnson A.K.
        Cardiovascular alterations and autonomic imbalance in an experimental model of depression.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R1333-1341
        • Radley J.J.
        • Sawchenko P.E.
        Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic-pituitary-adrenal axis adaptations to repeated stress.
        J Comp Neurol. 2015; 523: 2769-2787
        • Cheeta S.
        • Ruigt G.
        • van Proosdij J.
        • Willner P.
        Changes in sleep architecture following chronic mild stress.
        Biol Psychiatry. 1997; 41: 419-427
        • Iniguez S.D.
        • Vialou V.
        • Warren B.L.
        • Cao J.L.
        • Alcantara L.F.
        • Davis L.C.
        • et al.
        Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress.
        J Neurosci. 2010; 30: 7652-7663
        • Schaeuble D.
        • Packard A.E.B.
        • McKlveen J.M.
        • Morano R.
        • Fourman S.
        • Smith B.L.
        • et al.
        Prefrontal Cortex Regulates Chronic Stress-Induced Cardiovascular Susceptibility.
        J Am Heart Assoc. 2019; 8e014451
      2. Henry J, Stephens P (1977): Stress, Health and the Social Environment: Sociobiological Approaches to Medicine. New York: Springer Verlag.

        • Koolhaas J.M.
        • de Boer S.F.
        • Buwalda B.
        • van Reenen K.
        Individual variation in coping with stress: A multidimensional approach of ultimate and proximate mechanisms.
        Brain Behavior and Evolution. 2007; 70: 218-226
        • Herman J.P.
        The neuroendocrinology of stress: Glucocorticoid signaling mechanisms.
        Psychoneuroendocrino. 2022; 137105641
        • Magarinos A.M.
        • Deslandes A.
        • McEwen B.S.
        Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress.
        Eur J Pharmacol. 1999; 371: 113-122
        • Rygula R.
        • Abumaria N.
        • Domenici E.
        • Hiemke C.
        • Fuchs E.
        Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats.
        Behav Brain Res. 2006; 174: 188-192
        • Schmidt M.V.
        • Czisch M.
        • Sterlemann V.
        • Reinel C.
        • Samann P.
        • Muller M.B.
        Chronic social stress during adolescence in mice alters fat distribution in late life: prevention by antidepressant treatment.
        Stress. 2009; 12: 89-94
        • Malberg J.E.
        • Eisch A.J.
        • Nestler E.J.
        • Duman R.S.
        Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2000; 20: 9104-9110
        • Serretti A.
        • Calati R.
        • Goracci A.
        • Di Simplicio M.
        • Castrogiovanni P.
        • De Ronchi D.
        Antidepressants in healthy subjects: what are the psychotropic/psychological effects?.
        Eur Neuropsychopharmacol. 2010; 20: 433-453
        • Knutson B.
        • Wolkowitz O.M.
        • Cole S.W.
        • Chan T.
        • Moore E.A.
        • Johnson R.C.
        • et al.
        Selective alteration of personality and social behavior by serotonergic intervention.
        Am J Psychiatry. 1998; 155: 373-379
        • Young S.N.
        • Moskowitz D.S.
        • aan het Rot M.
        Possible role of more positive social behaviour in the clinical effect of antidepressant drugs.
        J Psychiatry Neurosci. 2014; 39: 60-65
      3. Feder A, Haglund M, Wu G, Southwick S, Charney DS (2013): The Neurobiology of Resilience. In: Charney DS, Buxbaum J, Sklar P, Nestler E, editors. Neurobiology of Mental Illness (4 edn): Oxford University Press.

        • Horn S.R.
        • Charney D.S.
        • Feder A.
        Understanding resilience: New approaches for preventing and treating PTSD.
        Exp Neurol. 2016; 284: 119-132
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Koolhaas J.M.
        • Korte S.M.
        • De Boer S.F.
        • Van Der Vegt B.J.
        • Van Reenen C.G.
        • Hopster H.
        • et al.
        Coping styles in animals: current status in behavior and stress-physiology.
        Neuroscience and Biobehavioral Reviews. 1999; 23: 925-935
        • Sluyter F.
        • Korte S.M.
        • Bohus B.
        • Van Oortmerssen G.A.
        Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test.
        Pharmacol Biochem Behav. 1996; 54: 113-116
        • Veenema A.H.
        • Koolhaas J.M.
        • De Kloet E.R.
        Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines.
        Ann Ny Acad Sci. 2004; 1018: 255-265
        • Veenema A.H.
        • Meijer O.C.
        • de Kloet E.R.
        • Koolhaas J.M.
        • Bohus B.G.
        Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression.
        Horm Behav. 2003; 43: 197-204
        • Krishnan V.
        Defeating the fear: new insights into the neurobiology of stress susceptibility.
        Exp Neurol. 2014; 261: 412-416
        • Lehmann M.L.
        • Weigel T.K.
        • Cooper H.A.
        • Elkahloun A.G.
        • Kigar S.L.
        • Herkenham M.
        Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility.
        Sci Rep. 2018; 811240
        • Lee S.
        • Lee C.
        • Woo C.
        • Kang S.J.
        • Shin K.S.
        Chronic social defeat stress increases burst firing of nucleus accumbens-projecting ventral subicular neurons in stress-susceptible mice.
        Biochem Biophys Res Commun. 2019; 515: 468-473
        • Lorsch Z.S.
        • Loh Y.E.
        • Purushothaman I.
        • Walker D.M.
        • Parise E.M.
        • Salery M.
        • et al.
        Estrogen receptor alpha drives pro-resilient transcription in mouse models of depression.
        Nat Commun. 2018; 9: 1116
        • Dudek K.A.
        • Dion-Albert L.
        • Lebel M.
        • LeClair K.
        • Labrecque S.
        • Tuck E.
        • et al.
        Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression.
        Proceedings of the National Academy of Sciences of the United States of America. 2020; 117: 3326-3336
        • Golden S.A.
        • Covington 3rd, H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice.
        Nat Protoc. 2011; 6: 1183-1191
        • Menard C.
        • Pfau M.L.
        • Hodes G.E.
        • Russo S.J.
        Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience.
        Neuropsychopharmacol. 2017; 42: 62-80
        • Ebner K.
        • Singewald N.
        Individual differences in stress susceptibility and stress inhibitory mechanisms.
        Curr Opin Behav Sci. 2017; 14: 54-64
        • Morais-Silva G.
        • Costa-Ferreira W.
        • Gomes-de-Souza L.
        • Pavan J.C.
        • Crestani C.C.
        • Marin M.T.
        Cardiovascular outcomes related to social defeat stress: New insights from resilient and susceptible rats.
        Neurobiol Stress. 2019; 11100181
        • Seligowski A.V.
        • Lebois L.A.M.
        • Hill S.B.
        • Kahhale I.
        • Wolff J.D.
        • Jovanovic T.
        • et al.
        Autonomic responses to fear conditioning among women with PTSD and dissociation.
        Depress Anxiety. 2019; 36: 625-634
        • Paulus M.P.
        • Stein M.B.
        An insular view of anxiety.
        Biol Psychiatry. 2006; 60: 383-387
      4. Fink G (2017): Stress neuroendocrinology: Highlights and Controversies. London: Eslevier.

        • de Boer S.F.
        • Buwalda B.
        • Koolhaas J.M.
        Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.
        Neurosci Biobehav Rev. 2016;
        • Seligowski A.V.
        • Harnett N.G.
        • Merker J.B.
        • Ressler K.J.
        Nervous and Endocrine System Dysfunction in Posttraumatic Stress Disorder: An Overview and Consideration of Sex as a Biological Variable.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 381-391
      5. Hinrichs R, van Rooij SJ, Michopoulos V, Schultebraucks K, Winters S, Maples-Keller J, et al. (2019): Increased Skin Conductance Response in the Immediate Aftermath of Trauma Predicts PTSD Risk. Chronic Stress (Thousand Oaks). 3.

        • Klein A.S.
        • Dolensek N.
        • Weiand C.
        • Gogolla N.
        Fear balance is maintained by bodily feedback to the insular cortex in mice.
        Science. 2021; 374: 1010-1015
        • Lopez J.
        • Bagot R.C.
        Defining Valid Chronic Stress Models for Depression With Female Rodents.
        Biol Psychiatry. 2021; 90: 226-235
        • Wohleb E.S.
        • Terwilliger R.
        • Duman C.H.
        • Duman R.S.
        Stress-Induced Neuronal Colony Stimulating Factor 1 Provokes Microglia-Mediated Neuronal Remodeling and Depressive-like Behavior.
        Biol Psychiatry. 2018; 83: 38-49
      6. Bulin SE, Hohl KM, Paredes D, Silva JD, Morilak DA (2020): Bidirectional Optogenetically-Induced Plasticity of Evoked Responses in the Rat Medial Prefrontal Cortex Can Impair or Enhance Cognitive Set-Shifting. eNeuro. 7.

        • Takahashi A.
        • Chung J.R.
        • Zhang S.
        • Zhang H.
        • Grossman Y.
        • Aleyasin H.
        • et al.
        Establishment of a repeated social defeat stress model in female mice.
        Sci Rep. 2017; 712838
        • Ver Hoeve E.S.
        • Kelly G.
        • Luz S.
        • Ghanshani S.
        • Bhatnagar S.
        Short-term and long-term effects of repeated social defeat during adolescence or adulthood in female rats.
        Neuroscience. 2013; 249: 63-73
        • Westenbroek C.
        • Ter Horst G.J.
        • Roos M.H.
        • Kuipers S.D.
        • Trentani A.
        • den Boer J.A.
        Gender-specific effects of social housing in rats after chronic mild stress exposure.
        Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 21-30
        • Westenbroek C.
        • Den Boer J.A.
        • Ter Horst G.J.
        Gender-specific effects of social housing on chronic stress-induced limbic Fos expression.
        Neuroscience. 2003; 121: 189-199
        • Sarkar A.
        • Kabbaj M.
        Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats.
        Biol Psychiatry. 2016; 80: 448-456
        • Carere C.
        • Caramaschi D.
        • Fawcett T.W.
        Covariation between personalities and individual differences in coping with stress: Converging evidence and hypotheses.
        Current Zoology. 2010; 56: 728-740
        • Raulo A.
        • Dantzer B.
        Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior.
        Ecol Evol. 2018; 8: 7697-7716
        • Sih A.
        Effects of early stress on behavioral syndromes: an integrated adaptive perspective.
        Neurosci Biobehav Rev. 2011; 35: 1452-1465
        • Hau M.
        • Casagrande S.
        • Ouyang J.
        • Baugh A.
        Glucocorticoid-mediated phenotypes in vertebrates: Mulitlevel variation and evolution.
        Advances in the Study of Behavior. 2016; 48: 41-115
        • Koolhaas J.M.
        Coping style and immunity in animals: Making sense of individual variation.
        Brain Behav Immun. 2008; 22: 662-667
        • Sgoifo A.
        • de Boer S.F.
        • Haller J.
        • Koolhaas J.M.
        Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression.
        Physiol Behav. 1996; 60: 1403-1407
        • Sgoifo A.
        • Carnevali L.
        • Grippo A.J.
        The socially stressed heart. Insights from studies in rodents.
        Neurosci Biobehav Rev. 2014; 39: 51-60
        • Carnevali L.
        • Trombini M.
        • Porta A.
        • Montano N.
        • de Boer S.F.
        • Sgoifo A.
        Vagal withdrawal and susceptibility to cardiac arrhythmias in rats with high trait aggressiveness.
        PLoS One. 2013; 8e68316
        • Kavelaars A.
        • Heijnen C.J.
        • Tennekes R.
        • Bruggink J.E.
        • Koolhaas J.M.
        Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis.
        Brain Behav Immun. 1999; 13: 279-286
        • Huhman K.L.
        Social conflict models: can they inform us about human psychopathology?.
        Horm Behav. 2006; 50: 640-646
        • de Boer S.F.
        • de Beun R.
        • Slangen J.L.
        • van der Gugten J.
        Dynamics of plasma catecholamine and corticosterone concentrations during reinforced and extinguished operant behavior in rats.
        Physiol Behav. 1990; 47: 691-698
        • Dantzer R.
        • Terlouw C.
        • Tazi A.
        • Koolhaas J.M.
        • Bohus B.
        • Koob G.F.
        • et al.
        The propensity for schedule-induced polydipsia is related to differences in conditioned avoidance behaviour and in defense reactions in a defeat test.
        Physiol Behav. 1988; 43: 269-273
        • Moal M.L.
        Individual vulnerabilities relative for potential pathological conditions.
        Brain Res. 2016; 1645: 65-67
        • Myers B.
        • McKlveen J.M.
        • Morano R.
        • Ulrich-Lai Y.M.
        • Solomon M.B.
        • Wilson S.P.
        • et al.
        Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats.
        Endocrinology. 2017; 158: 3579-3591
        • Guindre-Parker S.
        • McAdam A.G.
        • van Kesteren F.
        • Palme R.
        • Boonstra R.
        • Boutin S.
        • et al.
        Individual variation in phenotypic plasticity of the stress axis.
        Biol Lett. 2019; 1520190260
        • Krebs C.J.
        • Boonstra R.
        • Boutin S.
        Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America.
        J Anim Ecol. 2018; 87: 87-100
        • Taborsky B.
        • English S.
        • Fawcett T.W.
        • Kuijper B.
        • Leimar O.
        • McNamara J.M.
        • et al.
        Towards an Evolutionary Theory of Stress Responses.
        Trends Ecol Evol. 2021; 36: 39-48
        • Ayash S.
        • Schmitt U.
        • Lyons D.M.
        • Muller M.B.
        Stress inoculation in mice induces global resilience.
        Transl Psychiatry. 2020; 10: 200
        • Meduri J.D.
        • Farnbauch L.A.
        • Jasnow A.M.
        Paradoxical enhancement of fear expression and extinction deficits in mice resilient to social defeat.
        Behav Brain Res. 2013; 256: 580-590
        • Dulka B.N.
        • Lynch 3rd, J.F.
        • Latsko M.S.
        • Mulvany J.L.
        • Jasnow A.M.
        Phenotypic responses to social defeat are associated with differences in cued and contextual fear discrimination.
        Behav Processes. 2015; 118: 115-122
        • Sgoifo A.
        • Costoli T.
        • Meerlo P.
        • Buwalda B.
        • Pico'-Alfonso M.A.
        • De Boer S.
        • et al.
        Individual differences in cardiovascular response to social challenge.
        Neurosci Biobehav Rev. 2005; 29: 59-66
        • Melhorn S.J.
        • Askren M.K.
        • Chung W.K.
        • Kratz M.
        • Bosch T.A.
        • Tyagi V.
        • et al.
        FTO genotype impacts food intake and corticolimbic activation.
        Am J Clin Nutr. 2018; 107: 145-154
        • Langgartner D.
        • Marks J.
        • Nguyen T.C.
        • Reber S.O.
        Changes in adrenal functioning induced by chronic psychosocial stress in male mice: A time course study.
        Psychoneuroendocrino. 2020; 122104880
        • Nyuyki K.D.
        • Beiderbeck D.I.
        • Lukas M.
        • Neumann I.D.
        • Reber S.O.
        Chronic subordinate colony housing (CSC) as a model of chronic psychosocial stress in male rats.
        PLoS One. 2012; 7e52371
        • Maier S.F.
        • Seligman M.E.
        Learned helplessness at fifty: Insights from neuroscience.
        Psychol Rev. 2016; 123: 349-367
        • Amat J.
        • Baratta M.V.
        • Paul E.
        • Bland S.T.
        • Watkins L.R.
        • Maier S.F.
        Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus.
        Nat Neurosci. 2005; 8: 365-371
        • Santarelli S.
        • Zimmermann C.
        • Kalideris G.
        • Lesuis S.L.
        • Arloth J.
        • Uribe A.
        • et al.
        An adverse early life environment can enhance stress resilience in adulthood.
        Psychoneuroendocrinology. 2017; 78: 213-221
        • Santarelli S.
        • Lesuis S.L.
        • Wang X.D.
        • Wagner K.V.
        • Hartmann J.
        • Labermaier C.
        • et al.
        Evidence supporting the match/mismatch hypothesis of psychiatric disorders.
        Eur Neuropsychopharmacol. 2014; 24: 907-918
        • Cotella E.M.
        • Morano R.L.
        • Wulsin A.C.
        • Martelle S.M.
        • Lemen P.
        • Fitzgerald M.
        • et al.
        Lasting Impact of Chronic Adolescent Stress and Glucocorticoid Receptor Selective Modulation in Male and Female Rats.
        Psychoneuroendocrinology. 2020; 112104490
        • Chaby L.E.
        • Sadik N.
        • Burson N.A.
        • Lloyd S.
        • O'Donnel K.
        • Winters J.
        • et al.
        Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats.
        Sci Rep. 2020; 1017935
        • Parker K.J.
        • Buckmaster C.L.
        • Hyde S.A.
        • Schatzberg A.F.
        • Lyons D.M.
        Nonlinear relationship between early life stress exposure and subsequent resilience in monkeys.
        Sci Rep. 2019; 916232
        • Walker C.D.
        • Bath K.G.
        • Joels M.
        • Korosi A.
        • Larauche M.
        • Lucassen P.J.
        • et al.
        Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential.
        Stress. 2017; 20: 421-448
        • Maccari S.
        • Krugers H.J.
        • Morley-Fletcher S.
        • Szyf M.
        • Brunton P.J.
        The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations.
        J Neuroendocrinol. 2014; 26: 707-723
        • Kalisch R.
        • Muller M.B.
        • Tuscher O.
        A conceptual framework for the neurobiological study of resilience.
        Behav Brain Sci. 2015; 38: e92
        • Brockhurst J.
        • Cheleuitte-Nieves C.
        • Buckmaster C.L.
        • Schatzberg A.F.
        • Lyons D.M.
        Stress inoculation modeled in mice.
        Transl Psychiatry. 2015; 5: e537
        • Lee A.G.
        • Buckmaster C.L.
        • Yi E.
        • Schatzberg A.F.
        • Lyons D.M.
        Coping and glucocorticoid receptor regulation by stress inoculation.
        Psychoneuroendocrinology. 2014; 49: 272-279
        • Scott K.A.
        • de Kloet A.D.
        • Smeltzer M.D.
        • Krause E.G.
        • Flak J.N.
        • Melhorn S.J.
        • et al.
        Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status.
        Physiol Behav. 2017; 178: 117-125
        • Stetz M.C.
        • Thomas M.L.
        • Russo M.B.
        • Stetz T.A.
        • Wildzunas R.M.
        • McDonald J.J.
        • et al.
        Stress, mental health, and cognition: a brief review of relationships and countermeasures.
        Aviat Space Environ Med. 2007; 78: B252-260
        • Meichenbaum D.
        • Novaco R.
        Stress inoculation: a preventative approach.
        Issues Ment Health Nurs. 1985; 7: 419-435
        • Saunders T.
        • Driskell J.E.
        • Johnston J.H.
        • Salas E.
        The effect of stress inoculation training on anxiety and performance.
        J Occup Health Psychol. 1996; 1: 170-186
        • Craske M.G.
        • Kircanski K.
        • Zelikowsky M.
        • Mystkowski J.
        • Chowdhury N.
        • Baker A.
        Optimizing inhibitory learning during exposure therapy.
        Behav Res Ther. 2008; 46: 5-27
        • McNally R.J.
        Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders.
        Clin Psychol Rev. 2007; 27: 750-759
        • Habes I.
        • Krall S.C.
        • Johnston S.J.
        • Yuen K.S.
        • Healy D.
        • Goebel R.
        • et al.
        Pattern classification of valence in depression.
        Neuroimage Clin. 2013; 2: 675-683
        • Rosenblau G.
        • Sterzer P.
        • Stoy M.
        • Park S.
        • Friedel E.
        • Heinz A.
        • et al.
        Functional neuroanatomy of emotion processing in major depressive disorder is altered after successful antidepressant therapy.
        J Psychopharmacol. 2012; 26: 1424-1433
        • Greening S.G.
        • Osuch E.A.
        • Williamson P.C.
        • Mitchell D.G.
        Emotion-related brain activity to conflicting socio-emotional cues in unmedicated depression.
        J Affect Disord. 2013; 150: 1136-1141