Advertisement

Nucleus Accumbens D1 Receptor–Expressing Spiny Projection Neurons Control Food Motivation and Obesity

      Abstract

      Background

      Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals.

      Methods

      Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking.

      Results

      We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor–expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor–expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet–induced weight gain.

      Conclusions

      These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Epstein L.H.
        • Carr K.A.
        Food reinforcement and habituation to food are processes related to initiation and cessation of eating.
        Physiol Behav. 2021; 239113512
        • Lee P.C.
        • Dixon J.B.
        Food for thought: Reward mechanisms and hedonic overeating in obesity.
        Curr Obes Rep. 2017; 6: 353-361
        • Carr K.A.
        • Lin H.
        • Fletcher K.D.
        • Epstein L.H.
        Food reinforcement, dietary disinhibition and weight gain in nonobese adults.
        Obesity (Silver Spring). 2014; 22: 254-259
        • Mogenson G.J.
        • Jones D.L.
        • Yim C.Y.
        From motivation to action: Functional interface between the limbic system and the motor system.
        Prog Neurobiol. 1980; 14: 69-97
        • Gendelis S.
        • Inbar D.
        • Kupchik Y.M.
        The role of the nucleus accumbens and ventral pallidum in feeding and obesity.
        Prog Neuropsychopharmacol Biol Psychiatry. 2021; 111110394
        • Dalton M.
        • Finlayson G.
        • Walsh B.
        • Halseth A.E.
        • Duarte C.
        • Blundell J.E.
        Early improvement in food cravings are associated with long-term weight loss success in a large clinical sample.
        Int J Obes (Lond). 2017; 41: 1232-1236
        • la Fleur S.E.
        • Vanderschuren L.J.M.J.
        • Luijendijk M.C.
        • Kloeze B.M.
        • Tiesjema B.
        • Adan R.A.
        A reciprocal interaction between food-motivated behavior and diet-induced obesity.
        Int J Obes (Lond). 2007; 31: 1286-1294
        • Wang G.J.
        • Tomasi D.
        • Convit A.
        • Logan J.
        • Wong C.T.
        • Shumay E.
        • et al.
        BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake.
        PLOS ONE. 2014; 9e101585
        • Willeumier K.C.
        • Taylor D.V.
        • Amen D.G.
        Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults.
        Obesity (Silver Spring). 2011; 19: 1095-1097
        • Jastreboff A.M.
        • Sinha R.
        • Arora J.
        • Giannini C.
        • Kubat J.
        • Malik S.
        • et al.
        Altered brain response to drinking glucose and fructose in obese adolescents.
        Diabetes. 2016; 65: 1929-1939
        • DelParigi A.
        • Gautier J.F.
        • Chen K.
        • Salbe A.D.
        • Ravussin E.
        • Reiman E.
        • Tataranni P.A.
        Neuroimaging and obesity: Mapping the brain responses to hunger and satiation in humans using positron emission tomography.
        Ann N Y Acad Sci. 2002; 967: 389-397
        • Stoeckel L.E.
        • Weller R.E.
        • Cook E.W.
        • Twieg D.B.
        • Knowlton R.C.
        • Cox J.E.
        Widespread reward-system activation in obese women in response to pictures of high-calorie foods.
        Neuroimage. 2008; 41: 636-647
        • Bruce A.S.
        • Holsen L.M.
        • Chambers R.J.
        • Martin L.E.
        • Brooks W.M.
        • Zarcone J.R.
        • et al.
        Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control.
        Int J Obes (Lond). 2010; 34: 1494-1500
        • Oginsky M.F.
        • Goforth P.B.
        • Nobile C.W.
        • Lopez-Santiago L.F.
        • Ferrario C.R.
        Eating “Junk-Food” produces rapid and long-lasting increases in NAc CP-AMPA receptors: Implications for enhanced cue-induced motivation and food addiction.
        Neuropsychopharmacology. 2016; 41: 2977-2986
        • Oginsky M.F.
        • Ferrario C.R.
        Eating “junk food” has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats.
        J Neurophysiol. 2019; 122: 1264-1273
        • Brown R.M.
        • Kupchik Y.M.
        • Spencer S.
        • Garcia-Keller C.
        • Spanswick D.C.
        • Lawrence A.J.
        • et al.
        Addiction-like synaptic impairments in diet-induced obesity.
        Biol Psychiatry. 2017; 81: 797-806
        • Gerfen C.R.
        • Engber T.M.
        • Mahan L.C.
        • Susel Z.
        • Chase T.N.
        • Monsma F.J.
        • Sibley D.R.
        D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.
        Science. 1990; 250: 1429-1432
        • Kupchik Y.M.
        • Brown R.M.
        • Heinsbroek J.A.
        • Lobo M.K.
        • Schwartz D.J.
        • Kalivas P.W.
        Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.
        Nat Neurosci. 2015; 18: 1230-1232
        • Kravitz A.V.
        • Tye L.D.
        • Kreitzer A.C.
        Distinct roles for direct and indirect pathway striatal neurons in reinforcement.
        Nat Neurosci. 2012; 15: 816-818
        • Yttri E.A.
        • Dudman J.T.
        Opponent and bidirectional control of movement velocity in the basal ganglia.
        Nature. 2016; 533: 402-406
        • Cui G.
        • Jun S.B.
        • Jin X.
        • Pham M.D.
        • Vogel S.S.
        • Lovinger D.M.
        • Costa R.M.
        Concurrent activation of striatal direct and indirect pathways during action initiation.
        Nature. 2013; 494: 238-242
        • Bariselli S.
        • Fobbs W.C.
        • Creed M.C.
        • Kravitz A.V.
        A competitive model for striatal action selection.
        Brain Res. 2019; 1713: 70-79
        • Vachez Y.M.
        • Tooley J.R.
        • Abiraman K.
        • Matikainen-Ankney B.
        • Casey E.
        • Earnest T.
        • et al.
        Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption.
        Nat Neurosci. 2021; 24: 379-390
        • Friend D.M.
        • Devarakonda K.
        • O’Neal T.J.
        • Skirzewski M.
        • Papazoglou I.
        • Kaplan A.R.
        • et al.
        Basal ganglia dysfunction contributes to physical inactivity in obesity.
        Cell Metab. 2017; 25: 312-321
        • Licholai J.A.
        • Nguyen K.P.
        • Fobbs W.C.
        • Schuster C.J.
        • Ali M.A.
        • Kravitz A.V.
        Why Do Mice overeat high-fat diets? How high-fat diet alters the regulation of daily caloric intake in mice.
        Obesity (Silver Spring). 2018; 26: 1026-1033
        • Yang Y.
        • Smith D.L.
        • Keating K.D.
        • Allison D.B.
        • Nagy T.R.
        Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice.
        Obesity (Silver Spring). 2014; 22: 2147-2155
        • Blaisdell A.P.
        • Lau Y.L.M.
        • Telminova E.
        • Lim H.C.
        • Fan B.
        • Fast C.D.
        • et al.
        Food quality and motivation: A refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.
        Physiol Behav. 2014; 128: 220-225
        • Sharma S.
        • Fernandes M.F.
        • Fulton S.
        Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by HFD withdrawal.
        Int J Obes. 2005; 37: 1183-1191
        • Naef L.
        • Seabrook L.
        • Baimel C.
        • Judge A.K.
        • Kenney T.
        • Ellis M.
        • et al.
        Disinhibition of the orbitofrontal cortex biases goal-directed behaviour in obesity.
        bioRxiv. 2020; https://doi.org/10.1101/2020.04.02.022681
        • Figlewicz D.P.
        • Jay J.L.
        • Acheson M.A.
        • Magrisso I.J.
        • West C.H.
        • Zavosh A.
        • et al.
        Moderate high fat diet increases sucrose self-administration in young rats.
        Appetite. 2013; 61: 19-29
        • Inbar D.
        • Gendelis S.
        • Mesner S.
        • Menahem S.
        • Kupchik Y.M.
        Chronic calorie-dense diet drives differences in motivated food seeking between obesity-prone and resistant mice.
        Addict Biol. 2020; 25e12753
        • Hodos W.
        Progressive ratio as a measure of reward strength.
        Science. 1961; 134: 943-944
        • Bickel W.K.
        • Freitas-Lemos R.
        • Tomlinson D.C.
        • Craft W.H.
        • Keith D.R.
        • Athamneh L.N.
        • et al.
        Temporal discounting as a candidate behavioral marker of obesity.
        Neurosci Biobehav Rev. 2021; 129: 307-329
        • Zhang L.
        • Rashad I.
        Obesity and time preference: The health consequences of discounting the future.
        J Biosoc Sci. 2008; 40: 97-113
        • Matikainen-Ankney B.A.
        • Earnest T.
        • Ali M.
        • Casey E.
        • Wang J.G.
        • Sutton A.K.
        • et al.
        An open-source device for measuring food intake and operant behavior in rodent home-cages.
        eLife. 2021; 10e66173
        • Aberman J.E.
        • Salamone J.D.
        Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement.
        Neuroscience. 1999; 92: 545-552
        • Salamone J.D.
        • Correa M.
        • Yang J.H.
        • Rotolo R.
        • Presby R.
        Dopamine, effort-based choice, and behavioral economics: Basic and translational research.
        Front Behav Neurosci. 2018; 12: 52
        • du Hoffmann J.
        • Nicola S.M.
        Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens.
        J Neurosci. 2014; 34: 14349-14364
        • Bryce C.A.
        • Floresco S.B.
        Alterations in effort-related decision-making induced by stimulation of dopamine D1, D2, D3, and corticotropin-releasing factor receptors in nucleus accumbens subregions.
        Psychopharmacol (Berl). 2019; 236: 2699-2712
        • Ko D.
        • Wanat M.J.
        Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner.
        J Neurosci. 2016; 36: 2202-2211
        • Christoffel D.J.
        • Walsh J.J.
        • Heifets B.D.
        • Hoerbelt P.
        • Neuner S.
        • Sun G.
        • et al.
        Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding.
        Nat Commun. 2021; 12: 2135
        • Nicola S.M.
        • Deadwyler S.A.
        Firing rate of nucleus accumbens neurons is dopamine-dependent and reflects the timing of cocaine-seeking behavior in rats on a progressive ratio schedule of reinforcement.
        J Neurosci. 2000; 20: 5526-5537
        • Peoples L.L.
        • West M.O.
        Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration.
        J Neurosci. 1996; 16: 3459-3473
        • Nicola S.M.
        • Yun I.A.
        • Wakabayashi K.T.
        • Fields H.L.
        Cue-evoked firing of nucleus accumbens neurons encodes motivational significance during a discriminative stimulus task.
        J Neurophysiol. 2004; 91: 1840-1865
        • Beatty J.A.
        • Song S.C.
        • Wilson C.J.
        Cell-type-specific resonances shape the responses of striatal neurons to synaptic input.
        J Neurophysiol. 2015; 113: 688-700
        • Fobbs W.C.
        • Bariselli S.
        • Licholai J.A.
        • Miyazaki N.L.
        • Matikainen-Ankney B.A.
        • Creed M.C.
        • Kravitz A.V.
        Continuous representations of speed by striatal medium spiny neurons.
        J Neurosci. 2020; 40: 1679-1688
        • Hikida T.
        • Kimura K.
        • Wada N.
        • Funabiki K.
        • Nakanishi S.
        Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior.
        Neuron. 2010; 66: 896-907
        • Roberts-Wolfe D.
        • Bobadilla A.C.
        • Heinsbroek J.A.
        • Neuhofer D.
        • Kalivas P.W.
        Drug refraining and seeking potentiate synapses on distinct populations of accumbens medium spiny neurons.
        J Neurosci. 2018; 38: 7100-7107
        • Lobo M.K.
        • Nestler E.J.
        The striatal balancing act in drug addiction: Distinct roles of direct and indirect pathway medium spiny neurons.
        Front Neuroanat. 2011; 5: 41
        • Terrier J.
        • Lüscher C.
        • Pascoli V.
        Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving.
        Neuropsychopharmacology. 2016; 41: 1779-1789
        • Oginsky M.F.
        • Maust J.D.
        • Corthell J.T.
        • Ferrario C.R.
        Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.
        Psychopharmacology. 2016; 233: 773-784
        • Grimm J.W.
        • Harkness J.H.
        • Ratliff C.
        • Barnes J.
        • North K.
        • Collins S.
        Effects of systemic or nucleus accumbens-directed dopamine D1 receptor antagonism on sucrose seeking in rats.
        Psychopharmacology. 2011; 216: 219-233
        • Grippo R.M.
        • Tang Q.
        • Zhang Q.
        • Chadwick S.R.
        • Gao Y.
        • Altherr E.B.
        • et al.
        Dopamine signaling in the suprachiasmatic nucleus enables weight gain associated with hedonic feeding.
        Curr Biol. 2020; 30: 196-208.e8
        • O’Connor E.C.
        • Kremer Y.
        • Lefort S.
        • Harada M.
        • Pascoli V.
        • Rohner C.
        • Lüscher C.
        Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding.
        Neuron. 2015; 88: 553-564
        • Bond C.W.
        • Trinko R.
        • Foscue E.
        • Furman K.
        • Groman S.M.
        • Taylor J.R.
        • DiLeone R.J.
        Medial nucleus accumbens projections to the ventral tegmental area control food consumption.
        J Neurosci. 2020; 40: 4727-4738
        • Baldo B.A.
        • Kelley A.E.
        Discrete neurochemical coding of distinguishable motivational processes: Insights from nucleus accumbens control of feeding.
        Psychopharmacol (Berl). 2007; 191: 439-459
        • Kelley A.E.
        • Baldo B.A.
        • Pratt W.E.
        • Will M.J.
        Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward.
        Physiol Behav. 2005; 86: 773-795
        • Kelley A.E.
        • Swanson C.J.
        Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: A microinfusion mapping study.
        Behav Brain Res. 1997; 89: 107-113
        • Maldonado-Irizarry C.S.
        • Swanson C.J.
        • Kelley A.E.
        Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus.
        J Neurosci. 1995; 15: 6779-6788
        • Basso A.M.
        • Kelley A.E.
        Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: Regional mapping and characterization of macronutrient and taste preference.
        Behav Neurosci. 1999; 113: 324-336
        • Urstadt K.R.
        • Kally P.
        • Zaidi S.F.
        • Stanley B.G.
        Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: Regulation by glutamate and GABA receptor subtypes.
        Neuropharmacology. 2013; 67: 176-182
        • Floresco S.B.
        • McLaughlin R.J.
        • Haluk D.M.
        Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior.
        Neuroscience. 2008; 154: 877-884
        • Kelley A.E.
        Functional specificity of ventral striatal compartments in appetitive behaviors.
        Ann N Y Acad Sci. 1999; 877: 71-90
        • Cone J.J.
        • Chartoff E.H.
        • Potter D.N.
        • Ebner S.R.
        • Roitman M.F.
        Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression.
        PLoS One. 2013; 8e58251
        • Adams W.K.
        • Sussman J.L.
        • Kaur S.
        • D’souza A.M.
        • Kieffer T.J.
        • Winstanley C.A.
        Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling – Two markers of addiction vulnerability.
        Eur J Neurosci. 2015; 42: 3095-3104
        • Hryhorczuk C.
        • Florea M.
        • Rodaros D.
        • Poirier I.
        • Daneault C.
        • Des Rosiers C.
        • et al.
        Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids.
        Neuropsychopharmacology. 2016; 41: 811-821
        • Astrup A.
        • Greenway F.L.
        • Ling W.
        • Pedicone L.
        • Lachowicz J.
        • Strader C.D.
        • et al.
        Randomized controlled trials of the D1/D5 antagonist ecopipam for weight loss in obese subjects.
        Obesity (Silver Spring). 2007; 15: 1717-1731
        • Chen R.
        • Blosser T.R.
        • Djekidel M.N.
        • Hao J.
        • Bhattacherjee A.
        • Chen W.
        • et al.
        Decoding molecular and cellular heterogeneity of mouse nucleus accumbens.
        Nat Neurosci. 2021; 24: 1757-1771