Advertisement

Habenular neurons expressing mu opioid receptors promote negative affect in a projection-specific manner

Published:September 20, 2022DOI:https://doi.org/10.1016/j.biopsych.2022.09.013

      ABSTRACT

      BACKGROUND

      The mu opioid receptor (MOR) is central to hedonic balance, and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, and notably the habenula (Hb), where the receptor is highly dense. Our previous data suggest that the inhibitory activity of MOR in the Hb may limit aversive states. To investigate this hypothesis, we here tested whether neurons expressing MOR in the Hb (Hb-MOR neurons) promote negative affect.

      METHODS

      Using Oprm1-Cre knock-in mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of Hb-MOR neuron stimulation in approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze and marble burying) and despair-like behavior (tail suspension)

      RESULTS

      Opto-stimulation of Hb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus (IPN), Hb-MOR neurons project to the dorsal raphe nucleus (DRN). Opto-stimulation of Hb-MOR/IPN terminals triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of Hb-MOR/DRN terminals increased levels of anxiety with no effect on other behaviors, revealing two dissociable pathways controlling negative affect.

      CONCLUSION

      Together, the data demonstrate that Hb neurons expressing MOR facilitate aversive states via two distinct Hb circuits, contributing to despair-like behavior (Hb-MOR/IPN) and anxiety (Hb-MOR/DRN). The study supports the notion that inhibition of these neurons by either endogenous or exogenous opioids may relieve negative affect, a mechanism that would have implications for hedonic homeostasis and addiction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Matthes H.W.
        • Maldonado R.
        • Simonin F.
        • Valverde O.
        • Slowe S.
        • Kitchen I.
        • et al.
        Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.
        Nature. 1996; 383: 819-823
        • Darcq E.
        • Kieffer B.L.
        Opioid receptors: drivers to addiction?.
        Nat Rev Neurosci. 2018; 19: 499-514
        • Contet C.
        • Kieffer B.L.
        • Befort K.
        Mu opioid receptor: a gateway to drug addiction.
        Curr Opin Neurobiol. 2004; 14: 370-378
        • Ben Hamida S.
        • Boulos L.J.
        • McNicholas M.
        • Charbogne P.
        • Kieffer B.L.
        Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking.
        Addict Biol. 2019; 24: 28-39
        • Moles A.
        • Kieffer B.L.
        • D'Amato F.R.
        Deficit in attachment behavior in mice lacking the mu-opioid receptor gene.
        Science. 2004; 304: 1983-1986
        • Pecina S.
        • Smith K.S.
        Hedonic and motivational roles of opioids in food reward: implications for overeating disorders.
        Pharmacol Biochem Behav. 2010; 97: 34-46
        • Buchel C.
        • Miedl S.
        • Sprenger C.
        Hedonic processing in humans is mediated by an opioidergic mechanism in a mesocorticolimbic system.
        Elife. 2018; 7
        • Meier I.M.
        • Eikemo M.
        • Leknes S.
        The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies.
        Current Addiction Reports. 2021; 8: 306-318
        • Le Merrer J.
        • Becker J.A.
        • Befort K.
        • Kieffer B.L.
        Reward processing by the opioid system in the brain.
        Physiol Rev. 2009; 89: 1379-1412
        • Corder G.
        • Castro D.C.
        • Bruchas M.R.
        • Scherrer G.
        Endogenous and Exogenous Opioids in Pain.
        Annu Rev Neurosci. 2018; 41: 453-473
        • Mechling A.E.
        • Arefin T.
        • Lee H.L.
        • Bienert T.
        • Reisert M.
        • Ben Hamida S.
        • et al.
        Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome.
        Proc Natl Acad Sci U S A. 2016; 113: 11603-11608
        • Gardon O.
        • Faget L.
        • Chu Sin Chung P.
        • Matifas A.
        • Massotte D.
        • Kieffer B.L.
        Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula.
        Neuroscience. 2014; 277: 595-609
        • Boulos L.J.
        • Darcq E.
        • Kieffer B.L.
        Translating the Habenula-From Rodents to Humans.
        Biol Psychiatry. 2017; 81: 296-305
        • McLaughlin I.
        • Dani J.A.
        • De Biasi M.
        The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation.
        J Neurochem. 2017; 142: 130-143
        • Beretta C.A.
        • Dross N.
        • Guiterrez-Triana J.A.
        • Ryu S.
        • Carl M.
        Habenula circuit development: past, present, and future.
        Front Neurosci. 2012; 6: 51
        • Aizawa H.
        • Amo R.
        • Okamoto H.
        Phylogeny and ontogeny of the habenular structure.
        Front Neurosci. 2011; 5: 138
        • Zhao-Shea R.
        • DeGroot S.R.
        • Liu L.
        • Vallaster M.
        • Pang X.
        • Su Q.
        • et al.
        Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal.
        Nat Commun. 2015; 6: 6770
        • Zhao-Shea R.
        • Liu L.
        • Pang X.
        • Gardner P.D.
        • Tapper A.R.
        Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms.
        Curr Biol. 2013; 23: 2327-2335
        • Salas R.
        • Sturm R.
        • Boulter J.
        • De Biasi M.
        Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice.
        J Neurosci. 2009; 29: 3014-3018
        • Rho B.
        • Glick S.D.
        Effects of 18-methoxycoronaridine on acute signs of morphine withdrawal in rats.
        Neuroreport. 1998; 9: 1283-1285
        • Panchal V.
        • Taraschenko O.D.
        • Maisonneuve I.M.
        • Glick S.D.
        Attenuation of morphine withdrawal signs by intracerebral administration of 18-methoxycoronaridine.
        Eur J Pharmacol. 2005; 525: 98-104
        • Taraschenko O.D.
        • Shulan J.M.
        • Maisonneuve I.M.
        • Glick S.D.
        18-MC acts in the medial habenula and interpeduncular nucleus to attenuate dopamine sensitization to morphine in the nucleus accumbens.
        Synapse. 2007; 61: 547-560
        • Boulos L.J.
        • Ben Hamida S.
        • Bailly J.
        • Maitra M.
        • Ehrlich A.T.
        • Gaveriaux-Ruff C.
        • et al.
        Mu opioid receptors in the medial habenula contribute to naloxone aversion.
        Neuropsychopharmacology. 2020; 45: 247-255
        • Bailly J.
        • Del Rossi N.
        • Runtz L.
        • Li J.J.
        • Park D.
        • Scherrer G.
        • et al.
        Targeting Morphine-Responsive Neurons: Generation of a Knock-In Mouse Line Expressing Cre Recombinase from the Mu-Opioid Receptor Gene Locus.
        eNeuro. 2020; 7
        • Thornton E.W.
        • Bradbury G.E.
        Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning.
        Physiol Behav. 1989; 45: 929-935
        • Lutz P.E.
        • Ayranci G.
        • Chu-Sin-Chung P.
        • Matifas A.
        • Koebel P.
        • Filliol D.
        • et al.
        Distinct mu, delta, and kappa opioid receptor mechanisms underlie low sociability and depressive-like behaviors during heroin abstinence.
        Neuropsychopharmacology. 2014; 39: 2694-2705
        • Frahm S.
        • Slimak M.A.
        • Ferrarese L.
        • Santos-Torres J.
        • Antolin-Fontes B.
        • Auer S.
        • et al.
        Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula.
        Neuron. 2011; 70: 522-535
        • Soria-Gomez E.
        • Busquets-Garcia A.
        • Hu F.
        • Mehidi A.
        • Cannich A.
        • Roux L.
        • et al.
        Habenular CB1 Receptors Control the Expression of Aversive Memories.
        Neuron. 2015; 88: 306-313
        • Darcq E.
        • Befort K.
        • Koebel P.
        • Pannetier S.
        • Mahoney M.K.
        • Gaveriaux-Ruff C.
        • et al.
        RSK2 signaling in medial habenula contributes to acute morphine analgesia.
        Neuropsychopharmacology. 2012; 37: 1288-1296
        • Otsu Y.
        • Darcq E.
        • Pietrajtis K.
        • Matyas F.
        • Schwartz E.
        • Bessaih T.
        • et al.
        Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula.
        Science. 2019; 366: 250-254
        • Hsu Y.W.
        • Morton G.
        • Guy E.G.
        • Wang S.D.
        • Turner E.E.
        Dorsal Medial Habenula Regulation of Mood-Related Behaviors and Primary Reinforcement by Tachykinin-Expressing Habenula Neurons.
        eNeuro. 2016; 3
        • Shoblock J.R.
        • Maidment N.T.
        Constitutively active micro opioid receptors mediate the enhanced conditioned aversive effect of naloxone in morphine-dependent mice.
        Neuropsychopharmacology. 2006; 31: 171-177
        • Shoblock J.R.
        • Maidment N.T.
        Enkephalin release promotes homeostatic increases in constitutively active mu opioid receptors during morphine withdrawal.
        Neuroscience. 2007; 149: 642-649
        • Alaei H.
        • Pourshanazari A.A.
        • Rafati A.
        Electrical stimulation of nucleus raphe dorsalis changes morphine self-administration and withdrawal symptoms in rats.
        Pathophysiology. 2002; 9: 1
        • Lunden J.W.
        • Kirby L.G.
        Opiate exposure and withdrawal dynamically regulate mRNA expression in the serotonergic dorsal raphe nucleus.
        Neuroscience. 2013; 254: 160-172
        • Vertes R.P.
        • Fortin W.J.
        • Crane A.M.
        Projections of the median raphe nucleus in the rat.
        J Comp Neurol. 1999; 407: 555-582
        • Hikosaka O.
        • Sesack S.R.
        • Lecourtier L.
        • Shepard P.D.
        Habenula: crossroad between the basal ganglia and the limbic system.
        J Neurosci. 2008; 28: 11825-11829
        • Mann J.J.
        The serotonergic system in mood disorders and suicidal behaviour.
        Philos Trans R Soc Lond B Biol Sci. 2013; 36820120537
      1. Marazziti D (2017): Understanding the role of serotonin in psychiatric diseases. F1000Res. 6:180.

        • Welsch L.
        • Bailly J.
        • Darcq E.
        • Kieffer B.L.
        The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models.
        Biol Psychiatry. 2020; 87: 54-63
        • Otsu Y.
        • Lecca S.
        • Pietrajtis K.
        • Rousseau C.V.
        • Marcaggi P.
        • Dugue G.P.
        • et al.
        Functional Principles of Posterior Septal Inputs to the Medial Habenula.
        Cell Rep. 2018; 22: 693-705
        • Vickstrom C.R.
        • Liu X.
        • Liu S.
        • Hu M.M.
        • Mu L.
        • Hu Y.
        • et al.
        Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior.
        Mol Psychiatry. 2020;
        • Yamaguchi T.
        • Danjo T.
        • Pastan I.
        • Hikida T.
        • Nakanishi S.
        Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear.
        Neuron. 2013; 78: 537-544
        • Cho C.H.
        • Lee S.
        • Kim A.
        • Yarishkin O.
        • Ryoo K.
        • Lee Y.S.
        • et al.
        TMEM16A expression in cholinergic neurons of the medial habenula mediates anxiety-related behaviors.
        EMBO Rep. 2020; 21e48097
        • Pang X.
        • Liu L.
        • Ngolab J.
        • Zhao-Shea R.
        • McIntosh J.M.
        • Gardner P.D.
        • et al.
        Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors.
        Neuropharmacology. 2016; 107: 294-304
        • Padilla E.
        • Shumake J.
        • Barrett D.W.
        • Sheridan E.C.
        • Gonzalez-Lima F.
        Mesolimbic effects of the antidepressant fluoxetine in Holtzman rats, a genetic strain with increased vulnerability to stress.
        Brain Res. 2011; 1387: 71-84
        • Shumake J.
        • Edwards E.
        • Gonzalez-Lima F.
        Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior.
        Brain Res. 2003; 963: 274-281
        • Weiss T.
        • Bernard R.
        • Bernstein H.G.
        • Veh R.W.
        • Laube G.
        Agmatine modulates spontaneous activity in neurons of the rat medial habenular complex-a relevant mechanism in the pathophysiology and treatment of depression?.
        Transl Psychiatry. 2018; 8: 201
        • Xu C.
        • Sun Y.
        • Cai X.
        • You T.
        • Zhao H.
        • Li Y.
        • et al.
        Medial Habenula-Interpeduncular Nucleus Circuit Contributes to Anhedonia-Like Behavior in a Rat Model of Depression.
        Front Behav Neurosci. 2018; 12: 238
        • Jeong I.
        • Kim E.
        • Seong J.Y.
        • Park H.C.
        Overexpression of Spexin 1 in the Dorsal Habenula Reduces Anxiety in Zebrafish.
        Front Neural Circuits. 2019; 13: 53
        • Han S.
        • Yang S.H.
        • Kim J.Y.
        • Mo S.
        • Yang E.
        • Song K.M.
        • et al.
        Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior.
        Sci Rep. 2017; 7: 900
        • Koob G.F.
        • Volkow N.D.
        Neurocircuitry of addiction.
        Neuropsychopharmacology. 2010; 35: 217-238