Advertisement

Genetic heterogeneity shapes brain connectivity in psychiatry

Published:September 01, 2022DOI:https://doi.org/10.1016/j.biopsych.2022.08.024

      Abstract

      Background

      Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically-informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect-sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligo-, multi-genic copy number variants (CNVs), and polygenic risk scores (PRS) as well as idiopathic psychiatric conditions and traits.

      Methods

      Resting-state functional-MRI data were processed using the same pipeline across nine datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRS, 4 idiopathic psychiatric conditions (1022 individuals with either autism, schizophrenia, bipolar conditions, or ADHD), and 2 traits (31424 unaffected controls).

      Results

      Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2 to 0.65 z-score) followed by psychiatric conditions (0.15 to 0.42), neuroticism and fluid intelligence (0.02 to 0.03), and PRS (0.01 to 0.02). Effect-sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r=0.9, p=5.93e-06). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r=-0.88, p=8.78e-06). PRS had disproportionately low effect sizes on connectivity compared to CNVs conferring similar risk for disease.

      Conclusion

      Heterogeneity and polygenicity impact our ability to detect brain connectivity alterations underlying psychiatric manifestations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee P.H.
        • Feng Y.-C.A.
        • Smoller J.W.
        Pleiotropy and Cross-Disorder Genetics Among Psychiatric Disorders.
        Biol Psychiatry. 2020; https://doi.org/10.1016/j.biopsych.2020.09.026
        • Stefansson H.
        • Meyer-Lindenberg A.
        • Steinberg S.
        • Magnusdottir B.
        • Morgen K.
        • Arnarsdottir S.
        • et al.
        CNVs conferring risk of autism or schizophrenia affect cognition in controls.
        Nature. 2014; 505: 361-366
        • Douard E.
        • Zeribi A.
        • Schramm C.
        • Tamer P.
        • Loum M.A.
        • Nowak S.
        • et al.
        Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome.
        Am J Psychiatry. 2021; 178: 87-98
        • Marshall C.R.
        • Howrigan D.P.
        • Merico D.
        • Thiruvahindrapuram B.
        • Wu W.
        • Greer D.S.
        • et al.
        Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.
        Nat Genet. 2017; 49: 27-35
        • Davies R.W.
        • Fiksinski A.M.
        • Breetvelt E.J.
        • Williams N.M.
        • Hooper S.R.
        • Monfeuga T.
        • et al.
        Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome.
        Nat Med. 2020; 26: 1912-1918
        • Collins R.L.
        • Glessner J.T.
        • Porcu E.
        • Niestroj L.-M.
        • Ulirsch J.
        • Kellaris G.
        • et al.
        January 28): A cross-disorder dosage sensitivity map of the human genome.
        bioRxiv. medRxiv. 2021; https://doi.org/10.1101/2021.01.26.21250098
        • Huguet G.
        • Schramm C.
        • Douard E.
        • Jiang L.
        • Labbe A.
        • Tihy F.
        • et al.
        Measuring and Estimating the Effect Sizes of Copy Number Variants on General Intelligence in Community-Based Samples.
        JAMA Psychiatry. 2018; https://doi.org/10.1001/jamapsychiatry.2018.0039
        • Huguet G.
        • Schramm C.
        • Douard E.
        • Tamer P.
        • Main A.
        • Monin P.
        • et al.
        Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability.
        Mol Psychiatry. 2021; https://doi.org/10.1038/s41380-020-00985-z
        • Zheutlin A.B.
        • Dennis J.
        • Karlsson Linnér R.
        • Moscati A.
        • Restrepo N.
        • Straub P.
        • et al.
        Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems.
        Am J Psychiatry. 2019; 176: 846-855
        • Murray G.K.
        • Lin T.
        • Austin J.
        • McGrath J.J.
        • Hickie I.B.
        • Wray N.R.
        Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review.
        JAMA Psychiatry. 2021; 78: 210-219
        • Richards A.L.
        • Pardiñas A.F.
        • Frizzati A.
        • Tansey K.E.
        • Lynham A.J.
        • Holmans P.
        • et al.
        The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia.
        Schizophr Bull. 2019; 46: 336-344
        • Sydnor V.J.
        • Larsen B.
        • Bassett D.S.
        • Alexander-Bloch A.
        • Fair D.A.
        • Liston C.
        • et al.
        Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology.
        Neuron. 2021; https://doi.org/10.1016/j.neuron.2021.06.016
        • Sniekers S.
        • Stringer S.
        • Watanabe K.
        • Jansen P.R.
        • Coleman J.R.I.
        • Krapohl E.
        • et al.
        Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence.
        Nat Genet. 2017; 49: 1107-1112
        • Moreau C.A.
        • Urchs S.G.W.
        • Kuldeep K.
        • Orban P.
        • Schramm C.
        • Dumas G.
        • et al.
        Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia.
        Nat Commun. 2020; 11: 1-12
        • Grasby K.L.
        • Jahanshad N.
        • Painter J.N.
        • Colodro-Conde L.
        • Bralten J.
        • Hibar D.P.
        • et al.
        The genetic architecture of the human cerebral cortex.
        Science. 2020; 367https://doi.org/10.1126/science.aay6690
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • van den Heuvel M.P.
        • Hulshoff Pol H.E.
        Exploring the brain network: a review on resting-state fMRI functional connectivity.
        Eur Neuropsychopharmacol. 2010; 20: 519-534
        • Holiga Š.
        • Hipp J.F.
        • Chatham C.H.
        • Garces P.
        • Spooren W.
        • D’Ardhuy X.L.
        • et al.
        Patients with autism spectrum disorders display reproducible functional connectivity alterations.
        Sci Transl Med. 2019; 11https://doi.org/10.1126/scitranslmed.aat9223
        • Moreau C.A.
        • Raznahan A.
        • Bellec P.
        • Chakravarty M.
        • Thompson P.M.
        • Jacquemont S.
        Dissecting autism and schizophrenia through neuroimaging genomics.
        Brain. 2021; https://doi.org/10.1093/brain/awab096
        • Bernanke J.
        • Luna A.
        • Chang L.
        • Bruno E.
        • Dworkin J.
        • Posner J.
        Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study.
        The Lancet Psychiatry. 2022; https://doi.org/10.1016/S2215-0366(21)00505-8
        • Bertero A.
        • Liska A.
        • Pagani M.
        • Parolisi R.
        • Masferrer M.E.
        • Gritti M.
        • et al.
        Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in mouse and human.
        Brain. 2018; https://doi.org/10.1093/brain/awy111
        • Cao H.
        • Zhou H.
        • Cannon T.D.
        Functional connectome-wide associations of schizophrenia polygenic risk.
        Mol Psychiatry. 2020; https://doi.org/10.1038/s41380-020-0699-3
        • Alnæs D.
        • Kaufmann T.
        • van der Meer D.
        • Córdova-Palomera A.
        • Rokicki J.
        • Moberget T.
        • et al.
        Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk.
        JAMA Psychiatry. 2019; 76: 739-748
        • Morrow B.E.
        • McDonald-McGinn D.M.
        • Emanuel B.S.
        • Vermeesch J.R.
        • Scambler P.J.
        Molecular genetics of 22q11.2 deletion syndrome.
        Am J Med Genet A. 2018; 176: 2070-2081
        • Sudlow C.
        • Gallacher J.
        • Allen N.
        • Beral V.
        • Burton P.
        • Danesh J.
        • et al.
        UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.
        PLoS Med. 2015; 12e1001779
        • Sanders S.J.
        • He X.
        • Willsey A.J.
        • Ercan-Sencicek A.G.
        • Samocha K.E.
        • Cicek A.E.
        • et al.
        Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci.
        Neuron. 2015; 87: 1215-1233
        • Jønch A.E.
        • Douard E.
        • Moreau C.
        • Van Dijck A.
        • Passeggeri M.
        • Kooy F.
        • et al.
        Estimating the effect size of the 15Q11.2 BP1-BP2 deletion and its contribution to neurodevelopmental symptoms: recommendations for practice.
        J Med Genet. 2019; 56: 701-710
        • Moreno-De-Luca D.
        • Sanders S.J.
        • Willsey A.J.
        • Mulle J.G.
        • Lowe J.K.
        • Geschwind D.H.
        • et al.
        Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts.
        Mol Psychiatry. 2013; 18: 1090-1095
        • Di Martino A.
        • Yan C.-G.
        • Li Q.
        • Denio E.
        • Castellanos F.X.
        • Alaerts K.
        • et al.
        The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.
        Mol Psychiatry. 2014; 19: 659-667
        • Di Martino A.
        • O’Connor D.
        • Chen B.
        • Alaerts K.
        • Anderson J.S.
        • Assaf M.
        • et al.
        Enhancing studies of the connectome in autism using the autism brain imaging data exchange II.
        Sci Data. 2017; 4170010
        • ADHD-200 Consortium
        The ADHD-200 Consortium: A Model to Advance the Translational Potential of Neuroimaging in Clinical Neuroscience.
        Front Syst Neurosci. 2012; 6: 62
        • Poldrack R.A.
        • Congdon E.
        • Triplett W.
        • Gorgolewski K.J.
        • Karlsgodt K.H.
        • Mumford J.A.
        • et al.
        A phenome-wide examination of neural and cognitive function.
        Sci Data. 2016; 3160110
        • Orban P.
        • Desseilles M.
        • Mendrek A.
        • Bourque J.
        • Bellec P.
        • Stip E.
        Altered brain connectivity in patients with schizophrenia is consistent across cognitive contexts.
        J Psychiatry Neurosci. 2017; 42: 17-26
        • Wang K.
        • Li M.
        • Hadley D.
        • Liu R.
        • Glessner J.
        • Grant S.F.A.
        • et al.
        PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
        Genome Res. 2007; 17: 1665-1674
        • Colella S.
        • Yau C.
        • Taylor J.M.
        • Mirza G.
        • Butler H.
        • Clouston P.
        • et al.
        QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data.
        Nucleic Acids Res. 2007; 35: 2013-2025
        • Ge T.
        • Chen C.-Y.
        • Ni Y.
        • Feng Y.-C.A.
        • Smoller J.W.
        Polygenic prediction via Bayesian regression and continuous shrinkage priors.
        Nat Commun. 2019; 10: 1776
      1. Bellec P, Carbonell FM, Perlbarg V, Lepage C, Lyttelton O, Fonov V, et al. (2011): A neuroimaging analysis kit for Matlab and Octave. Proceedings of the 17th International Conference on Functional Mapping of the Human Brain 2735–2746.

        • Urchs S.
        • Armoza J.
        • Benhajali Y.
        • St-Aubin J.
        • Orban P.
        • Bellec P.
        MIST: A multi-resolution parcellation of functional brain networks.
        MNI Open Res. 2017; 1: 3
        • Abraham A.
        • Milham M.P.
        • Di Martino A.
        • Craddock R.C.
        • Samaras D.
        • Thirion B.
        • Varoquaux G.
        Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example.
        Neuroimage. 2017; 147: 736-745
        • Benjamini Y.
        • Hochberg Y.
        Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.
        J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300
        • Li J.
        • Kong R.
        • Liégeois R.
        • Orban C.
        • Tan Y.
        • Sun N.
        • et al.
        Global signal regression strengthens association between resting-state functional connectivity and behavior.
        Neuroimage. 2019; 196: 126-141
        • Yan C.-G.
        • Craddock R.C.
        • Zuo X.-N.
        • Zang Y.-F.
        • Milham M.P.
        Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes.
        Neuroimage. 2013; 80: 246-262
        • Varoquaux G.
        Cross-validation failure: Small sample sizes lead to large error bars.
        Neuroimage. 2018; 180: 68-77
        • Bellec P.
        • Benhajali Y.
        • Carbonell F.
        • Dansereau C.
        • Albouy G.
        • Pelland M.
        • et al.
        Impact of the resolution of brain parcels on connectome-wide association studies in fMRI.
        Neuroimage. 2015; https://doi.org/10.1016/j.neuroimage.2015.07.071
        • Phipson B.
        • Smyth G.K.
        Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn.
        Stat Appl Genet Mol Biol. 2010; 9 (Article39)
      2. Efron B, Tibshirani RJ (1994): An Introduction to the Bootstrap. CRC Press. Retrieved from https://play.google.com/store/books/details?id=gLlpIUxRntoC

        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • Cummings B.B.
        • Alföldi J.
        • Wang Q.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581: 434-443
        • Huguet G.
        • Schramm C.
        • Douard E.
        • Tamer P.
        • Main A.
        • Monin P.
        • et al.
        Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability.
        Mol Psychiatry. 2021; https://doi.org/10.1038/s41380-020-00985-z
        • Wainberg M.
        • Merico D.
        • Huguet G.
        • Zarrei M.
        • Jacquemont S.
        • Scherer S.W.
        • Tripathy S.J.
        Deletion of Loss-of-Function-Intolerant Genes and Risk of 5 Psychiatric Disorders.
        JAMA Psychiatry. 2021; https://doi.org/10.1001/jamapsychiatry.2021.3211
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Trubetskoy V.
        • Pardiñas A.F.
        • Qi T.
        • Panagiotaropoulou G.
        • Awasthi S.
        • Bigdeli T.B.
        • et al.
        Mapping genomic loci implicates genes and synaptic biology in schizophrenia.
        Nature. 2022; : 1-13
      3. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address: [email protected], Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium (2018): Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell 173: 1705–1715.e16.

        • Kirov G.
        • Rees E.
        • Walters J.T.R.
        • Escott-Price V.
        • Georgieva L.
        • Richards A.L.
        • et al.
        The penetrance of copy number variations for schizophrenia and developmental delay.
        Biol Psychiatry. 2014; 75: 378-385
        • Assem M.
        • Glasser M.F.
        • Van Essen D.C.
        • Duncan J.
        A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex.
        Cereb Cortex. 2020; 30: 4361-4380
        • Moreau C.A.
        • Ching C.R.
        • Kumar K.
        • Jacquemont S.
        • Bearden C.E.
        Structural and functional brain alterations revealed by neuroimaging in CNV carriers.
        Curr Opin Genet Dev. 2021; 68: 88-98
        • Modenato C.
        • Kumar K.
        • Moreau C.
        • Martin-Brevet S.
        • Huguet G.
        • Schramm C.
        • et al.
        Effects of eight neuropsychiatric copy number variants on human brain structure.
        Transl Psychiatry. 2021; 11: 399
        • Sun D.
        • Ching C.R.K.
        • Lin A.
        • Forsyth J.K.
        • Kushan L.
        • Vajdi A.
        • et al.
        Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size.
        Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0078-5
        • van Rooij D.
        • Anagnostou E.
        • Arango C.
        • Auzias G.
        • Behrmann M.
        • Busatto G.F.
        • et al.
        Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.
        Am J Psychiatry. 2018; 175: 359-369
        • van Erp T.G.M.
        • Walton E.
        • Hibar D.P.
        • Schmaal L.
        • Jiang W.
        • Glahn D.C.
        • et al.
        Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium.
        Biol Psychiatry. 2018; 84: 644-654
        • Zhu X.
        • Ward J.
        • Cullen B.
        • Lyall D.M.
        • Strawbridge R.J.
        • Smith D.J.
        • Lyall L.M.
        Polygenic Risk for Schizophrenia, Brain Structure, and Environmental Risk in UK Biobank.
        Schizophr Bull Open. 2021; 2https://doi.org/10.1093/schizbullopen/sgab042
        • Antonarakis S.E.
        • Skotko B.G.
        • Rafii M.S.
        • Strydom A.
        • Pape S.E.
        • Bianchi D.W.
        • et al.
        Down syndrome.
        Nat Rev Dis Primers. 2020; 6: 9
        • Capone G.T.
        • Grados M.A.
        • Kaufmann W.E.
        • Bernad-Ripoll S.
        • Jewell A.
        Down syndrome and comorbid autism-spectrum disorder: characterization using the aberrant behavior checklist.
        Am J Med Genet A. 2005; 134: 373-380
        • Modenato C.
        • Martin-Brevet S.
        • Moreau C.A.
        • Rodriguez-Herreros B.
        • Kumar K.
        • Draganski B.
        • et al.
        Lessons learnt from neuroimaging studies of Copy Number Variants, a systematic review.
        Biol Psychiatry. 2021; https://doi.org/10.1016/j.biopsych.2021.05.028
        • Bletsch A.
        • Mann C.
        • Andrews D.S.
        • Daly E.
        • Tan G.M.Y.
        • Murphy D.G.M.
        • Ecker C.
        Down syndrome is accompanied by significantly reduced cortical grey-white matter tissue contrast.
        Hum Brain Mapp. 2018; 39: 4043-4054
      4. Moreau CA, Kumar K, Harvey A, Huguet G, Urchs S, Douard EA, et al. (2021, May 25): Atlas of functional connectivity relationships across rare and common genetic variants, traits, and psychiatric conditions. medRxiv. https://doi.org/10.1101/2021.05.21.21257604

        • Kendall K.M.
        • Rees E.
        • Escott-Price V.
        • Einon M.
        • Thomas R.
        • Hewitt J.
        • et al.
        Cognitive Performance Among Carriers of Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects.
        Biol Psychiatry. 2017; 82: 103-110
        • Malhotra D.
        • Sebat J.
        CNVs: harbingers of a rare variant revolution in psychiatric genetics.
        Cell. 2012; 148: 1223-1241
        • Rees E.
        • Kirov G.
        • Sanders A.
        • Walters J.T.R.
        • Chambert K.D.
        • Shi J.
        • et al.
        Evidence that duplications of 22q11.2 protect against schizophrenia.
        Mol Psychiatry. 2014; 19: 37-40
        • Bernier R.
        • Steinman K.J.
        • Reilly B.
        • Wallace A.S.
        • Sherr E.H.
        • Pojman N.
        • et al.
        Clinical phenotype of the recurrent 1q21.1 copy-number variant.
        Genet Med. 2016; 18: 341-349
        • D’Angelo D.
        • Lebon S.
        • Chen Q.
        • Martin-Brevet S.
        • Snyder L.G.
        • Hippolyte L.
        • et al.
        Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities.
        JAMA Psychiatry. 2016; 73: 20-30
        • Rees E.
        • Kendall K.
        • Pardiñas A.F.
        • Legge S.E.
        • Pocklington A.
        • Escott-Price V.
        • et al.
        Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia.
        JAMA Psychiatry. 2016; 73: 963-969