Advertisement

Fragile X syndrome patient-derived neurons developing in the mouse brain show FMR1 -dependent phenotypes

      Abstract

      BACKGROUND

      Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors and seizures. Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons.

      METHODS

      To mimick human neuron development in vivo, we co-injected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice.

      RESULTS

      The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons.

      CONCLUSIONS

      This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3D context.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dahlhaus R.
        Of Men and Mice: Modeling the Fragile X Syndrome.
        Front Mol Neurosci. 2018; 11: 41
        • Hagerman R.J.
        • Berry-Kravis E.
        • Hazlett H.C.
        • Bailey Jr., D.B.
        • Moine H.
        • Kooy R.F.
        • et al.
        Fragile X syndrome.
        Nat Rev Dis Primers. 2017; 317065
        • Telias M.
        • Segal M.
        • Ben-Yosef D.
        Neural differentiation of Fragile X human Embryonic Stem Cells reveals abnormal patterns of development despite successful neurogenesis.
        Dev Biol. 2013; 374: 32-45
        • Doers M.E.
        • Musser M.T.
        • Nichol R.
        • Berndt E.R.
        • Baker M.
        • Gomez T.M.
        • et al.
        iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth.
        Stem Cells Dev. 2014; 23: 1777-1787
        • Halevy T.
        • Czech C.
        • Benvenisty N.
        Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells.
        Stem Cell Reports. 2015; 4: 37-46
        • Sheridan S.D.
        • Theriault K.M.
        • Reis S.A.
        • Zhou F.
        • Madison J.M.
        • Daheron L.
        • et al.
        Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.
        PLoS One. 2011; 6e26203
        • Utami K.H.
        • Skotte N.H.
        • Colaco A.R.
        • Yusof N.
        • Sim B.
        • Yeo X.Y.
        • et al.
        Integrative Analysis Identifies Key Molecular Signatures Underlying Neurodevelopmental Deficits in Fragile X Syndrome.
        Biol Psychiatry. 2020; 88: 500-511
        • Liu X.S.
        • Wu H.
        • Krzisch M.
        • Wu X.
        • Graef J.
        • Muffat J.
        • et al.
        Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene.
        Cell. 2018; 172: 979-992 e976
        • Graef J.D.
        • Wu H.
        • Ng C.
        • Sun C.
        • Villegas V.
        • Qadir D.
        • et al.
        Partial FMRP expression is sufficient to normalize neuronal hyperactivity in Fragile X neurons.
        Eur J Neurosci. 2020; 51: 2143-2157
        • Brighi C.
        • Salaris F.
        • Soloperto A.
        • Cordella F.
        • Ghirga S.
        • de Turris V.
        • et al.
        Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs.
        Cell Death Dis. 2021; 12: 498
        • Bhaduri A.
        • Andrews M.G.
        • Mancia Leon W.
        • Jung D.
        • Shin D.
        • Allen D.
        • et al.
        Cell stress in cortical organoids impairs molecular subtype specification.
        Nature. 2020; 578: 142-148
        • Chen C.
        • Kim W.Y.
        • Jiang P.
        Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells.
        JCI Insight. 2016; 1e88632
        • Reubinoff B.E.
        • Itsykson P.
        • Turetsky T.
        • Pera M.F.
        • Reinhartz E.
        • Itzik A.
        • et al.
        Neural progenitors from human embryonic stem cells.
        Nat Biotechnol. 2001; 19: 1134-1140
        • Zhou F.W.
        • Fortin J.M.
        • Chen H.X.
        • Martinez-Diaz H.
        • Chang L.J.
        • Reynolds B.A.
        • et al.
        Functional integration of human neural precursor cells in mouse cortex.
        PLoS One. 2015; 10e0120281
        • Stuart T.
        • Butler A.
        • Hoffman P.
        • Hafemeister C.
        • Papalexi E.
        • Mauck 3rd, W.M.
        • et al.
        Comprehensive Integration of Single-Cell Data.
        Cell. 2019; 177: 1888-1902 e1821
        • Polioudakis D.
        • de la Torre-Ubieta L.
        • Langerman J.
        • Elkins A.G.
        • Shi X.
        • Stein J.L.
        • et al.
        A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation.
        Neuron. 2019; 103: 785-801 e788
        • McCarthy D.J.
        • Chen Y.
        • Smyth G.K.
        Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.
        Nucleic Acids Res. 2012; 40: 4288-4297
        • Chen J.
        • Xu H.
        • Aronow B.J.
        • Jegga A.G.
        Improved human disease candidate gene prioritization using mouse phenotype.
        BMC Bioinformatics. 2007; 8: 392
        • Kaimal V.
        • Bardes E.E.
        • Tabar S.C.
        • Jegga A.G.
        • Aronow B.J.
        ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems.
        Nucleic Acids Res. 2010; 38: W96-102
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Park C.Y.
        • Halevy T.
        • Lee D.R.
        • Sung J.J.
        • Lee J.S.
        • Yanuka O.
        • et al.
        Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons.
        Cell Rep. 2015; 13: 234-241
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • et al.
        Fiji: an open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682
        • Swanger S.A.
        • Yao X.
        • Gross C.
        • Bassell G.J.
        Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model.
        Mol Brain. 2011; 4: 38
        • Xie N.
        • Gong H.
        • Suhl J.A.
        • Chopra P.
        • Wang T.
        • Warren S.T.
        Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome.
        PLoS One. 2016; 11e0165499
        • Liu X.S.
        • Wu H.
        • Ji X.
        • Stelzer Y.
        • Wu X.
        • Czauderna S.
        • et al.
        Editing DNA Methylation in the Mammalian Genome.
        Cell. 2016; 167: 233-247 e217
        • Xu R.
        • Li X.
        • Boreland A.J.
        • Posyton A.
        • Kwan K.
        • Hart R.P.
        • et al.
        Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain.
        Nat Commun. 2020; 11: 1577
        • Pepper R.E.
        • Pitman K.A.
        • Cullen C.L.
        • Young K.M.
        How Do Cells of the Oligodendrocyte Lineage Affect Neuronal Circuits to Influence Motor Function, Memory and Mood?.
        Front Cell Neurosci. 2018; 12: 399
      1. Kuhn S, Gritti L, Crooks D, Dombrowski Y (2019): Oligodendrocytes in Development, Myelin Generation and Beyond. Cells. 8.

        • Boulanger J.J.
        • Messier C.
        Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain.
        Front Neurosci. 2017; 11: 143
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • Mukherjee S.
        • Ebert B.L.
        • Gillette M.A.
        • et al.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci U S A. 2005; 102: 15545-15550
        • Jeon S.J.
        • Ryu J.H.
        • Bahn G.H.
        Altered Translational Control of Fragile X Mental Retardation Protein on Myelin Proteins in Neuropsychiatric Disorders.
        Biomol Ther (Seoul). 2017; 25: 231-238
        • Zhao C.
        • Deng W.
        • Gage F.H.
        Mechanisms and functional implications of adult neurogenesis.
        Cell. 2008; 132: 645-660
        • Clark P.J.
        • Bhattacharya T.K.
        • Miller D.S.
        • Rhodes J.S.
        Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons.
        Neuroscience. 2011; 184: 16-27
      2. Allen Brain Atlas: expression of ARC in the adult mouse brain.

      3. Allen Brain Atlas: expression of EGR1 in the adult mouse brain.

      4. Allen Brain Atlas: expression of FOS in the adult mouse brain.

        • Rochefort N.L.
        • Konnerth A.
        Dendritic spines: from structure to in vivo function.
        EMBO Rep. 2012; 13: 699-708
      5. D. Muller IN (2013): Chapter 6 - Dendritic Spines. Neural Circuit Development and Function in the Brain.

        • Citri A.
        • Malenka R.C.
        Synaptic plasticity: multiple forms, functions, and mechanisms.
        Neuropsychopharmacology. 2008; 33: 18-41
        • Crane A.T.
        • Voth J.P.
        • Shen F.X.
        • Low W.C.
        Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal?.
        Stem Cells. 2019; 37: 444-452
        • Neuhofer D.
        • Henstridge C.M.
        • Dudok B.
        • Sepers M.
        • Lassalle O.
        • Katona I.
        • et al.
        Functional and structural deficits at accumbens synapses in a mouse model of Fragile X.
        Front Cell Neurosci. 2015; 9: 100
        • Irwin S.A.
        • Patel B.
        • Idupulapati M.
        • Harris J.B.
        • Crisostomo R.A.
        • Larsen B.P.
        • et al.
        Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination.
        Am J Med Genet. 2001; 98: 161-167
        • Hodges J.L.
        • Yu X.
        • Gilmore A.
        • Bennett H.
        • Tjia M.
        • Perna J.F.
        • et al.
        Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome.
        Biol Psychiatry. 2017; 82: 139-149
        • Linaro D.
        • Vermaercke B.
        • Iwata R.
        • Ramaswamy A.
        • Libe-Philippot B.
        • Boubakar L.
        • et al.
        Xenotransplanted Human Cortical Neurons Reveal Species-Specific Development and Functional Integration into Mouse Visual Circuits.
        Neuron. 2019; 104: 972-986 e976
        • Xu R.
        • Brawner A.T.
        • Li S.
        • Liu J.J.
        • Kim H.
        • Xue H.
        • et al.
        OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome.
        Cell Stem Cell. 2019; 24: 908-926 e908
        • Espuny-Camacho I.
        • Michelsen K.A.
        • Gall D.
        • Linaro D.
        • Hasche A.
        • Bonnefont J.
        • et al.
        Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo.
        Neuron. 2013; 77: 440-456