Advertisement

Tracking Development of Connectivity in the Human Brain: Axons and Dendrites

  • Tomáš Paus
    Correspondence
    Address correspondence to Tomas Paus, M.D., Ph.D.
    Affiliations
    Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montréal, Montreal, Quebec, Canada
    Search for articles by this author

      Abstract

      The neuron doctrine laid the foundation for our current thinking about the structural and functional organization of the human brain. With the basic units of the nervous system—neurons—being physically separate, their connectivity relies on the conduction of action potentials in axons and their transmission across the synaptic cleft to the dendrites of other neurons. This study reviews available ex vivo data about the cellular composition of the human cerebral cortex, focusing on axons and dendrites, to conceptualize biological sources of signals detected in vivo with magnetic resonance imaging. To bridge the gap between ex vivo and in vivo observations, I then explain the basic principles of virtual histology, an approach that integrates spatially cell- or process-specific transcriptomic data with magnetic resonance signals to facilitate their neurobiological interpretation. Finally, I provide an overview of the initial insights gained in this manner in studies of brain development and maturation, in both health and disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jones E.G.
        The neuron doctrine 1891.
        J Hist Neurosci. 1994; 3: 3-20
        • Jones E.G.
        Golgi, Cajal and the neuron doctrine.
        J Hist Neurosci. 1999; 8: 170-178
        • Shapson-Coe A.
        • Januszewski M.
        • Berger D.R.
        • Pope A.
        • Wu Y.
        • Blakely T.
        • et al.
        A connectomic study of a petascale fragment of human cerebral cortex.
        bioRxiv. 2021; https://doi.org/10.1101/2021.05.29.446289
        • Paus T.
        Growth of white matter in the adolescent brain: Myelin or axon?.
        Brain Cogn. 2010; 72: 26-35
        • Rushton W.A.
        A theory of the effects of fibre size in medullated nerve.
        J Physiol. 1951; 115: 101-122
        • Paus T.
        • Toro R.
        Could sex differences in white matter be explained by g ratio?.
        Front Neuroanat. 2009; 3: 14
        • Purves D.
        • Fitzpatrick D.
        • Katz L.C.
        • LaMantia A.S.
        • McNamara J.O.
        • Williams S.M.
        • et al.
        Neuroscience.
        2nd ed. Sinauer Associates, Sunderland, Massachusetts2001
        • Yamashita N.
        • Aoki R.
        • Chen S.
        • Jitsuki-Takahashi A.
        • Ohura S.
        • Kamiya H.
        • et al.
        Voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic development.
        Brain Res. 2016; 1631: 127-136
        • Otor Y.
        • Achvat S.
        • Cermak N.
        • Benisty H.
        • Abboud M.
        • Barak O.
        • et al.
        Dynamic compartmental computations in tuft dendrites of layer 5 neurons during motor behavior.
        Science. 2022; 376: 267-275
        • Pakkenberg B.
        • Gundersen H.J.
        Neocortical neuron number in humans: Effect of sex and age.
        J Comp Neurol. 1997; 384: 312-320
        • Donahue C.J.
        • Glasser M.F.
        • Preuss T.M.
        • Rilling J.K.
        • Van Essen D.C.
        Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates.
        Proc Natl Acad Sci U S A. 2018; 115: E5183-E5192
        • Druga R.
        Neocortical inhibitory system.
        Folia biol. 2009; 55: 201-217
        • Sloper J.J.
        • Hiorns R.W.
        • Powell T.P.
        A qualitative and quantitative electron microscopic study of the neurons in the primate motor and somatic sensory cortices.
        Philos Trans R Soc Lond B Biol Sci. 1979; 285: 141-171
        • Pelvig D.P.
        • Pakkenberg H.
        • Stark A.K.
        • Pakkenberg B.
        Neocortical glial cell numbers in human brains.
        Neurobiol Aging. 2008; 29: 1754-1762
        • Azevedo F.A.
        • Carvalho L.R.
        • Grinberg L.T.
        • Farfel J.M.
        • Ferretti R.E.
        • Leite R.E.
        • et al.
        Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain.
        J Comp Neurol. 2009; 513: 532-541
        • Marner L.
        • Pakkenberg B.
        Total length of nerve fibers in prefrontal and global white matter of chronic schizophrenics.
        J Psychiatr Res. 2003; 37: 539-547
        • Schüz A.
        • Braitenberg V.
        The human cortical white matter: Quantitative aspects of corticocortical long-range connectivity.
        1st ed. Taylor & Francis, London2002
        • Amunts K.
        • Zilles K.
        Architectonic mapping of the human brain beyond Brodmann.
        Neuron. 2015; 88: 1086-1107
        • Braitenberg V.
        Brain size and number of neurons: An exercise in synthetic neuroanatomy.
        J Comput Neurosci. 2001; 10: 71-77
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • Parker N.
        • Patel Y.
        • Jackowski A.P.
        • Pan P.M.
        • Salum G.A.
        • Pausova Z.
        • et al.
        Assessment of neurobiological mechanisms of cortical thinning during childhood and adolescence and their implications for psychiatric disorders [published correction appears in JAMA Psychiatry. 2020;77:1195].
        JAMA Psychiatry. 2020; 77: 1127-1136
        • Liao Z.
        • Patel Y.
        • Khairullah A.
        • Parker N.
        • Paus T.
        Pubertal testosterone and the structure of the cerebral cortex in young men [published correction appears in Cereb Cortex. 2021;31:3164].
        Cereb Cortex. 2021; 31: 2812-2821
        • Tocchio S.
        • Kline-Fath B.
        • Kanal E.
        • Schmithorst V.J.
        • Panigrahy A.
        MRI evaluation and safety in the developing brain.
        Semin Perinatol. 2015; 39: 73-104
        • Paus T.
        Imaging microstructure in the living human brain: A viewpoint.
        Neuroimage. 2018; 182: 3-7
        • Fornito A.
        • Arnatkevičiūtė A.
        • Fulcher B.D.
        Bridging the gap between connectome and transcriptome.
        Trends Cogn Sci. 2019; 23: 34-50
        • French L.
        • Paus T.
        A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas.
        Front Neurosci. 2015; 9: 323
        • Hawrylycz M.J.
        • Lein E.S.
        • Guillozet-Bongaarts A.L.
        • Shen E.H.
        • Ng L.
        • Miller J.A.
        • et al.
        An anatomically comprehensive atlas of the adult human brain transcriptome.
        Nature. 2012; 489: 391-399
        • Zeisel A.
        • Muñoz-Manchado A.B.
        • Codeluppi S.
        • Lönnerberg P.
        • La Manno G.
        • Juréus A.
        • et al.
        Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.
        Science. 2015; 347: 1138-1142
        • Skene N.G.
        • Bryois J.
        • Bakken T.E.
        • Breen G.
        • Crowley J.J.
        • Gaspar H.A.
        • et al.
        Genetic identification of brain cell types underlying schizophrenia.
        Nat Genet. 2018; 50: 825-833
        • Patel Y.
        • Shin J.
        • Drakesmith M.
        • Evans J.
        • Pausova Z.
        • Paus T.
        Virtual histology of multi-modal magnetic resonance imaging of cerebral cortex in young men.
        Neuroimage. 2020; 218116968
        • Aboitiz F.
        • Scheibel A.B.
        • Fisher R.S.
        • Zaidel E.
        Fiber composition of the human corpus callosum.
        Brain Res. 1992; 598: 143-153
        • Björnholm L.
        • Nikkinen J.
        • Kiviniemi V.
        • Nordström T.
        • Niemelä S.
        • Drakesmith M.
        • et al.
        Structural properties of the human corpus callosum: Multimodal assessment and sex differences.
        Neuroimage. 2017; 152: 108-118
        • Paus T.
        Development and maturation of the human brain, from infancy to adolescence.
        in: Houde O.B. Borst G. The Cambridge Handbook of Cognitive Development. Cambridge University Press & Assessment, Cambridge UK2022: 85-104
        • Gilmore J.H.
        • Knickmeyer R.C.
        • Gao W.
        Imaging structural and functional brain development in early childhood.
        Nat Rev Neurosci. 2018; 19: 123-137
        • Lebel C.
        • Deoni S.
        The development of brain white matter microstructure.
        Neuroimage. 2018; 182: 207-218
        • Patel Y.
        • Shin J.
        • Abé C.
        • Agartz I.
        • Alloza C.
        • Alnæs D.
        • et al.
        Virtual ontogeny of cortical growth preceding mental illness.
        Biol Psychiatry. 2022; 92: 299-313
        • Murray R.M.
        • Lewis S.W.
        • Reveley A.M.
        Towards an aetiological classification of schizophrenia.
        Lancet. 1985; 1: 1023-1026
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Verdoux H.
        Perinatal risk factors for schizophrenia: How specific are they?.
        Curr Psychiatry Rep. 2004; 6: 162-167
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: A longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • Ducharme S.
        • Albaugh M.D.
        • Nguyen T.V.
        • Hudziak J.J.
        • Mateos-Pérez J.M.
        • Labbe A.
        • et al.
        Trajectories of cortical thickness maturation in normal brain development—The importance of quality control procedures.
        Neuroimage. 2016; 125: 267-279
        • Walhovd K.B.
        • Fjell A.M.
        • Giedd J.
        • Dale A.M.
        • Brown T.T.
        Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development.
        Cereb Cortex. 2017; 27: 1472-1481
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Whitaker K.J.
        • Vendetti M.S.
        • Wendelken C.
        • Bunge S.A.
        Neuroscientific insights into the development of analogical reasoning.
        Dev Sci. 2018; 21e12531
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Shin J.
        • French L.
        • Xu T.
        • Leonard G.
        • Perron M.
        • Pike G.B.
        • et al.
        Cell-specific gene-expression profiles and cortical thickness in the human brain.
        Cereb Cortex. 2018; 28: 3267-3277
        • Vidal-Pineiro D.
        • Parker N.
        • Shin J.
        • French L.
        • Grydeland H.
        • Jackowski A.P.
        • et al.
        Cellular correlates of cortical thinning throughout the lifespan.
        Sci Rep. 2020; 1021803
      1. Writing Committee for the Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Bipolar Disorder (2021): Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders (2021) [published correction appears in JAMA Psychiatry. 2021;78:112]. JAMA Psychiatry 78:47-63.

        • Wong A.P.
        • French L.
        • Leonard G.
        • Perron M.
        • Pike G.B.
        • Richer L.
        • et al.
        Inter-regional variations in gene expression and age-related cortical thinning in the adolescent brain.
        Cereb Cortex. 2018; 28: 1272-1281
        • Parker N.
        • Wong A.P.
        • Leonard G.
        • Perron M.
        • Pike B.
        • Richer L.
        • et al.
        Income inequality, gene expression, and brain maturation during adolescence.
        Sci Rep. 2017; 7: 7397
        • French L.
        • Gray C.
        • Leonard G.
        • Perron M.
        • Pike G.B.
        • Richer L.
        • et al.
        Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence.
        JAMA Psychiatry. 2015; 72: 1002-1011
      2. Patel Y, Shin J, Gowland PA, Pausova Z, Paus T, IMAGEN consortium (2019): Maturation of the human cerebral cortex during adolescence: Myelin or dendritic arbor? Cereb Cortex 29:3351–3362.

        • Whitaker K.J.
        • Vértes P.E.
        • Romero-Garcia R.
        • Váša F.
        • Moutoussis M.
        • Prabhu G.
        • et al.
        Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome.
        Proc Natl Acad Sci U S A. 2016; 113: 9105-9110
        • Arnatkeviciute A.
        • Fulcher B.D.
        • Oldham S.
        • Tiego J.
        • Paquola C.
        • Gerring Z.
        • et al.
        Genetic influences on hub connectivity of the human connectome.
        Nat Commun. 2021; 12: 4237
        • Hansen J.Y.
        • Markello R.D.
        • Vogel J.W.
        • Seidlitz J.
        • Bzdok D.
        • Misic B.
        Mapping gene transcription and neurocognition across human neocortex.
        Nat Hum Behav. 2021; 5: 1240-1250
        • Garcia M.L.
        • Lobsiger C.S.
        • Shah S.B.
        • Deerinck T.J.
        • Crum J.
        • Young D.
        • et al.
        NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth.
        J Cell Biol. 2003; 163: 1011-1020
        • Marani E.
        • Lakke E.A.
        Peripheral nervous system topics.
        in: Mai J.K. Paxinos G. The Human Nervous System. 3rd ed. Elsevier, Amsterdam2012
        • Davies C.
        • Segre G.
        • Estradé A.
        • Radua J.
        • De Micheli A.
        • Provenzani U.
        • et al.
        Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis.
        Lancet Psychiatry. 2020; 7: 399-410