Diurnal alterations in gene expression across striatal subregions in psychosis



      Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals suffering with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances to sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis.


      Here, we perform RNA-sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (NAc, caudate, and putamen) in subjects with psychosis (n=36) relative to unaffected comparison subjects (n=36).


      Across regions, we find differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens (NAc), mitochondrial-related transcripts have decreased expression in psychosis subjects, but only in those who died at night. Additionally, we find a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the NAc of psychosis subjects. Between region comparisons indicate that rhythmicity in the caudate and putamen is far more similar in subjects with psychosis than in matched comparison subjects.


      Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • McCutcheon R.A.
        • Abi-Dargham A.
        • Howes O.D.
        Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms.
        Trends Neurosci. 2019; 42: 205-220
        • Horacek J.
        • Bubenikova-Valesova V.
        • Kopecek M.
        • Palenicek T.
        • Dockery C.
        • Mohr P.
        • et al.
        Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia.
        CNS Drugs. 2006; 20: 389-409
        • Kaar S.J.
        • Natesan S.
        • McCutcheon R.
        • Howes O.D.
        Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology.
        Neuropharmacology. 2020; 172107704
        • Agid O.
        • Mamo D.
        • Ginovart N.
        • Vitcu I.
        • Wilson A.A.
        • Zipursky R.B.
        • et al.
        Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response--a double-blind PET study in schizophrenia.
        Neuropsychopharmacology. 2007; 32: 1209-1215
        • Haber S.N.
        • Knutson B.
        The reward circuit: linking primate anatomy and human imaging.
        Neuropsychopharmacology. 2010; 35: 4-26
        • Choi E.Y.
        • Tanimura Y.
        • Vage P.R.
        • Yates E.H.
        • Haber S.N.
        Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum.
        Neuroimage. 2017; 146: 821-832
        • Haber S.N.
        Corticostriatal circuitry.
        Dialogues Clin Neurosci. 2016; 18: 7-21
        • Kegeles L.S.
        • Abi-Dargham A.
        • Frankle W.G.
        • Gil R.
        • Cooper T.B.
        • Slifstein M.
        • et al.
        Increased synaptic dopamine function in associative regions of the striatum in schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 231-239
        • Howes O.D.
        • Montgomery A.J.
        • Asselin M.C.
        • Murray R.M.
        • Valli I.
        • Tabraham P.
        • et al.
        Elevated striatal dopamine function linked to prodromal signs of schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 13-20
        • McCutcheon R.
        • Beck K.
        • Jauhar S.
        • Howes O.D.
        Defining the Locus of Dopaminergic Dysfunction in Schizophrenia: A Meta-analysis and Test of the Mesolimbic Hypothesis.
        Schizophr Bull. 2018; 44: 1301-1311
        • Duggirala S.X.
        • Schwartze M.
        • Pinheiro A.P.
        • Kotz S.A.
        Interaction of emotion and cognitive control along the psychosis continuum: A critical review.
        Int J Psychophysiol. 2020; 147: 156-175
        • Der-Avakian A.
        • Markou A.
        The neurobiology of anhedonia and other reward-related deficits.
        Trends Neurosci. 2012; 35: 68-77
        • Castaneda T.R.
        • de Prado B.M.
        • Prieto D.
        • Mora F.
        Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light.
        J Pineal Res. 2004; 36: 177-185
        • Ferris M.J.
        • Espana R.A.
        • Locke J.L.
        • Konstantopoulos J.K.
        • Rose J.H.
        • Chen R.
        • et al.
        Dopamine transporters govern diurnal variation in extracellular dopamine tone.
        Proc Natl Acad Sci U S A. 2014; 111: E2751-2759
        • Ozburn A.R.
        • Falcon E.
        • Twaddle A.
        • Nugent A.L.
        • Gillman A.G.
        • Spencer S.M.
        • et al.
        Direct Regulation of Diurnal Drd3 Expression and Cocaine Reward by NPAS2.
        Biol Psychiatry. 2014;
        • Parekh P.K.
        • Becker-Krail D.
        • Sundaravelu P.
        • Ishigaki S.
        • Okado H.
        • Sobue G.
        • et al.
        Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockDelta19 Model of Bipolar Mania.
        Biol Psychiatry. 2017;
        • Imbesi M.
        • Yildiz S.
        • Dirim Arslan A.
        • Sharma R.
        • Manev H.
        • Uz T.
        Dopamine receptor-mediated regulation of neuronal "clock" gene expression.
        Neuroscience. 2009; 158: 537-544
        • Hood S.
        • Cassidy P.
        • Cossette M.P.
        • Weigl Y.
        • Verwey M.
        • Robinson B.
        • et al.
        Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors.
        J Neurosci. 2010; 30: 14046-14058
        • Ashton A.
        • Jagannath A.
        Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling.
        Front Neurosci. 2020; 14: 636
        • Logan R.W.
        • McClung C.A.
        Rhythms of life: circadian disruption and brain disorders across the lifespan.
        Nat Rev Neurosci. 2019; 20: 49-65
        • Welz P.S.
        • Benitah S.A.
        Molecular Connections Between Circadian Clocks and Aging.
        J Mol Biol. 2020; 432: 3661-3679
        • Mure L.S.
        • Le H.D.
        • Benegiamo G.
        • Chang M.W.
        • Rios L.
        • Jillani N.
        • et al.
        Diurnal transcriptome atlas of a primate across major neural and peripheral tissues.
        Science. 2018; 359
        • Ketchesin K.D.
        • Zong W.
        • Hildebrand M.A.
        • Seney M.L.
        • Cahill K.M.
        • Scott M.R.
        • et al.
        Diurnal rhythms across the human dorsal and ventral striatum.
        Proc Natl Acad Sci U S A. 2021; 118
        • Markota M.
        • Coombes B.J.
        • Larrabee B.R.
        • McElroy S.L.
        • Bond D.J.
        • Veldic M.
        • et al.
        Association of schizophrenia polygenic risk score with manic and depressive psychosis in bipolar disorder.
        Transl Psychiatry. 2018; 8: 188
        • Enwright J.F.
        • Lewis D.A.
        Similarities in Cortical Transcriptome Alterations Between Schizophrenia and Bipolar Disorder Are Related to the Presence of Psychosis.
        Schizophr Bull. 2021;
      1. Bipolar D, Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address drve, Bipolar D, Schizophrenia Working Group of the Psychiatric Genomics C (2018): Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell. 173:1705-1715 e1716.

        • Seney M.L.
        • Cahill K.
        • Enwright 3rd, J.F.
        • Logan R.W.
        • Huo Z.
        • Zong W.
        • et al.
        Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia.
        Nat Commun. 2019; 10: 3355
        • Seney M.L.
        • Kim S.M.
        • Glausier J.R.
        • Hildebrand M.A.
        • Xue X.
        • Zong W.
        • et al.
        Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder.
        Biol Psychiatry. 2021;
        • Chen C.Y.
        • Logan R.W.
        • Ma T.
        • Lewis D.A.
        • Tseng G.C.
        • Sibille E.
        • et al.
        Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.
        Proc Natl Acad Sci U S A. 2015;
        • Zhou Y.
        • Zhou B.
        • Pache L.
        • Chang M.
        • Khodabakhshi A.H.
        • Tanaseichuk O.
        • et al.
        Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
        Nat Commun. 2019; 10: 1523
        • Shannon P.
        • Markiel A.
        • Ozier O.
        • Baliga N.S.
        • Wang J.T.
        • Ramage D.
        • et al.
        Cytoscape: a software environment for integrated models of biomolecular interaction networks.
        Genome Res. 2003; 13: 2498-2504
        • Plaisier S.B.
        • Taschereau R.
        • Wong J.A.
        • Graeber T.G.
        Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures.
        Nucleic Acids Res. 2010; 38: e169
        • Cahill K.M.
        • Huo Z.
        • Tseng G.C.
        • Logan R.W.
        • Seney M.L.
        Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach.
        Sci Rep. 2018; 8: 9588
        • Li J.Z.
        • Bunney B.G.
        • Meng F.
        • Hagenauer M.H.
        • Walsh D.M.
        • Vawter M.P.
        • et al.
        Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
        Proc Natl Acad Sci U S A. 2013; 110: 9950-9955
        • Logan R.W.
        • Xue X.
        • Ketchesin K.D.
        • Hoffman G.
        • Roussos P.
        • Tseng G.
        • et al.
        Sex Differences in Molecular Rhythms in the Human Cortex.
        Biol Psychiatry. 2021;
        • Schizophrenia Working Group of the Psychiatric Genomics C
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Lanz T.A.
        • Reinhart V.
        • Sheehan M.J.
        • Rizzo S.J.S.
        • Bove S.E.
        • James L.C.
        • et al.
        Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder.
        Transl Psychiatry. 2019; 9: 151
        • Daskalakis N.P.
        • Binder E.B.
        Schizophrenia in the spectrum of gene-stress interactions: the FKBP5 example.
        Schizophr Bull. 2015; 41: 323-329
        • Matosin N.
        • Halldorsdottir T.
        • Binder E.B.
        Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model.
        Biol Psychiatry. 2018; 83: 821-830
        • Sinclair D.
        • Fillman S.G.
        • Webster M.J.
        • Weickert C.S.
        Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness.
        Sci Rep. 2013; 3: 3539
        • Daubner S.C.
        • Le T.
        • Wang S.
        Tyrosine hydroxylase and regulation of dopamine synthesis.
        Arch Biochem Biophys. 2011; 508: 1-12
        • Kesby J.P.
        • Eyles D.W.
        • McGrath J.J.
        • Scott J.G.
        Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience.
        Transl Psychiatry. 2018; 8: 30
        • Gomes F.V.
        • Grace A.A.
        Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention.
        Int J Mol Sci. 2021; 22
        • Sonnenschein S.F.
        • Gomes F.V.
        • Grace A.A.
        Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia.
        Front Psychiatry. 2020; 11: 613
      2. Dupuis-Sandoval F, Poirier M, Scott MS (2015): The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA. 6:381-397.

        • Hombach S.
        • Kretz M.
        Non-coding RNAs: Classification, Biology and Functioning.
        Adv Exp Med Biol. 2016; 937: 3-17
        • Kishore S.
        • Stamm S.
        The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C.
        Science. 2006; 311: 230-232
        • Castensson A.
        • Aberg K.
        • McCarthy S.
        • Saetre P.
        • Andersson B.
        • Jazin E.
        Serotonin receptor 2C (HTR2C) and schizophrenia: examination of possible medication and genetic influences on expression levels.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 134B: 84-89
        • Rosenzweig-Lipson S.
        • Comery T.A.
        • Marquis K.L.
        • Gross J.
        • Dunlop J.
        5-HT(2C) agonists as therapeutics for the treatment of schizophrenia.
        Handb Exp Pharmacol. 2012; : 147-165
        • Sodhi M.S.
        • Burnet P.W.
        • Makoff A.J.
        • Kerwin R.W.
        • Harrison P.J.
        RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia.
        Mol Psychiatry. 2001; 6: 373-379
        • Ragan C.
        • Patel K.
        • Edson J.
        • Zhang Z.H.
        • Gratten J.
        • Mowry B.
        Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation.
        Schizophr Res. 2017; 183: 82-87
        • Xue X.
        • Zong W.
        • Glausier J.R.
        • Kim S.M.
        • Shelton M.A.
        • Phan B.N.
        • et al.
        Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder.
        Transl Psychiatry. 2022; 12: 123
        • Eckel-Mahan K.L.
        • Patel V.R.
        • de Mateo S.
        • Orozco-Solis R.
        • Ceglia N.J.
        • Sahar S.
        • et al.
        Reprogramming of the circadian clock by nutritional challenge.
        Cell. 2013; 155: 1464-1478
        • Somerville S.M.
        • Lahti A.C.
        • Conley R.R.
        • Roberts R.C.
        Mitochondria in the striatum of subjects with schizophrenia: relationship to treatment response.
        Synapse. 2011; 65: 215-224
        • Drago J.
        • Padungchaichot P.
        • Accili D.
        • Fuchs S.
        Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants.
        Dev Neurosci. 1998; 20: 188-203
        • Missale C.
        • Fiorentini C.
        • Collo G.
        • Spano P.
        The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes.
        Journal of receptor and signal transduction research. 2010; 30: 347-354
        • Meltzer H.Y.
        New Trends in the Treatment of Schizophrenia.
        CNS Neurol Disord Drug Targets. 2017; 16: 900-906
        • Middleton F.A.
        • Mirnics K.
        • Pierri J.N.
        • Lewis D.A.
        • Levitt P.
        Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia.
        J Neurosci. 2002; 22: 2718-2729
        • Glausier J.R.
        • Enwright 3rd, J.F.
        • Lewis D.A.
        Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder.
        Am J Psychiatry. 2020; 177: 1140-1150
        • De Gregorio D.
        • Comai S.
        • Posa L.
        • Gobbi G.
        d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology.
        Int J Mol Sci. 2016; 17
        • Glausier J.R.
        • Kelly M.A.
        • Salem S.
        • Chen K.
        • Lewis D.A.
        Proxy measures of premortem cognitive aptitude in postmortem subjects with schizophrenia.
        Psychol Med. 2020; 50: 507-514
        • Husse J.
        • Kiehn J.T.
        • Barclay J.L.
        • Naujokat N.
        • Meyer-Kovac J.
        • Lehnert H.
        • et al.
        Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice.
        Sleep. 2017; 40
        • Archer S.N.
        • Oster H.
        How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome.
        J Sleep Res. 2015; 24: 476-493
        • Hor C.N.
        • Yeung J.
        • Jan M.
        • Emmenegger Y.
        • Hubbard J.
        • Xenarios I.
        • et al.
        Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex.
        Proc Natl Acad Sci U S A. 2019; 116: 25773-25783
        • Wulff K.
        • Dijk D.J.
        • Middleton B.
        • Foster R.G.
        • Joyce E.M.
        Sleep and circadian rhythm disruption in schizophrenia.
        The British journal of psychiatry : the journal of mental science. 2012; 200: 308-316