Advertisement

Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research

  • Ji Chen
    Correspondence
    Correspondence should be addressed to: Dr. Ji Chen; Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China.
    Affiliations
    Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China;

    Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China;

    Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany;
    Search for articles by this author
  • Kaustubh R. Patil
    Affiliations
    Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany;

    Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
    Search for articles by this author
  • B.T. Thomas Yeo
    Affiliations
    Centre for Sleep and Cognition& Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore;

    Department of Electrical and Computer Engineering, National University of Singapore, Singapore;

    N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore;

    Integrative Sciences & Engineering Programme, National University of Singapore, Singapore;

    Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
    Search for articles by this author
  • Simon B. Eickhoff
    Affiliations
    Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany;

    Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
    Search for articles by this author

      ABSTRACT

      Much attention is currently devoted to developing diagnostic classifiers for mental disorders. Complementing these efforts, we highlight the potential of machine-learning to gain biological insights into the psychopathology and nosology of mental disorders. Studies to this end have mainly used brain imaging data, which can be obtained non-invasively from large cohorts and have repeatedly been argued to reveal potentially intermediate phenotypes. This may become particularly relevant in light of recent efforts to identify MRI derived biomarkers that yield insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In particular, the accuracies of machine-learning models may be used as dependent variables to identify features relevant to pathophysiology. Moreover, such approaches may help to disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) symptomatology of psychiatric illness. We also point out a multi-view perspective that combines data from different sources, bridging molecular and system-level information. Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease entities through unsupervised and semi-supervised approaches. The latter, blending unsupervised and supervised concepts, may represent a particularly promising avenue toward dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to flawed input data or analytic procedures that would likely lead to unreliable outputs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References:

        • Obermeyer Z.
        • Emanuel E.J.
        Predicting the Future - Big Data, Machine Learning, and Clinical Medicine.
        N Engl J Med. 2016; 375: 1216-1219
        • Lee C.S.
        • Lee A.Y.
        Clinical applications of continual learning machine learning.
        Lancet Digit Health. 2020; 2: e279-e281
        • Jordan M.I.
        • Mitchell T.M.
        Machine learning: Trends, perspectives, and prospects.
        Science. 2015; 349: 255-260
        • Pellegrini E.
        • Ballerini L.
        • Hernandez M.
        • Chappell F.M.
        • Gonzalez-Castro V.
        • Anblagan D.
        • et al.
        Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review.
        Alzheimers Dement (Amst). 2018; 10: 519-535
        • Myszczynska M.A.
        • Ojamies P.N.
        • Lacoste A.M.B.
        • Neil D.
        • Saffari A.
        • Mead R.
        • et al.
        Applications of machine learning to diagnosis and treatment of neurodegenerative diseases.
        Nat Rev Neurol. 2020; 16: 440-456
        • Rashid B.
        • Calhoun V.
        Towards a brain-based predictome of mental illness.
        Hum Brain Mapp. 2020; 41: 3468-3535
        • Arbabshirani M.R.
        • Plis S.
        • Sui J.
        • Calhoun V.D.
        Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.
        Neuroimage. 2017; 145: 137-165
        • Chen J.
        • Muller V.I.
        • Dukart J.
        • Hoffstaedter F.
        • Baker J.T.
        • Holmes A.J.
        • et al.
        Intrinsic Connectivity Patterns of Task-Defined Brain Networks Allow Individual Prediction of Cognitive Symptom Dimension of Schizophrenia and Are Linked to Molecular Architecture.
        Biol Psychiatry. 2021; 89: 308-319
        • Baker J.T.
        • Dillon D.G.
        • Patrick L.M.
        • Roffman J.L.
        • Brady Jr., R.O.
        • Pizzagalli D.A.
        • et al.
        Functional connectomics of affective and psychotic pathology.
        Proc Natl Acad Sci U S A. 2019; 116: 9050-9059
        • Nazeri A.
        • Schifani C.
        • Anderson J.A.E.
        • Ameis S.H.
        • Voineskos A.N.
        In Vivo Imaging of Gray Matter Microstructure in Major Psychiatric Disorders: Opportunities for Clinical Translation.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 855-864
        • Schur R.R.
        • Draisma L.W.
        • Wijnen J.P.
        • Boks M.P.
        • Koevoets M.G.
        • Joels M.
        • et al.
        Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies.
        Hum Brain Mapp. 2016; 37: 3337-3352
        • Gottesman II,
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Zhang Y.D.
        • Dong Z.
        • Wang S.H.
        • Yu X.
        • Yao X.
        • Zhou Q.
        • et al.
        Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation.
        Inf Fusion. 2020; 64: 149-187
        • Marx V.
        Machine learning, practically speaking.
        Nat Methods. 2019; 16: 463-467
        • Chen J.
        • Patil K.R.
        • Weis S.
        • Sim K.
        • Nickl-Jockschat T.
        • Zhou J.
        • et al.
        Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization: An International Machine Learning Study.
        Biol Psychiatry. 2020; 87: 282-293
        • Yan W.Z.
        • Calhoun V.
        • Song M.
        • Cui Y.
        • Yan H.
        • Liu S.F.
        • et al.
        Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data.
        Ebiomedicine. 2019; 47: 543-552
        • Kohavi R.
        • John G.H.
        Wrappers for feature subset selection.
        Artif Intell. 1997; 97: 273-324
        • Guyon I.
        • Elisseeff A.
        An introduction to variable and feature selection.
        J Mach Learn Res. 2003; 3: 1157-1182
        • Moghimi P.
        • Lim K.O.
        • Netoff T.I.
        Data Driven Classification Using fMRI Network Measures: Application to Schizophrenia.
        Front Neuroinform. 2018; 12
        • Wu Y.
        • Ren P.
        • Chen R.
        • Xu H.
        • Xu J.
        • Zeng L.
        • et al.
        Detection of functional and structural brain alterations in female schizophrenia using elastic net logistic regression.
        Brain Imaging Behav. 2022; 16: 281-290
        • Yan W.
        • Zhao M.
        • Fu Z.
        • Pearlson G.D.
        • Sui J.
        • Calhoun V.D.
        Mapping relationships among schizophrenia, bipolar and schizoaffective disorders: A deep classification and clustering framework using fMRI time series.
        Schizophr Res. 2021; 245: 141-150
        • Koutsouleris N.
        • Meisenzahl E.M.
        • Borgwardt S.
        • Riecher-Rossler A.
        • Frodl T.
        • Kambeitz J.
        • et al.
        Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers.
        Brain. 2015; 138: 2059-2073
        • Qureshi M.N.I.
        • Oh J.
        • Min B.
        • Jo H.J.
        • Lee B.
        Multi-modal, Multi-measure, and Multi-class Discrimination of ADHD with Hierarchical Feature Extraction and Extreme Learning Machine Using Structural and Functional Brain MRI.
        Front Hum Neurosci. 2017; 11: 157
        • Lebedeva A.K.
        • Westman E.
        • Borza T.
        • Beyer M.K.
        • Engedal K.
        • Aarsland D.
        • et al.
        MRI-Based Classification Models in Prediction of Mild Cognitive Impairment and Dementia in Late-Life Depression.
        Front Aging Neurosci. 2017; 9: 13
      1. Loughrey J, Cunningham P (2004): Overfitting in wrapper-based feature subset selection: The harder you try the worse it gets. International conference on innovative techniques and applications of artificial intelligence, pp 33-43.

        • Poldrack R.A.
        • Huckins G.
        • Varoquaux G.
        Establishment of Best Practices for Evidence for Prediction: A Review.
        JAMA Psychiatry. 2020; 77: 534-540
        • Price J.L.
        • Drevets W.C.
        Neurocircuitry of mood disorders.
        Neuropsychopharmacology. 2010; 35: 192-216
        • Gandal M.J.
        • Haney J.R.
        • Parikshak N.N.
        • Leppa V.
        • Ramaswami G.
        • Hartl C.
        • et al.
        Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
        Science. 2018; 359: 693-697
        • Anderson K.M.
        • Collins M.A.
        • Chin R.
        • Ge T.
        • Rosenberg M.D.
        • Holmes A.J.
        Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk.
        Nat Commun. 2020; 11: 2889
        • Anderson K.M.
        • Collins M.A.
        • Kong R.
        • Fang K.
        • Li J.
        • He T.
        • et al.
        Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder.
        Proc Natl Acad Sci U S A. 2020; 117: 25138-25149
        • Lu P.X.
        • Li X.
        • Hu L.T.
        • Lu L.
        Integrating genomic and resting State fMRI for efficient autism spectrum disorder classification.
        Multimed Tools Appl. 2021;
        • De la Torre F.
        • Black M.J.
        A framework for robust subspace learning.
        Int J Comput Vis. 2003; 54: 117-142
        • Wang H.T.
        • Smallwood J.
        • Mourao-Miranda J.
        • Xia C.H.
        • Satterthwaite T.D.
        • Bassett D.S.
        • et al.
        Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists.
        Neuroimage. 2020; 216116745
        • Li A.
        • Zalesky A.
        • Yue W.
        • Howes O.
        • Yan H.
        • Liu Y.
        • et al.
        A neuroimaging biomarker for striatal dysfunction in schizophrenia.
        Nat Med. 2020; 26: 558-565
        • Zhang Y.P.
        • Wang S.H.
        • Xia K.J.
        • Jiang Y.Z.
        • Qian P.J.
        • Initia A.D.N.
        Alzheimer's disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion.
        Inf Fusion. 2021; 66: 170-183
        • Peng J.
        • An L.
        • Zhu X.
        • Jin Y.
        • Shen D.
        Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.
        Med Image Comput Comput Assist Interv. 2016; 9901: 70-78
        • Szafranski M.
        • Grandvalet Y.
        • Rakotomamonjy A.
        Composite kernel learning.
        Mach Learn. 2010; 79: 73-103
        • Olbert C.M.
        • Gala G.J.
        • Tupler L.A.
        Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application.
        J Abnorm Psychol. 2014; 123: 452-462
        • Park S.C.
        • Kim J.M.
        • Jun T.Y.
        • Lee M.S.
        • Kim J.B.
        • Yim H.W.
        • et al.
        How many different symptom combinations fulfil the diagnostic criteria for major depressive disorder? Results from the CRESCEND study.
        Nord J Psychiatry. 2017; 71: 217-222
        • Fried E.I.
        • Nesse R.M.
        Depression sum-scores don't add up: why analyzing specific depression symptoms is essential.
        BMC Med. 2015; 13: 72
        • Fried E.I.
        • van Borkulo C.D.
        • Cramer A.O.J.
        • Boschloo L.
        • Schoevers R.A.
        • Borsboom D.
        Mental disorders as networks of problems: a review of recent insights.
        Soc Psychiatry Psychiatr Epidemiol. 2017; 52: 1-10
        • Jacobi F.
        • Wittchen H.U.
        • Holting C.
        • Hofler M.
        • Pfister H.
        • Muller N.
        • et al.
        Prevalence, co-morbidity and correlates of mental disorders in the general population: results from the German Health Interview and Examination Survey (GHS).
        Psychol Med. 2004; 34: 597-611
        • Lee S.H.
        • Ripke S.
        • Neale B.M.
        • Faraone S.V.
        • Purcell S.M.
        • Perlis R.H.
        • et al.
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders.
        Am J Psychiatry. 2017; 174: 676-685
        • Sacchet M.D.
        • Prasad G.
        • Foland-Ross L.C.
        • Thompson P.M.
        • Gotlib I.H.
        Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.
        Front Psychiatry. 2015; 6: 21
        • Rashid B.
        • Arbabshirani M.R.
        • Damaraju E.
        • Cetin M.S.
        • Miller R.
        • Pearlson G.D.
        • et al.
        Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity.
        Neuroimage. 2016; 134: 645-657
        • Yang T.
        • Frangou S.
        • Lam R.W.
        • Huang J.
        • Su Y.
        • Zhao G.
        • et al.
        Probing the clinical and brain structural boundaries of bipolar and major depressive disorder.
        Transl Psychiatry. 2021; 11: 48
        • Green E.K.
        • Grozeva D.
        • Jones I.
        • Jones L.
        • Kirov G.
        • Caesar S.
        • et al.
        The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia.
        Mol Psychiatry. 2010; 15: 1016-1022
        • Schulze T.G.
        • Akula N.
        • Breuer R.
        • Steele J.
        • Nalls M.A.
        • Singleton A.B.
        • et al.
        Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder.
        World J Biol Psychiatry. 2014; 15: 200-208
        • McIntosh A.M.
        • Sullivan P.F.
        • Lewis C.M.
        Uncovering the Genetic Architecture of Major Depression.
        Neuron. 2019; 102: 91-103
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Weis S.
        • Patil K.R.
        • Hoffstaedter F.
        • Nostro A.
        • Yeo B.T.T.
        • Eickhoff S.B.
        Sex Classification by Resting State Brain Connectivity.
        Cereb Cortex. 2020; 30: 824-835
        • Cropley V.L.
        • Tian Y.
        • Fernando K.
        • Mansour L.S.
        • Pantelis C.
        • Cocchi L.
        • et al.
        Brain-Predicted Age Associates With Psychopathology Dimensions in Youths.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 410-419
        • Plaschke R.N.
        • Patil K.R.
        • Cieslik E.C.
        • Nostro A.D.
        • Varikuti D.P.
        • Plachti A.
        • et al.
        Age differences in predicting working memory performance from network-based functional connectivity.
        Cortex. 2020; 132: 441-459
        • Chen A.A.
        • Beer J.C.
        • Tustison N.J.
        • Cook P.A.
        • Shinohara R.T.
        • Shou H.
        • et al.
        Mitigating site effects in covariance for machine learning in neuroimaging data.
        Hum Brain Mapp. 2022; 43: 1179-1195
        • Pomponio R.
        • Erus G.
        • Habes M.
        • Doshi J.
        • Srinivasan D.
        • Mamourian E.
        • et al.
        Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
        Neuroimage. 2020; 208: 116-450
        • Snoek L.
        • Miletic S.
        • Scholte H.S.
        How to control for confounds in decoding analyses of neuroimaging data.
        Neuroimage. 2019; 184: 741-760
      2. More S, Eickhoff SB, Caspers J, Patil KR (2021): Confound Removal and Normalization in Practice: A Neuroimaging Based Sex Prediction Case Study. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 3-18.

      3. Dinga R, Schmaal L, Penninx BWJH, Veltman DJ, Marquand AF (2020): Controlling for effects of confounding variables on machine learning predictions. bioRxiv:2020.2008.2017.255034.

        • Fenton W.S.
        • McGlashan T.H.
        Natural history of schizophrenia subtypes. I. Longitudinal study of paranoid, hebephrenic, and undifferentiated schizophrenia.
        Arch Gen Psychiatry. 1991; 48: 969-977
        • Braff D.L.
        • Ryan J.
        • Rissling A.J.
        • Carpenter W.T.
        Lack of use in the literature from the last 20 years supports dropping traditional schizophrenia subtypes from DSM-5 and ICD-11.
        Schizophr Bull. 2013; 39: 751-753.63
        • Angst J.
        • Sellaro R.
        • Merikangas K.R.
        Depressive spectrum diagnoses.
        Compr Psychiatry. 2000; 41: 39-47
        • Melartin T.
        • Leskela U.
        • Rytsala H.
        • Sokero P.
        • Lestela-Mielonen P.
        • Isometsa E.
        Co-morbidity and stability of melancholic features in DSM-IV major depressive disorder.
        Psychol Med. 2004; 34: 1443-1452
        • Feczko E.
        • Miranda-Dominguez O.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Kirkpatrick B.
        • Buchanan R.W.
        • Ross D.E.
        • Carpenter W.T.
        A separate disease within the syndrome of schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 165-171
        • Nicholson A.A.
        • Densmore M.
        • McKinnon M.C.
        • Neufeld R.W.J.
        • Frewen P.A.
        • Theberge J.
        • et al.
        Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach.
        Psychol Med. 2019; 49: 2049-2059
      4. Chapelle O, Scholkopf B, Zien A (2009): Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Trans Neural Netw, 20:542.

      5. Dike HU, Zhou YM, Deveerasetty KK, Wu QT (2018): Unsupervised Learning Based On Artificial Neural Network: A Review. 2018 Ieee International Conference on Cyborg and Bionic Systems (Cbs), pp 322-327.

        • Lombardo M.V.
        • Lai M.C.
        • Baron-Cohen S.
        Big data approaches to decomposing heterogeneity across the autism spectrum.
        Mol Psychiatry. 2019; 24: 1435-1450
        • Kirschner M.
        • Shafiei G.
        • Markello R.D.
        • Makowski C.
        • Talpalaru A.
        • Hodzic-Santor B.
        • et al.
        Latent Clinical-Anatomical Dimensions of Schizophrenia.
        Schizophr Bull. 2020; 46: 1426-1438
        • Levine S.Z.
        • Rabinowitz J.
        Revisiting the 5 dimensions of the Positive and Negative Syndrome Scale.
        J Clin Psychopharmacol. 2007; 27: 431-436
        • Dollfus S.
        • Everitt B.
        • Ribeyre J.M.
        • Assouly-Besse F.
        • Sharp C.
        • Petit M.
        Identifying subtypes of schizophrenia by cluster analyses.
        Schizophr Bull. 1996; 22: 545-555
        • Lykouras L.
        • Oulis P.
        • Daskalopoulou E.
        • Psarros K.
        • Christodoulou G.N.
        Clinical subtypes of schizophrenic disorders: a cluster analytic study.
        Psychopathology. 2001; 34: 23-28
        • Rahaman M.A.
        • Turner J.A.
        • Gupta C.N.
        • Rachakonda S.
        • Chen J.
        • Liu J.
        • et al.
        N-BiC: A Method for Multi-Component and Symptom Biclustering of Structural MRI Data: Application to Schizophrenia.
        IEEE Trans Biomed Eng. 2020; 67: 110-121
        • Chand G.B.
        • Dwyer D.B.
        • Erus G.
        • Sotiras A.
        • Varol E.
        • Srinivasan D.
        • et al.
        Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning.
        Brain. 2020; 143: 1027-1038
        • Sun H.
        • Lui S.
        • Yao L.
        • Deng W.
        • Xiao Y.
        • Zhang W.
        • et al.
        Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis.
        JAMA Psychiatry. 2015; 72: 678-686
        • Liu Z.W.
        • Palaniyappan L.
        • Wu X.R.
        • Zhang K.
        • Du J.N.
        • Zhao Q.
        • et al.
        Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis.
        Mol Psychiatry. 2021; 26: 7719-7731
      6. Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D (2012): Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res 137:246-250.

        • Xiao Y.
        • Liao W.
        • Long Z.
        • Tao B.
        • Zhao Q.
        • Luo C.
        • et al.
        Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations.
        Schizophr Bull. 2022; 48: 241-250
        • Di Biase M.A.
        • Geaghan M.P.
        • Reay W.R.
        • Seidlitz J.
        • Weickert C.S.
        • Pébay A.
        • et al.
        Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia.
        Molecular Psychiatry. 2022; (In Press)https://doi.org/10.1038/s41380- 022-01460-7
        • Dinga R.
        • Schmaal L.
        • Penninx B.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of.
        Neuroimage Clin. 2019; 22101796
        • Price R.B.
        • Gates K.
        • Kraynak T.E.
        • Thase M.E.
        • Siegle G.J.
        Data-Driven Subgroups in Depression Derived from Directed Functional Connectivity Paths at Rest.
        Neuropsychopharmacology. 2017; 42: 2623-2632
        • Price R.B.
        • Lane S.
        • Gates K.
        • Kraynak T.E.
        • Horner M.S.
        • Thase M.E.
        • et al.
        Parsing Heterogeneity in the Brain Connectivity of Depressed and Healthy Adults During Positive Mood.
        Biol Psychiatry. 2017; 81: 347-357
        • Feder S.
        • Sundermann B.
        • Wersching H.
        • Teuber A.
        • Kugel H.
        • Teismann H.
        • et al.
        Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects.
        J Affect Disord. 2017; 222: 79-87
        • Tokuda T.
        • Yoshimoto J.
        • Shimizu Y.
        • Okada G.
        • Takamura M.
        • Okamoto Y.
        • et al.
        Identification of depression subtypes and relevant brain regions using a data-driven approach.
        Sci Rep. 2018; 814082
        • Cuthbert B.N.
        The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology.
        World Psychiatry. 2014; 13: 28-35
        • Kebets V.
        • Holmes A.J.
        • Orban C.
        • Tang S.
        • Li J.
        • Sun N.
        • et al.
        Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic Dimensions of Psychopathology.
        Biol Psychiatry. 2019; 86: 779-791
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • Gu S.
        • Betzel R.F.
        • Kaczkurkin A.N.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 3003
        • Kaczkurkin A.N.
        • Moore T.M.
        • Sotiras A.
        • Xia C.H.
        • Shinohara R.T.
        • Satterthwaite T.D.
        Approaches to Defining Common and Dissociable Neurobiological Deficits Associated With Psychopathology in Youth.
        Biol Psychiatry. 2020; 88: 51-62
        • Tang S.
        • Sun N.
        • Floris D.L.
        • Zhang X.
        • Di Martino A.
        • Yeo B.T.T.
        Reconciling Dimensional and Categorical Models of Autism Heterogeneity: A Brain Connectomics and Behavioral Study.
        Biol Psychiatry. 2020; 87: 1071-1082
        • Dias T.G.C.
        • Iyer S.P.
        • Carpenter S.D.
        • Cary R.P.
        • Wilson V.B.
        • Mitchell S.H.
        • et al.
        Characterizing heterogeneity in children with and without ADHD based on reward system connectivity.
        Dev Cogn Neurosci. 2015; 11: 155-174
        • Karalunas S.L.
        • Nigg J.T.
        Heterogeneity and Subtyping in Attention-Deficit/Hyperactivity Disorder-Considerations for Emerging Research Using Person-Centered Computational Approaches.
        Biol Psychiatry. 2020; 88: 103-110
        • Clementz B.A.
        • Sweeney J.A.
        • Hamm J.P.
        • Ivleva E.I.
        • Ethridge L.E.
        • Pearlson G.D.
        • et al.
        Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers.
        Am J Psychiatry. 2016; 173: 373-384
        • Stefanik L.
        • Erdman L.
        • Ameis S.H.
        • Foussias G.
        • Mulsant B.H.
        • Behdinan T.
        • et al.
        Brain-Behavior Participant Similarity Networks among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls.
        Neuropsychopharmacology. 2018; 43: 1180-1188
        • Snoek L.
        • Miletić S.
        • Scholte H.S.
        How to control for confounds in decoding analyses of neuroimaging data.
        Neuroimage. 2019; 184: 741-760
        • Varol E.
        • Sotiras A.
        • Davatzikos C.
        • Neuroimaging A.D.
        HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework.
        Neuroimage. 2017; 145: 346-364
        • Baller E.B.
        • Kaczkurkin A.N.
        • Sotiras A.
        • Adebimpe A.
        • Bassett D.S.
        • Calkins M.E.
        • et al.
        Neurocognitive and functional heterogeneity in depressed youth.
        Neuropsychopharmacology. 2021; 46: 783-790
        • Marquand A.F.
        • Kia S.M.
        • Zabihi M.
        • Wolfers T.
        • Buitelaar J.K.
        • Beckmann C.F.
        Conceptualizing mental disorders as deviations from normative functioning (vol 24, pg 1415, 2019).
        Mol Psychiatry. 2019; 24 (1565-1565)
        • Zabihi M.
        • Oldehinkel M.
        • Wolfers T.
        • Frouin V.
        • Goyard D.
        • Loth E.
        • et al.
        Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 567-578
        • Wolfers T.
        • Doan N.T.
        • Kaufmann T.
        • Alnaes D.
        • Moberget T.
        • Agartz I.
        • et al.
        Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models.
        JAMA Psychiatry. 2018; 75: 1146-1155
        • Voineskos A.N.
        • Jacobs G.R.
        • Ameis S.H.
        Neuroimaging Heterogeneity in Psychosis: Neurobiological Underpinnings and Opportunities for Prognostic and Therapeutic Innovation.
        Biol Psychiatry. 2020; 88: 95-102
        • Feczko E.
        • Balba N.M.
        • Miranda-Dominguez O.
        • Cordova M.
        • Karalunas S.L.
        • Irwin L.
        • et al.
        Subtyping cognitive profiles in Autism Spectrum Disorder using a Functional Random Forest algorithm.
        Neuroimage. 2018; 172: 674-688
        • Feczko E.
        • Fair D.A.
        Methods and Challenges for Assessing Heterogeneity.
        Biol Psychiatry. 2020; 88: 9-17
        • Alexander L.M.
        • Salum G.A.
        • Swanson J.M.
        • Milham M.P.
        Measuring strengths and weaknesses in dimensional psychiatry.
        J Child Psychol Psychiatry. 2020; 61: 40-50
        • Genon S.
        • Bernhardt B.C.
        • La Joie R.
        • Amunts K.
        • Eickhoff S.B.
        The many dimensions of human hippocampal organization and (dys)function.
        Trends Neurosci. 2021; 44: 977-989
        • Genon S.
        • Reid A.
        • Langner R.
        • Amunts K.
        • Eickhoff S.B.
        How to Characterize the Function of a Brain Region.
        Trends Cogn Sci. 2018; 22: 350-364
        • Ressler K.J.
        • Williams L.M.
        Big data in psychiatry: multiomics, neuroimaging, computational modeling, and digital phenotyping.
        Neuropsychopharmacology. 2021; 46: 1-2
        • Dunster G.P.
        • Swendsen J.
        • Merikangas K.R.
        Real-time mobile monitoring of bipolar disorder: a review of evidence and future directions.
        Neuropsychopharmacology. 2021; 46: 197-208
        • Saeb S.
        • Lattie E.G.
        • Schueller S.M.
        • Kording K.P.
        • Mohr D.C.
        The relationship between mobile phone location sensor data and depressive symptom severity.
        PeerJ. 2016; 4
        • Bedi G.
        • Carrillo F.
        • Cecchi G.A.
        • Slezak D.F.
        • Sigman M.
        • Mota N.B.
        • et al.
        Automated analysis of free speech predicts psychosis onset in high-risk youths.
        NPJ Schizophr. 2015; 115030
        • Insel T.R.
        Digital Phenotyping: Technology for a New Science of Behavior.
        JAMA. 2017; 318: 1215-1216
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Alexander-Bloch A.
        • Clasen L.
        • Stockman M.
        • Ronan L.
        • Lalonde F.
        • Giedd J.
        • et al.
        Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.
        Hum Brain Mapp. 2016; 37: 2385-2397
        • Makowski C.
        • Lepage M.
        • Evans A.C.
        Head motion: the dirty little secret of neuroimaging in psychiatry.
        J Psychiatry Neurosci. 2019; 44: 62-68
        • Power J.D.
        • Schlaggar B.L.
        • Petersen S.E.
        Recent progress and outstanding issues in motion correction in resting state fMRI.
        Neuroimage. 2015; 105: 536-551
        • Power J.D.
        • Mitra A.
        • Laumann T.O.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Methods to detect, characterize, and remove motion artifact in resting state fMRI.
        Neuroimage. 2014; 84: 320-341
        • Krause F.
        • Benjannins C.
        • Eck J.
        • Luhrs M.
        • van Hoof R.
        • Goebel R.
        Active head motion reduction in magnetic resonance imaging using tactile feedback.
        Hum Brain Mapp. 2019; 40: 4026-4037
        • Yao N.
        • Winkler A.M.
        • Barrett J.
        • Book G.A.
        • Beetham T.
        • Horseman R.
        • et al.
        Inferring pathobiology from structural MRI in schizophrenia and bipolar disorder: Modeling head motion and neuroanatomical specificity.
        Hum Brain Mapp. 2017; 38: 3757-3770
      7. Thomas RM, Bruin W, Zhutovsky P, van Wingen G (2020): Chapter 14 - Dealing with missing data, small sample sizes, and heterogeneity in machine learning studies of brain disorders. In: Mechelli A, Vieira S, editors. Machine Learning. Academic Press, pp 249-266.

        • Le Morvan M.
        • Josse J.
        • Scornet E.
        • Varoquaux G.
        What’sa good imputation to predict with missing values?.
        Adv Neural Inf Process Syst. 2021; 34: 11530-11540
        • Wang Y.
        • Gao Y.
        • Tang S.
        • Lu L.
        • Zhang L.
        • Bu X.
        • et al.
        Large-scale network dysfunction in the acute state compared to the remitted state of bipolar disorder: A meta-analysis of resting-state functional connectivity.
        EBioMedicine. 2020; 54102742
        • da Silva R.A.
        • Tancini M.B.
        • Lage R.
        • Nascimento R.L.
        • Santana C.M.T.
        • Landeira-Fernandez J.
        • et al.
        Autobiographical Memory and Episodic Specificity Across Different Affective States in Bipolar Disorder.
        Front Psychiatry. 2021; 12641221
        • Hosseini M.
        • Powell M.
        • Collins J.
        • Callahan-Flintoft C.
        • Jones W.
        • Bowman H.
        • et al.
        I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data.
        Neurosci Biobehav Rev. 2020; 119: 456-467
        • Varoquaux G.
        • Cheplygina V.
        Machine learning for medical imaging: methodological failures and recommendations for the future.
        NPJ Digit Med. 2022; 5: 48
        • Dwork C.
        • Feldman V.
        • Hardt M.
        • Pitassi T.
        • Reingold O.
        • Roth A.
        STATISTICS. The reusable holdout: Preserving validity in adaptive data analysis.
        Science. 2015; 349: 636-638
        • Nosek B.A.
        • Ebersole C.R.
        • DeHaven A.C.
        • Mellor D.T.
        The preregistration revolution.
        Proc Natl Acad Sci U S A. 2018; 115: 2600-2606
        • Chambers C.D.
        • Forstmann B.
        • Pruszynski J.A.
        Registered reports at the European Journal of Neuroscience: consolidating and extending peer-reviewed study pre-registration.
        Eur J Neurosci. 2017; 45: 627-628
        • Abraham A.
        • Milham M.P.
        • Di Martino A.
        • Craddock R.C.
        • Samaras D.
        • Thirion B.
        • et al.
        Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example.
        Neuroimage. 2017; 147: 736-745
        • Marek S.
        • Tervo-Clemmens B.
        • Calabro F.J.
        • Montez D.F.
        • Kay B.P.
        • Hatoum A.S.
        • et al.
        Reproducible brain-wide association studies require thousands of individuals.
        Nature. 2022; 603: 654-660
        • Flint C.
        • Cearns M.
        • Opel N.
        • Redlich R.
        • Mehler D.M.A.
        • Emden D.
        • et al.
        Systematic misestimation of machine learning performance in neuroimaging studies of depression.
        Neuropsychopharmacology. 2021; 46: 1510-1517
        • Varoquaux G.
        Cross-validation failure: Small sample sizes lead to large error bars.
        Neuroimage. 2018; 180: 68-77
        • He T.
        • An L.J.
        • Chen P.S.
        • Chen J.Z.
        • Feng J.S.
        • Bzdok D.
        • et al.
        Meta-matching as a simple framework to translate phenotypic predictive models from big to small data.
        Nat Neurosci. 2022; 25: 1-10
        • Vayena E.
        • Blasimme A.
        • Cohen I.G.
        Machine learning in medicine: Addressing ethical challenges.
        PLoS Med. 2018; 15e1002689
        • Starke G.
        • De Clercq E.
        • Borgwardt S.
        • Elger B.S.
        Computing schizophrenia: ethical challenges for machine learning in psychiatry.
        Psychol Med. 2021; 51: 2515-2521
        • de Miguel I.
        • Sanz B.
        • Lazcoz G.
        Machine learning in the EU health care context: exploring the ethical, legal and social issues.
        Inform Commun Soc. 2020; 23: 1139-1153
        • Eickhoff S.B.
        • Heinrichs B.
        The predictable human : Possibilities and risks of AI-based prediction of cognitive abilities, personality traits and mental illnesses.
        Nervenarzt. 2021; 92: 1140-1148
        • Bzdok D.
        • Ioannidis J.P.A.
        Exploration, Inference, and Prediction in Neuroscience and Biomedicine.
        Trends Neurosci. 2019; 42: 251-262
        • Rudin C.
        Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
        Nat Mach Intell. 2019; 1: 206-215