Advertisement

Social synchronization of conditioned fear in mice requires ventral hippocampus input to amygdala

      Abstract

      Background

      Social organisms synchronize behaviors as an evolutionary-conserved means for thriving. Synchronization under threat, in particular, benefits survival and occurs across species, including humans, but the underlying mechanisms remain unknown, due to the scarcity of the relevant animal models. Here, we developed a rodent paradigm in which mice synchronize classically conditioned fear response and identified an underlying neuronal circuit.

      Methods

      Males and female mice were trained individually in an auditory fear conditioning and then tested 24 h later as dyads allowing unrestricted social interaction during exposure to the conditioned stimulus, under the visible or infrared illumination to eliminate visual cues. The synchronization of the immobility or freezing bouts was quantified by calculating the effect size Cohen’s D for the difference between the actual freezing time overlap and the overlap by chance. The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral hippocampal neurons and infusing CNO in the amygdala.

      Results

      Mice synchronized cued but not contextual fear. It was higher in males than in females and attenuated in the absence of visible light. Inactivation of the ventral but not dorsal hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the disconnection of the hippocampal-amygdala pathway diminished fear synchronization.

      Conclusions

      Mice synchronize expression of conditioned fear relying on the ventral hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information to the amygdala to synchronize threat response.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herbert-Read J.E.
        Understanding how animal groups achieve coordinated movement.
        J Exp Biol. 2016; 219: 2971-2983
        • Bazazi S.
        • Pfennig K.S.
        • Handegard N.O.
        • Couzin I.D.
        Vortex formation and foraging in polyphenic spadefoot toad tadpoles.
        Behav Ecol Sociobiol. 2012; 66: 879-889
        • Codling E.A.
        • Pitchford J.W.
        • Simpson S.D.
        Group navigation and the "many-wrongs principle" in models of animal movement.
        Ecology. 2007; 88: 1864-1870
        • Seeley T.D.
        • Buhrman S.C.
        Group decision making in swarms of honey bees.
        Behav Ecol Sociobiol. 1999; 45: 19-31
        • Grunbaum D.
        Schooling as a strategy for taxis in a noisy environment.
        Evol Ecol. 1998; 12: 503-522
        • Duranton C.
        • Gaunet F.
        Behavioural synchronization from an ethological perspective: Overview of its adaptive value.
        Adapt Behav. 2016; 24: 181-191
        • Kupper Z.
        • Ramseyer F.
        • Hoffmann H.
        • Tschacher W.
        Nonverbal Synchrony in Social Interactions of Patients with Schizophrenia Indicates Socio-Communicative Deficits.
        PloS one. 2015; (10)
        • Ramseyer F.
        • Ebert A.
        • Roser P.
        • Edel M.A.
        • Tschacher W.
        • Brune M.
        Exploring nonverbal synchrony in borderline personality disorder: A double-blind placebo-controlled study using oxytocin.
        Br J Clin Psychol. 2020; 59: 186-207
        • Curioni A.
        • Minio-Paluello I.
        • Sacheli L.M.
        • Candidi M.
        • Aglioti S.M.
        Autistic traits affect interpersonal motor coordination by modulating strategic use of role-based behavior.
        Mol Autism. 2017; (8)
        • Georgescu A.L.
        • Koeroglu S.
        • Hamilton A.F.C.
        • Vogeley K.
        • Falter-Wagner C.M.
        • Tschacher W.
        Reduced nonverbal interpersonal synchrony in autism spectrum disorder independent of partner diagnosis: a motion energy study.
        Mol Autism. 2020; 11: 11
        • McNaughton K.A.
        • Redcay E.
        Interpersonal Synchrony in Autism.
        Current psychiatry reports. 2020; 22: 12
        • Rennung M.
        • Goritz A.S.
        Prosocial Consequences of Interpersonal Synchrony: A Meta-Analysis.
        Z Psychol. 2016; 224: 168-189
        • Wiltermuth S.S.
        • Heath C.
        Synchrony and cooperation.
        Psychol Sci. 2009; 20: 1-5
        • Swanson H.H.
        • Schuster R.
        Cooperative Social Coordination and Aggression in Male Laboratory Rats - Effects of Housing and Testosterone.
        Hormones and behavior. 1987; 21: 310-330
        • Bowen M.T.
        • Keats K.
        • Kendig M.D.
        • Cakic V.
        • Callaghan P.D.
        • McGregor L.S.
        Aggregation in quads but not pairs of rats exposed to cat odor or bright light.
        Behav Process. 2012; 90: 331-336
        • Bowen M.T.
        • McGregor I.S.
        Oxytocin and vasopressin modulate the social response to threat: a preclinical study.
        The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum. 2014; 17: 1621-1633
        • Bowen M.T.
        • Kevin R.C.
        • May M.
        • Staples L.G.
        • Hunt G.E.
        • McGregor I.S.
        Defensive aggregation (huddling) in Rattus norvegicus toward predator odor: individual differences, social buffering effects and neural correlates.
        PloS one. 2013; (8:e68483)
        • Kim J.
        • Kim C.
        • Han H.B.
        • Cho C.J.
        • Yeom W.
        • Lee S.Q.
        • et al.
        A bird's-eye view of brain activity in socially interacting mice through mobile edge computing (MEC).
        Science Advances. 2020; (6)
        • Izhar R.
        • Eilam D.
        Together they stand: A life-threatening event reduces individual behavioral variability in groups of voles.
        Behavioural brain research. 2010; 208: 282-285
        • Eilam D.
        • Zadicario P.
        • Genossar T.
        • Mort J.
        The anxious vole: the impact of group and gender on collective behavior under life-threat.
        Behav Ecol Sociobiol. 2012; 66: 959-968
        • Rabi C.
        • Zadicario P.
        • Mazon Y.
        • Wagner N.
        • Eilam D.
        The response of social and non-social rodents to owl attack.
        Behav Ecol Sociobiol. 2017; (71)
        • Jeon D.
        • Kim S.
        • Chetana M.
        • Jo D.
        • Ruley H.E.
        • Lin S.Y.
        • et al.
        Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.
        Nat Neurosci. 2010; 13: 482-488
        • Ito W.
        • Erisir A.
        • Morozov A.
        Observation of Distressed Conspecific as a Model of Emotional Trauma Generates Silent Synapses in the Prefrontal-Amygdala Pathway and Enhances Fear Learning, but Ketamine Abolishes those Effects.
        Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2015; 40: 2536-2545
        • Morozov A.
        • Ito W.
        Social modulation of fear: Facilitation vs buffering.
        Genes, brain, and behavior. 2019; (18:e12491)
        • Allsop S.A.
        • Wichmann R.
        • Mills F.
        • Burgos-Robles A.
        • Chang C.J.
        • Felix-Ortiz A.C.
        • et al.
        Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning.
        Cell. 2018; 173: 1329-1342 e1318
        • Chen Q.
        • Panksepp J.B.
        • Lahvis G.P.
        Empathy is moderated by genetic background in mice.
        PloS one. 2009; (4:e4387)
        • Langford D.J.
        • Crager S.E.
        • Shehzad Z.
        • Smith S.B.
        • Sotocinal S.G.
        • Levenstadt J.S.
        • et al.
        Social modulation of pain as evidence for empathy in mice.
        Science. 2006; 312: 1967-1970
        • Pan B.X.
        • Vautier F.
        • Ito W.
        • Bolshakov V.Y.
        • Morozov A.
        Enhanced cortico-amygdala efficacy and suppressed fear in absence of Rap1.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008; 28: 2089-2098
        • Ito W.
        • Morozov A.
        Prefrontal-amygdala plasticity enabled by observational fear.
        Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2019; 44: 1778-1787
        • Stachniak T.J.
        • Ghosh A.
        • Sternson S.M.
        Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus-->midbrain pathway for feeding behavior.
        Neuron. 2014; 82: 797-808
        • Morozov A.
        • Sukato D.
        • Ito W.
        Selective suppression of plasticity in amygdala inputs from temporal association cortex by the external capsule.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011; 31: 339-345
        • Ho J.
        • Tumkaya T.
        • Aryal S.
        • Choi H.
        • Claridge-Chang A.
        Moving beyond P values: data analysis with estimation graphics.
        Nature methods. 2019; 16: 565-566
        • Warthen D.M.
        • Wiltgen B.J.
        • Provencio I.
        Light enhances learned fear.
        Proc Natl Acad Sci U S A. 2011; 108: 13788-13793
        • Li Z.
        • Lu Y.F.
        • Li C.L.
        • Wang Y.
        • Sun W.
        • He T.
        • et al.
        Social interaction with a cagemate in pain facilitates subsequent spinal nociception via activation of the medial prefrontal cortex in rats.
        Pain. 2014; 155: 1253-1261
        • Hitti F.L.
        • Siegelbaum S.A.
        The hippocampal CA2 region is essential for social memory.
        Nature. 2014; 508: 88-92
        • Okuyama T.
        • Kitamura T.
        • Roy D.S.
        • Itohara S.
        • Tonegawa S.
        Ventral CA1 neurons store social memory.
        Science. 2016; 353: 1536-1541
        • Phillips M.L.
        • Robinson H.A.
        • Pozzo-Miller L.
        Ventral hippocampal projections to the medial prefrontal cortex regulate social memory.
        Elife. 2019; (8)
        • Sierra-Mercado D.
        • Padilla-Coreano N.
        • Quirk G.J.
        Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear.
        Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2010; 36: 529-538
        • Izquierdo I.
        • Furini C.R.
        • Myskiw J.C.
        Fear Memory.
        Physiological reviews. 2016; 96: 695-750
        • Giustino T.F.
        • Maren S.
        The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear.
        Frontiers in behavioral neuroscience. 2015; 9: 298
        • Ortiz S.
        • Latsko M.S.
        • Fouty J.L.
        • Dutta S.
        • Adkins J.M.
        • Jasnow A.M.
        Anterior Cingulate Cortex and Ventral Hippocampal Inputs to the Basolateral Amygdala Selectively Control Generalized Fear.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2019; 39: 6526-6539
        • Laurent V.
        • Westbrook R.F.
        Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction.
        Learn Mem. 2009; 16: 520-529
        • Holt W.
        • Maren S.
        Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999; 19: 9054-9062
        • Quinn J.J.
        • Wied H.M.
        • Ma Q.D.
        • Tinsley M.R.
        • Fanselow M.S.
        Dorsal hippocampus involvement in delay fear conditioning depends upon the strength of the tone-footshock association.
        Hippocampus. 2008; 18: 640-654
        • Orsini C.A.
        • Kim J.H.
        • Knapska E.
        • Maren S.
        Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011; 31: 17269-17277
        • Xu C.
        • Krabbe S.
        • Grundemann J.
        • Botta P.
        • Fadok J.P.
        • Osakada F.
        • et al.
        Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval.
        Cell. 2016; 167: 961-972 e916
        • Kishi T.
        • Tsumori T.
        • Yokota S.
        • Yasui Y.
        Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat.
        The Journal of comparative neurology. 2006; 496: 349-368
        • Fanselow M.S.
        • Dong H.W.
        Are the dorsal and ventral hippocampus functionally distinct structures?.
        Neuron. 2010; 65: 7-19
        • Bernieri F.J.
        • Reznick J.S.
        • Rosenthal R.
        Synchrony, Pseudosynchrony, and Dissynchrony - Measuring the Entrainment Process in Mother Infant Interactions.
        J Pers Soc Psychol. 1988; 54: 243-253
        • Jiang Y.
        • Platt M.L.
        Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.
        Sci Rep. 2018; 8: 8201
      1. Siegman AW, Reynolds, M. (1982): Interviewer-interviewee nonverbal communications: An interactional approach. In: Davis M, editor. Interaction rhythms: Periodicity in communicative behavior. New York: Human Sciences Press, pp 249–277.

        • Defensor E.B.
        • Pearson B.L.
        • Pobbe R.L.
        • Bolivar V.J.
        • Blanchard D.C.
        • Blanchard R.J.
        A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice.
        Behavioural brain research. 2011; 217: 302-308
        • Silverman J.L.
        • Tolu S.S.
        • Barkan C.L.
        • Crawley J.N.
        Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP.
        Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2010; 35: 976-989
        • Yang M.
        • Clarke A.M.
        • Crawley J.N.
        Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability.
        The European journal of neuroscience. 2009; 29: 1663-1677
        • Mongeau R.
        • Miller G.A.
        • Chiang E.
        • Anderson D.J.
        Neural correlates of competing fear behaviors evoked by an innately aversive stimulus.
        The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003; 23: 3855-3868
        • Avale M.E.
        • Chabout J.
        • Pons S.
        • Serreau P.
        • De Chaumont F.
        • Olivo-Marin J.C.
        • et al.
        Prefrontal nicotinic receptors control novel social interaction between mice.
        Faseb Journal. 2011; 25: 2145-2155
        • Yizhar O.
        • Fenno L.E.
        • Prigge M.
        • Schneider F.
        • Davidson T.J.
        • O'Shea D.J.
        • et al.
        Neocortical excitation/inhibition balance in information processing and social dysfunction.
        Nature. 2011; 477: 171-178
        • Rudebeck P.H.
        • Walton M.E.
        • Millette B.H.
        • Shirley E.
        • Rushworth M.F.
        • Bannerman D.M.
        Distinct contributions of frontal areas to emotion and social behaviour in the rat.
        The European journal of neuroscience. 2007; 26: 2315-2326
        • Bicks L.K.
        • Koike H.
        • Akbarian S.
        • Morishita H.
        Prefrontal Cortex and Social Cognition in Mouse and Man.
        Front Psychol. 2015; 6: 1805
      2. Aly M, Turk-Browne, N.B. (2017): How Hippocampal Memory Shapes, and Is Shaped by, Attention. In: Hannula D, Duff, M., editor. The Hippocampus from Cells to Systems: Springer, Cham.

        • Li X.
        • Chen W.
        • Pan K.
        • Li H.
        • Pang P.
        • Guo Y.
        • et al.
        Serotonin receptor 2c-expressing cells in the ventral CA1 control attention via innervation of the Edinger-Westphal nucleus.
        Nat Neurosci. 2018; 21: 1239-1250
        • Rao R.P.
        • von Heimendahl M.
        • Bahr V.
        • Brecht M.
        Neuronal Responses to Conspecifics in the Ventral CA1.
        Cell Rep. 2019; 27: 3460-3472 e3463
        • Lubkemann R.
        • Eberhardt J.
        • Rohl F.W.
        • Janitzky K.
        • Nullmeier S.
        • Stork O.
        • et al.
        Identification and Characterization of GABAergic Projection Neurons from Ventral Hippocampus to Amygdala.
        Brain Sci. 2015; 5: 299-317
        • McDonald A.J.
        • Mott D.D.
        Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory.
        J Neurosci Res. 2017; 95: 797-820
        • Goode T.D.
        • Maren S.
        Role of the bed nucleus of the stria terminalis in aversive learning and memory.
        Learn Mem. 2017; 24: 480-491
        • Goode T.D.
        • Ressler R.L.
        • Acca G.M.
        • Miles O.W.
        • Maren S.
        Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals.
        Elife. 2019; (8)
        • Haufler D.
        • Nagy F.Z.
        • Pare D.
        Neuronal correlates of fear conditioning in the bed nucleus of the stria terminalis.
        Learn Mem. 2013; 20: 633-641
        • Maviel T.
        • Durkin T.P.
        • Menzaghi F.
        • Bontempi B.
        Sites of neocortical reorganization critical for remote spatial memory.
        Science. 2004; 305: 96-99
        • Squire L.R.
        • Genzel L.
        • Wixted J.T.
        • Morris R.G.
        Memory consolidation.
        Cold Spring Harb Perspect Biol. 2015; (7:a021766)
        • Preston A.R.
        • Eichenbaum H.
        Interplay of hippocampus and prefrontal cortex in memory.
        Current biology : CB. 2013; 23: R764-773
        • Kohara K.
        • Pignatelli M.
        • Rivest A.J.
        • Jung H.Y.
        • Kitamura T.
        • Suh J.
        • et al.
        Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.
        Nat Neurosci. 2014; 17: 269-279
        • Tamamaki N.
        • Abe K.
        • Nojyo Y.
        Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique.
        Brain research. 1988; 452: 255-272
        • Meira T.
        • Leroy F.
        • Buss E.W.
        • Oliva A.
        • Park J.
        • Siegelbaum S.A.
        A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics.
        Nat Commun. 2018; 9: 4163
        • Duranton C.
        • Bedossa T.
        • Gaunet F.
        Interspecific behavioural synchronization: dogs exhibit locomotor synchrony with humans.
        Sci Rep. 2017; 7: 12384