Advertisement

Etiopathogenic Models of Psychosis Spectrum Illnesses Must Resolve Four Key Features

      Etiopathogenic models for psychosis spectrum illnesses are converging on a number of key processes, such as the influence of specific genes on the synthesis of proteins important in synaptic functioning, alterations in how neurons respond to synaptic inputs and engage in synaptic pruning, and microcircuit dysfunction that leads to more global cortical information processing vulnerabilities. Disruptions in prefrontal operations then accumulate and propagate over time, interacting with environmental factors, developmental processes, and homeostatic mechanisms, eventually resulting in symptoms of psychosis and disability.
      However, there are 4 key features of psychosis spectrum illnesses that are of primary clinical relevance but have been difficult to assimilate into a single model and have thus far received little direct attention: 1) the bidirectionality of the causal influences for the emergence of psychosis, 2) the catastrophic clinical threshold seen in first episodes of psychosis and why it is irreversible in some individuals, 3) observed biotypes that are neurophysiologically distinct but clinically both convergent and divergent, and 4) a reconciliation of the role of striatal dopaminergic dysfunction with models of prefrontal cortical state instability.
      In this selective review, we briefly describe these 4 hallmark features and we argue that theoretically driven computational perspectives making use of both algorithmic and neurophysiologic models are needed to reduce this complexity and variability of psychosis spectrum illnesses in a principled manner.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schrode N.
        • Ho S.M.
        • Yamamuro K.
        • Dobbyn A.
        • Huckins L.
        • Matos M.R.
        • et al.
        Synergistic effects of common schizophrenia risk variants.
        Nat Genet. 2019; 51: 1475-1485
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Hoftman G.D.
        • Datta D.
        • Lewis D.A.
        Layer 3 excitatory and inhibitory circuitry in the prefrontal cortex: Developmental trajectories and alterations in schizophrenia.
        Biol Psychiatry. 2017; 81: 862-873
        • Teufel C.
        • Subramaniam N.
        • Dobler V.
        • Perez J.
        • Finnemann J.
        • Mehta P.R.
        • et al.
        Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals.
        Proc Natl Acad Sci U S A. 2015; 112: 13401-13406
        • Heinz A.
        • Murray G.K.
        • Schlagenhauf F.
        • Sterzer P.
        • Grace A.A.
        • Waltz J.A.
        Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia.
        Schizophr Bull. 2019; 45: 1092-1100
        • Krystal J.H.
        • Anticevic A.
        • Yang G.J.
        • Dragoi G.
        • Driesen N.R.
        • Wang X.J.
        • Murray J.D.
        Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective.
        Biol Psychiatry. 2017; 81: 874-885
        • McCutcheon R.A.
        • Krystal J.H.
        • Howes O.D.
        Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment.
        World Psychiatry. 2020; 19: 15-33
        • Marek S.
        • Tervo-Clemmens B.
        • Calabro F.J.
        • Montez D.F.
        • Kay B.P.
        • Hatoum A.S.
        • et al.
        Reproducible brain-wide association studies require thousands of individuals [published correction appears in Nature 2022; 605:E11].
        Nature. 2022; 603: 654-660
        • Redish A.D.
        • Kepecs A.
        • Anderson L.M.
        • Calvin O.L.
        • Grissom N.M.
        • Haynos A.F.
        • et al.
        Computational Validity: Using computation to translate behaviours across species.
        Philos Trans R Soc Lond B Biol Sci. 2022; 37720200525
      1. Redish A.D. Gordon J.A. Computational Psychiatry: New Perspectives on Mental Illness. MIT Press, Cambridge, MA2016
        • Levenstein D.
        • Alvarez V.A.
        • Amarasingham A.
        • Azab H.
        • Gerkin R.C.
        • Hasenstaub A.
        • et al.
        On the role of theory and modeling in neuroscience.
        arXiv [q-bio.NC]. 2020; https://doi.org/10.48550/arXiv.2003.13825
        • Nanou E.
        • Catterall W.A.
        Calcium channels, synaptic plasticity, and neuropsychiatric disease.
        Neuron. 2018; 98: 466-481
        • Flamand M.N.
        • Meyer K.D.
        The epitranscriptome and synaptic plasticity.
        Curr Opin Neurobiol. 2019; 59: 41-48
        • Hegde A.N.
        • Smith S.G.
        Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory.
        Learn Mem. 2019; 26: 307-317
        • Tien N.W.
        • Kerschensteiner D.
        Homeostatic plasticity in neural development.
        Neural Dev. 2018; 13: 9
        • Tononi G.
        • Cirelli C.
        Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration.
        Neuron. 2014; 81: 12-34
        • Lecomte T.
        • Potvin S.
        • Samson C.
        • Francoeur A.
        • Hache-Labelle C.
        • Gagné S.
        • et al.
        Predicting and preventing symptom onset and relapse in schizophrenia-A metareview of current empirical evidence.
        J Abnorm Psychol. 2019; 128: 840-854
        • van der Gaag M.
        • van den Berg D.
        • Ising H.
        CBT in the prevention of psychosis and other severe mental disorders in patients with an at risk mental state: A review and proposed next steps.
        Schizophr Res. 2019; 203: 88-93
        • Moritz S.
        • Klein J.P.
        • Lysaker P.H.
        • Mehl S.
        Metacognitive and cognitive-behavioral interventions for psychosis: New developments.
        Dialogues Clin Neurosci. 2019; 21: 309-317
        • Mason L.
        • Peters E.R.
        • Dima D.
        • Williams S.C.
        • Kumari V.
        Cognitive behavioral therapy normalizes functional connectivity for social threat in psychosis.
        Schizophr Bull. 2016; 42: 684-692
        • Ramsay I.S.
        • Fryer S.
        • Boos A.
        • Roach B.J.
        • Fisher M.
        • Loewy R.
        • et al.
        Response to targeted cognitive training correlates with change in thalamic volume in a randomized trial for early schizophrenia.
        Neuropsychopharmacology. 2018; 43: 590-597
        • Loewy R.
        • Fisher M.
        • Ma S.
        • Carter C.
        • Ragland J.D.
        • Niendam T.A.
        • et al.
        Durable cognitive gains and symptom improvement are observed in individuals with recent-onset schizophrenia 6 months after a randomized trial of auditory training completed remotely.
        Schizophr Bull. 2022; 48: 262-272
        • Morrison A.P.
        • Frame L.
        • Larkin W.
        Relationships between trauma and psychosis: A review and integration.
        Br J Clin Psychol. 2003; 42: 331-353
        • Gawęda Ł.
        • Göritz A.S.
        • Moritz S.
        Mediating role of aberrant salience and self-disturbances for the relationship between childhood trauma and psychotic-like experiences in the general population.
        Schizophr Res. 2019; 206: 149-156
        • Gawęda Ł.
        • Pionke R.
        • Hartmann J.
        • Nelson B.
        • Cechnicki A.
        • Frydecka D.
        Toward a complex network of risks for psychosis: Combining trauma, cognitive biases, depression, and psychotic-like experiences on a large sample of young adults.
        Schizophr Bull. 2021; 47: 395-404
        • Tomassi S.
        • Tosato S.
        Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma.
        Neurosci Biobehav Rev. 2017; 83: 226-237
        • Luigi M.
        • Dellazizzo L.
        • Giguère C.É.
        • Goulet M.H.
        • Dumais A.
        Shedding light on “the hole”: A systematic review and meta-analysis on adverse psychological effects and mortality following solitary confinement in correctional settings.
        Front Psychiatry. 2020; 11: 840
        • Tienari P.
        Interaction between genetic vulnerability and family environment: The Finnish adoptive family study of schizophrenia.
        Acta Psychiatr Scand. 1991; 84: 460-465
        • Padma T.V.
        Developing countries: The outcomes paradox.
        Nature. 2014; 508: S14-S15
        • Holtmaat A.
        • De Paola V.
        • Wilbrecht L.
        • Knott G.W.
        Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo.
        Behav Brain Res. 2008; 192: 20-25
        • Javitt D.C.
        • Sweet R.A.
        Auditory dysfunction in schizophrenia: Integrating clinical and basic features.
        Nat Rev Neurosci. 2015; 16: 535-550
        • Miley K.
        • Meyer-Kalos P.
        • Ma S.
        • Bond D.J.
        • Kummerfeld E.
        • Vinogradov S.
        Causal pathways to social and occupational functioning in the first episode of schizophrenia: Uncovering unmet treatment needs.
        Psychol Med. 2021; : 1-9
        • Miley K.
        • Fisher M.
        • Nahum M.
        • Howard E.
        • Rowlands A.
        • Brandrett B.
        • et al.
        Six month durability of targeted cognitive training supplemented with social cognition exercises in schizophrenia.
        Schizophr Res Cogn. 2019; 20100171
        • Hertz J.
        • Krogh A.
        • Palmer R.G.
        Introduction to the Theory of Neural Computation.
        Addison-Wesley Longman Publishing Co., Inc, Reading, MA1991
        • Pearson J.
        • Naselaris T.
        • Holmes E.A.
        • Kosslyn S.M.
        Mental imagery: Functional mechanisms and clinical applications.
        Trends Cogn Sci. 2015; 19: 590-602
        • Fuster J.M.
        The prefrontal cortex.
        4th ed. Elsevier/Academic Press, London, UK2008
        • Koechlin E.
        • Ody C.
        • Kouneiher F.
        The architecture of cognitive control in the human prefrontal cortex.
        Science. 2003; 302: 1181-1185
        • Friston K.
        Hierarchical models in the brain.
        PLoS Comput Biol. 2008; 4e1000211
        • Fukutomi M.
        • Carlson B.A.
        A history of corollary discharge: Contributions of mormyrid weakly electric fish.
        Front Integr Neurosci. 2020; 14: 42
        • Ford J.M.
        • Mathalon D.H.
        Efference copy, corollary discharge, predictive coding, and psychosis.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 764-767
        • Murray J.D.
        • Anticevic A.
        • Gancsos M.
        • Ichinose M.
        • Corlett P.R.
        • Krystal J.H.
        • Wang X.J.
        Linking microcircuit dysfunction to cognitive impairment: Effects of disinhibition associated with schizophrenia in a cortical working memory model.
        Cereb Cortex. 2014; 24: 859-872
        • Stein H.
        • Barbosa J.
        • Compte A.
        Towards biologically constrained attractor models of schizophrenia.
        Curr Opin Neurobiol. 2021; 70: 171-181
        • Calvin O.L.
        • Redish A.D.
        Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits.
        PLoS Comput Biol. 2021; 17e1008985
        • Rátkai A.
        • Tárnok K.
        • Aouad H.E.
        • Micska B.
        • Schlett K.
        • Szücs A.
        Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures.
        Sci Rep. 2021; 11: 3236
        • Kebir O.
        • Chaumette B.
        • Rivollier F.
        • Miozzo F.
        • Lemieux Perreault L.P.
        • Barhdadi A.
        • et al.
        Methylomic changes during conversion to psychosis.
        Mol Psychiatry. 2017; 22: 512-518
        • Fraguas D.
        • Díaz-Caneja C.M.
        • Ayora M.
        • Hernández-Álvarez F.
        • Rodríguez-Quiroga A.
        • Recio S.
        • et al.
        Oxidative stress and inflammation in first-episode psychosis: A systematic review and meta-analysis.
        Schizophr Bull. 2019; 45: 742-751
        • Cannon T.D.
        How schizophrenia develops: Cognitive and brain mechanisms underlying onset of psychosis.
        Trends Cogn Sci. 2015; 19: 744-756
        • Grent-’t-Jong T.
        • Gross J.
        • Goense J.
        • Wibral M.
        • Gajwani R.
        • Gumley A.I.
        • et al.
        Resting-state gamma-band power alterations in schizophrenia reveal E/I-balance abnormalities across illness-stages.
        Elife. 2018; 7e37799
        • Anticevic A.
        • Hu X.
        • Xiao Y.
        • Hu J.
        • Li F.
        • Bi F.
        • et al.
        Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change.
        J Neurosci. 2015; 35: 267-286
        • Durstewitz D.
        • Seamans J.K.
        The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia.
        Biol Psychiatry. 2008; 64: 739-749
        • Seamans J.K.
        • Yang C.R.
        The principal features and mechanisms of dopamine modulation in the prefrontal cortex [published correction appears in Prog Neurobiol 2004; 74:321.
        Prog Neurobiol. 2004; 74: 1-58
        • Adams R.A.
        • Stephan K.E.
        • Brown H.R.
        • Frith C.D.
        • Friston K.J.
        The computational anatomy of psychosis.
        Front Psychiatry. 2013; 4: 47
        • Friston K.J.
        • Redish A.D.
        • Gordon J.A.
        Computational nosology and precision psychiatry.
        Comput Psychiatr. 2017; 1: 2-23
        • Yang G.J.
        • Murray J.D.
        • Wang X.J.
        • Glahn D.C.
        • Pearlson G.D.
        • Repovs G.
        • et al.
        Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.
        Proc Natl Acad Sci U S A. 2016; 113: E219-E228
        • Heilbronner S.R.
        • Chafee M.V.
        Learning how neurons fail inside of networks: Nonhuman primates provide critical data for psychiatry.
        Neuron. 2019; 102: 21-26
        • Clementz B.A.
        • Sweeney J.A.
        • Hamm J.P.
        • Ivleva E.I.
        • Ethridge L.E.
        • Pearlson G.D.
        • et al.
        Identification of distinct psychosis biotypes using brain-based biomarkers [published correction appears in Am J Psychiatry 2016; 173:198].
        Am J Psychiatry. 2016; 173: 373-384
        • Ji J.L.
        • Helmer M.
        • Fonteneau C.
        • Burt J.B.
        • Tamayo Z.
        • Demšar J.
        • et al.
        Mapping brain-behavior space relationships along the psychosis spectrum [published correction appears in Elife 2022; 11:e79129].
        Elife. 2021; 10e66968
        • Clementz B.A.
        • Parker D.A.
        • Trotti R.L.
        • McDowell J.E.
        • Keedy S.K.
        • Keshavan M.S.
        • et al.
        Psychosis biotypes: Replication and validation from the B-SNIP consortium.
        Schizophr Bull. 2022; 48: 56-68
        • Forsyth J.K.
        • Lewis D.A.
        Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: An integrative model for diverse clinical features.
        Trends Cogn Sci. 2017; 21: 760-778
        • Clancy K.
        • Ding M.
        • Bernat E.
        • Schmidt N.B.
        • Li W.
        Restless “rest”: Intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.
        Brain. 2017; 140: 2041-2050
        • Fonken L.K.
        • Frank M.G.
        • Gaudet A.D.
        • Maier S.F.
        Stress and aging act through common mechanisms to elicit neuroinflammatory priming.
        Brain Behav Immun. 2018; 73: 133-148
        • Lizano P.
        • Lutz O.
        • Xu Y.
        • Rubin L.H.
        • Paskowitz L.
        • Lee A.M.
        • et al.
        Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis.
        Mol Psychiatry. 2021; 26: 3430-3443
        • Sun L.
        • Castellanos N.
        • Grützner C.
        • Koethe D.
        • Rivolta D.
        • Wibral M.
        • et al.
        Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naïve, first episode schizophrenia.
        Schizophr Res. 2013; 150: 519-525
        • Smith M.R.
        • Readhead B.
        • Dudley J.T.
        • Morishita H.
        Critical period plasticity-related transcriptional aberrations in schizophrenia and bipolar disorder.
        Schizophr Res. 2019; 207: 12-21
        • Aston-Jones G.
        • Cohen J.D.
        An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance.
        Annu Rev Neurosci. 2005; 28: 403-450
        • Compte A.
        • Brunel N.
        • Goldman-Rakic P.S.
        • Wang X.J.
        Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.
        Cereb Cortex. 2000; 10: 910-923
        • Amari S.
        Dynamics of pattern formation in lateral-inhibition type neural fields.
        Biol Cybern. 1977; 27: 77-87
        • MacDonald A.W.
        • Zick J.L.
        • Netoff T.I.
        • Chafee M.V.
        The computation of collapse: Can reliability engineering shed light on mental illness?.
        in: Redish A.D. Gordon J.A. Computational Psychiatry: New Perspectives on Mental Illness. 20. MIT Press, Cambridge, MA2016: 153
        • MacDonald III, A.W.
        • Zick J.L.
        • Chafee M.V.
        • Netoff T.I.
        Integrating insults: Using fault tree analysis to guide schizophrenia research across levels of analysis.
        Front Hum Neurosci. 2016; 9: 698
        • Totah N.
        • Akil H.
        • Huys Q.J.M.
        • Krystal J.H.
        • MacDonald III, A.W.
        • Maia T.V.
        • et al.
        Complexity and heterogeneity in psychiatric disorders.
        in: Redish A.D. Gordon J.A. Computational Psychiatry: New Perspectives on Mental Illness. MIT Press Scholarship Online, 2016: 33-60
        • McCutcheon R.A.
        • Abi-Dargham A.
        • Howes O.D.
        Schizophrenia, dopamine and the striatum: From biology to symptoms.
        Trends Neurosci. 2019; 42: 205-220
        • Howes O.D.
        • Bose S.K.
        • Turkheimer F.
        • Valli I.
        • Egerton A.
        • Valmaggia L.R.
        • et al.
        Dopamine synthesis capacity before onset of psychosis: A prospective [18F]-DOPA PET imaging study.
        Am J Psychiatry. 2011; 168: 1311-1317
        • Egerton A.
        • Grace A.A.
        • Stone J.
        • Bossong M.G.
        • Sand M.
        • McGuire P.
        Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development.
        Schizophr Res. 2020; 223: 59-70
        • Dienel S.J.
        • Lewis D.A.
        Alterations in cortical interneurons and cognitive function in schizophrenia.
        Neurobiol Dis. 2019; 131104208
        • Sellgren C.M.
        • Gracias J.
        • Watmuff B.
        • Biag J.D.
        • Thanos J.M.
        • Whittredge P.B.
        • et al.
        Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning.
        Nat Neurosci. 2019; 22: 374-385
        • Haarsma J.
        • Fletcher P.C.
        • Griffin J.D.
        • Taverne H.J.
        • Ziauddeen H.
        • Spencer T.J.
        • et al.
        Precision weighting of cortical unsigned prediction error signals benefits learning, is mediated by dopamine, and is impaired in psychosis [published correction appeared in Mol Psychiatry 2021; 26:5334.
        Mol Psychiatry. 2021; 26: 5320-5333
        • Jauhar S.
        • McCutcheon R.
        • Borgan F.
        • Veronese M.
        • Nour M.
        • Pepper F.
        • et al.
        The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: A cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study [published correction appears in Lancet Psychiatry 2018; 5:e28.
        Lancet Psychiatry. 2018; 5: 816-823
        • Reynolds J.N.J.
        • Avvisati R.
        • Dodson P.D.
        • Fisher S.D.
        • Oswald M.J.
        • Wickens J.R.
        • Zhang Y.F.
        Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum.
        Nat Commun. 2022; 13: 1296
        • Collins A.G.E.
        • Frank M.J.
        Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive.
        Psychol Rev. 2014; 121: 337-366
        • Berke J.D.
        What does dopamine mean?.
        Nat Neurosci. 2018; 21: 787-793
        • Hamid A.A.
        Dopaminergic specializations for flexible behavioral control: Linking levels of analysis and functional architectures.
        Curr Opin Behav Sci. 2021; 41: 175-184
        • Parker N.F.
        • Cameron C.M.
        • Taliaferro J.P.
        • Lee J.
        • Choi J.Y.
        • Davidson T.J.
        • et al.
        Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
        Nat Neurosci. 2016; 19: 845-854
        • Hamid A.A.
        • Frank M.J.
        • Moore C.I.
        Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment.
        Cell. 2021; 184: 2733-2749.e16
        • Bromberg-Martin E.S.
        • Matsumoto M.
        • Hikosaka O.
        Dopamine in motivational control: Rewarding, aversive, and alerting.
        Neuron. 2010; 68: 815-834
        • Menegas W.
        • Akiti K.
        • Amo R.
        • Uchida N.
        • Watabe-Uchida M.
        Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli.
        Nat Neurosci. 2018; 21: 1421-1430
        • Kutlu M.G.
        • Zachry J.E.
        • Melugin P.R.
        • Cajigas S.A.
        • Chevee M.F.
        • Kelly S.J.
        • et al.
        Dopamine release in the nucleus accumbens core signals perceived saliency.
        Curr Biol. 2021; 31: 4748-4761.e8
        • St Onge J.R.
        • Floresco S.B.
        Dopaminergic modulation of risk-based decision making.
        Neuropsychopharmacology. 2009; 34: 681-697
        • Schmack K.
        • Bosc M.
        • Ott T.
        • Sturgill J.F.
        • Kepecs A.
        Striatal dopamine mediates hallucination-like perception in mice.
        Science. 2021; 372eabf4740
        • Tanaka S.
        Dopaminergic control of working memory and its relevance to schizophrenia: A circuit dynamics perspective.
        Neuroscience. 2006; 139: 153-171
        • Tanaka S.
        Model-based parametric study of frontostriatal abnormalities in schizophrenia patients [published correction appears in BMC Psychiatry 2010; 10:93].
        BMC Psychiatry. 2010; 10: 17
        • Hintiryan H.
        • Foster N.N.
        • Bowman I.
        • Bay M.
        • Song M.Y.
        • Gou L.
        • et al.
        The mouse cortico-striatal projectome.
        Nat Neurosci. 2016; 19: 1100-1114
        • Hunnicutt B.J.
        • Jongbloets B.C.
        • Birdsong W.T.
        • Gertz K.J.
        • Zhong H.
        • Mao T.
        A comprehensive excitatory input map of the striatum reveals novel functional organization.
        Elife. 2016; 5e19103
        • Haber S.N.
        The primate basal ganglia: Parallel and integrative networks.
        J Chem Neuroanat. 2003; 26: 317-330
        • Ragozzino M.E.
        • Ragozzino K.E.
        • Mizumori S.J.Y.
        • Kesner R.P.
        Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning.
        Behav Neurosci. 2002; 116: 105-115
        • Regier P.S.
        • Amemiya S.
        • Redish A.D.
        Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task [published correction appears in J Neurophysiol 2020; 124:1308 and J Neurophysiol 2020; 124:2076].
        J Neurophysiol. 2015; 114: 1399-1416
        • Thorn C.A.
        • Atallah H.
        • Howe M.
        • Graybiel A.M.
        Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning.
        Neuron. 2010; 66: 781-795
        • Yin H.H.
        • Ostlund S.B.
        • Knowlton B.J.
        • Balleine B.W.
        The role of the dorsomedial striatum in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 513-523
        • Redish A.D.
        • Jensen S.
        • Johnson A.
        • Kurth-Nelson Z.
        Reconciling reinforcement learning models with behavioral extinction and renewal: Implications for addiction, relapse, and problem gambling [published correction appears in Psychol Rev 2009; 116:518].
        Psychol Rev. 2007; 114: 784-805
        • Hamid A.A.
        • Pettibone J.R.
        • Mabrouk O.S.
        • Hetrick V.L.
        • Schmidt R.
        • Vander Weele C.M.
        • et al.
        Mesolimbic dopamine signals the value of work.
        Nat Neurosci. 2016; 19: 117-126
        • Fiorillo C.D.
        • Tobler P.N.
        • Schultz W.
        Discrete coding of reward probability and uncertainty by dopamine neurons.
        Science. 2003; 299: 1898-1902
        • Morris G.
        • Arkadir D.
        • Nevet A.
        • Vaadia E.
        • Bergman H.
        Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons.
        Neuron. 2004; 43: 133-143
        • Zhou F.M.
        • Wilson C.J.
        • Dani J.A.
        Cholinergic interneuron characteristics and nicotinic properties in the striatum.
        J Neurobiol. 2002; 53: 590-605
        • Liu C.
        • Cai X.
        • Ritzau-Jost A.
        • Kramer P.F.
        • Li Y.
        • Khaliq Z.M.
        • et al.
        An action potential initiation mechanism in distal axons for the control of dopamine release.
        Science. 2022; 375: 1378-1385
        • Adrover M.F.
        • Shin J.H.
        • Quiroz C.
        • Ferré S.
        • Lemos J.C.
        • Alvarez V.A.
        Prefrontal cortex-driven dopamine signals in the striatum show unique spatial and pharmacological properties.
        J Neurosci. 2020; 40: 7510-7522
        • Braver T.S.
        • Cohen J.D.
        On the control of control: The role of dopamine in regulating prefrontal function and working memory.
        in: Monsell S. Driver J. Control of Cognitive Processes: Attention and Performance XVIII. MIT Press, Cambridge, MA2000
        • Goschke T.
        • Bolte A.
        Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility.
        Neuropsychologia. 2014; 62: 403-423
        • Sutton R.S.
        • Barto A.G.
        Reinforcement Learning: An Introduction.
        MIT Press, Cambridge, MA1998
        • Zilli E.A.
        • Hasselmo M.E.
        Modeling the role of working memory and episodic memory in behavioral tasks.
        Hippocampus. 2008; 18: 193-209
        • Redish A.D.
        • Johnson A.
        A computational model of craving and obsession.
        Ann N Y Acad Sci. 2007; 1104: 324-339
        • Cui G.
        • Jun S.B.
        • Jin X.
        • Pham M.D.
        • Vogel S.S.
        • Lovinger D.M.
        • Costa R.M.
        Concurrent activation of striatal direct and indirect pathways during action initiation.
        Nature. 2013; 494: 238-242
        • Winstanley C.A.
        • Robbins T.W.
        • Balleine B.W.
        • Brown J.W.
        • Büchel C.
        • Cools R.
        • et al.
        Search, goals and the brain.
        in: Todd P.M. Hills T.T. Robbins T.W. Cognitive Search: Evolution, Algorithms, and the Brain. MIT Press, Cambridge2012
        • Hills T.T.
        • Todd P.M.
        • Goldstone R.L.
        Search in external and internal spaces: Evidence for generalized cognitive search processes.
        Psychol Sci. 2008; 19: 802-808
        • Shadlen M.N.
        • Shohamy D.
        Decision making and sequential sampling from memory.
        Neuron. 2016; 90: 927-939
        • Stewart N.
        • Chater N.
        • Brown G.D.A.
        Decision by sampling.
        Cogn Psychol. 2006; 53: 1-26
        • Bansal S.
        • Ford J.M.
        • Spering M.
        The function and failure of sensory predictions.
        Ann N Y Acad Sci. 2018; 1426: 199-220
        • Fenton A.A.
        Excitation-inhibition discoordination in rodent models of mental disorders.
        Biol Psychiatry. 2015; 77: 1079-1088
        • Zick J.L.
        • Blackman R.K.
        • Crowe D.A.
        • Amirikian B.
        • DeNicola A.L.
        • Netoff T.I.
        • Chafee M.V.
        Blocking NMDAR disrupts spike timing and decouples monkey prefrontal circuits: Implications for activity-dependent disconnection in schizophrenia.
        Neuron. 2018; 98: 1243-1255.e5