Advertisement

Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells

      Abstract

      Background

      Neuropeptides are contained in nearly every neuron in the central nervous system and can be released not only from nerve terminals but also from somatodendritic sites. Cholecystokinin (CCK), among the most abundant neuropeptides in the brain, is expressed in the majority of midbrain dopamine neurons. Despite this high expression, CCK function within the ventral tegmental area (VTA) is not well understood.

      Methods

      We confirmed CCK expression in VTA dopamine neurons through immunohistochemistry and in situ hybridization and detected optogenetically induced CCK release using an enzyme-linked immunosorbent assay. To investigate whether CCK modulates VTA circuit activity, we used whole-cell patch clamp recordings in mouse brain slices. We infused CCK locally in vivo and tested food intake and locomotion in fasted mice. We also used in vivo fiber photometry to measure Ca2+ transients in dopamine neurons during feeding.

      Results

      Here we report that VTA dopamine neurons release CCK from somatodendritic regions, where it triggers long-term potentiation of GABAergic (gamma-aminobutyric acidergic) synapses. The somatodendritic release occurs during trains of optogenetic stimuli or prolonged but modest depolarization and is dependent on synaptotagmin-7 and T-type Ca2+ channels. Depolarization-induced long-term potentiation is blocked by a CCK2 receptor antagonist and mimicked by exogenous CCK. Local infusion of CCK in vivo inhibits food consumption and decreases distance traveled in an open field test. Furthermore, intra-VTA–infused CCK reduced dopamine cell Ca2+ signals during food consumption after an overnight fast and was correlated with reduced food intake.

      Conclusions

      Our experiments introduce somatodendritic neuropeptide release as a previously unknown feedback regulator of VTA dopamine cell excitability and dopamine-related behaviors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith S.J.
        • Hawrylycz M.
        • Rossier J.
        • Sümbül U.
        New light on cortical neuropeptides and synaptic network plasticity.
        Curr Opin Neurobiol. 2020; 63: 176-188
        • Ludwig M.
        • Leng G.
        Dendritic peptide release and peptide-dependent behaviours.
        Nat Rev Neurosci. 2006; 7: 126-136
        • Wagner J.J.
        • Terman G.W.
        • Chavkin C.
        Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus.
        Nature. 1993; 363: 451-454
        • Krawczyk M.
        • Mason X.
        • DeBacker J.
        • Sharma R.
        • Normandeau C.P.
        • Hawken E.R.
        • et al.
        D1 dopamine receptor-mediated LTP at GABA synapses encodes motivation to self-administer cocaine in rats.
        J Neurosci. 2013; 33: 11960-11971
        • Crosby K.M.
        • Baimoukhametova D.V.
        • Bains J.S.
        • Pittman Q.J.
        Postsynaptic depolarization enhances GABA drive to dorsomedial hypothalamic neurons through somatodendritic cholecystokinin release.
        J Neurosci. 2015; 35: 13160-13170
        • Crosby K.M.
        • Murphy-Royal C.
        • Wilson S.A.
        • Gordon G.R.
        • Bains J.S.
        • Pittman Q.J.
        Cholecystokinin switches the plasticity of GABA synapses in the dorsomedial hypothalamus via astrocytic ATP release.
        J Neurosci. 2018; 38: 8515-8525
        • Brown C.H.
        • Ludwig M.
        • Tasker J.G.
        • Stern J.E.
        Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation.
        J Neuroendocrinol. 2020; 32e12856
        • Hökfelt T.
        • Barde S.
        • Xu Z.D.
        • Kuteeva E.
        • Rüegg J.
        • Le Maitre E.
        • et al.
        Neuropeptide and small transmitter coexistence: Fundamental studies and relevance to mental illness.
        Front Neural Circuits. 2018; 12: 106
        • Vila-Porcile E.
        • Xu Z.Q.
        • Mailly P.
        • Nagy F.
        • Calas A.
        • Hökfelt T.
        • Landry M.
        Dendritic synthesis and release of the neuropeptide galanin: Morphological evidence from studies on rat locus coeruleus neurons.
        J Comp Neurol. 2009; 516: 199-212
        • Chen X.
        • Li X.
        • Wong Y.T.
        • Zheng X.
        • Wang H.
        • Peng Y.
        • et al.
        Cholecystokinin release triggered by NMDA receptors produces LTP and sound-sound associative memory.
        Proc Natl Acad Sci U S A. 2019; 116: 6397-6406
        • Ludwig M.
        • Pittman Q.J.
        Talking back: Dendritic neurotransmitter release.
        Trends Neurosci. 2003; 26: 255-261
        • Lipka J.
        • Kapitein L.C.
        • Jaworski J.
        • Hoogenraad C.C.
        Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites.
        EMBO J. 2016; 35: 302-318
        • Zahn T.R.
        • Angleson J.K.
        • MacMorris M.A.
        • Domke E.
        • Hutton J.F.
        • Schwartz C.
        • Hutton J.C.
        Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104.
        Traffic. 2004; 5: 544-559
        • Persoon C.M.
        • Moro A.
        • Nassal J.P.
        • Farina M.
        • Broeke J.H.
        • Arora S.
        • et al.
        Pool size estimations for dense-core vesicles in mammalian CNS neurons.
        EMBO J. 2018; 37e99672
        • Cheramy A.
        • Leviel V.
        • Glowinski J.
        Dendritic release of dopamine in the substantia nigra.
        Nature. 1981; 289: 537-542
        • Crawley J.N.
        Comparative distribution of cholecystokinin and other neuropeptides. Why is this peptide different from all other peptides?.
        Ann N Y Acad Sci. 1985; 448: 1-8
        • Rehfeld J.F.
        Cholecystokinin-from local gut hormone to ubiquitous messenger.
        Front Endocrinol (Lausanne). 2017; 8: 47
        • Hökfelt T.
        • Skirboll L.
        • Rehfeld J.F.
        • Goldstein M.
        • Markey K.
        • Dann O.
        A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing.
        Neuroscience. 1980; 5: 2093-2124
        • Hökfelt T.
        • Holets V.R.
        • Staines W.
        • Meister B.
        • Melander T.
        • Schalling M.
        • et al.
        Coexistence of neuronal messengers—An overview.
        Prog Brain Res. 1986; 68: 33-70
        • Seroogy K.
        • Ceccatelli S.
        • Schalling M.
        • Hökfelt T.
        • Frey P.
        • Walsh J.
        • et al.
        A subpopulation of dopaminergic neurons in rat ventral mesencephalon contains both neurotensin and cholecystokinin.
        Brain Res. 1988; 455: 88-98
        • Jayaraman A.
        • Nishimori T.
        • Dobner P.
        • Uhl G.R.
        Cholecystokinin and neurotensin mRNAs are differentially expressed in subnuclei of the ventral tegmental area.
        J Comp Neurol. 1990; 296: 291-302
        • Schalling M.
        • Friberg K.
        • Seroogy K.
        • Riederer P.
        • Bird E.
        • Schiffmann S.N.
        • et al.
        Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia.
        Proc Natl Acad Sci U S A. 1990; 87: 8427-8431
        • Crawley J.N.
        • Corwin R.L.
        Biological actions of cholecystokinin.
        Peptides. 1994; 15: 731-755
        • Heymann G.
        • Jo Y.S.
        • Reichard K.L.
        • McFarland N.
        • Chavkin C.
        • Palmiter R.D.
        • et al.
        Synergy of distinct dopamine projection populations in behavioral reinforcement.
        Neuron. 2020; 105: 909-920.e5
        • Berke J.D.
        What does dopamine mean?.
        Nat Neurosci. 2018; 21: 787-793
        • Salamone J.D.
        • Correa M.
        The mysterious motivational functions of mesolimbic dopamine.
        Neuron. 2012; 76: 470-485
        • Berridge K.C.
        The debate over dopamine’s role in reward: The case for incentive salience.
        Psychopharmacology (Berl). 2007; 191: 391-431
        • Friedman A.
        Neuroscience. Jump-starting natural resilience reverses stress susceptibility.
        Science. 2014; 346: 555
        • Popescu A.T.
        • Zhou M.R.
        • Poo M.M.
        Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.
        Proc Natl Acad Sci U S A. 2016; 113: E3169-E3176
        • Howe M.W.
        • Dombeck D.A.
        Rapid signalling in distinct dopaminergic axons during locomotion and reward.
        Nature. 2016; 535: 505-510
        • Cox J.
        • Witten I.B.
        Striatal circuits for reward learning and decision-making.
        Nat Rev Neurosci. 2019; 20: 482-494
        • Beckstead M.J.
        • Williams J.T.
        Long-term depression of a dopamine IPSC.
        J Neurosci. 2007; 27: 2074-2080
        • Polter A.M.
        • Kauer J.A.
        Stress and VTA synapses: Implications for addiction and depression.
        Eur J Neurosci. 2014; 39: 1179-1188
        • Xin W.
        • Edwards N.
        • Bonci A.
        VTA dopamine neuron plasticity – The unusual suspects.
        Eur J Neurosci. 2016; 44: 2975-2983
        • Simmons D.V.
        • Petko A.K.
        • Paladini C.A.
        Differential expression of long-term potentiation among identified inhibitory inputs to dopamine neurons.
        J Neurophysiol. 2017; 118: 1998-2008
        • St Laurent R.
        • Kauer J.
        Synaptic plasticity at inhibitory synapses in the ventral tegmental area depends upon stimulation site.
        eNeuro. 2019; 6 (ENEURO.0137-19.2019)
        • St Laurent R.
        • Martinez Damonte V.
        • Tsuda A.C.
        • Kauer J.A.
        Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity.
        Neuron. 2020; 106: 624-636.e4
        • Ludwig M.
        • Apps D.
        • Menzies J.
        • Patel J.C.
        • Rice M.E.
        Dendritic release of neurotransmitters.
        Compr Physiol. 2016; 7: 235-252
        • Perez-Reyes E.
        Molecular physiology of low-voltage-activated t-type calcium channels.
        Physiol Rev. 2003; 83: 117-161
        • Maxwell S.L.
        • Ho H.Y.
        • Kuehner E.
        • Zhao S.
        • Li M.
        Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development.
        Dev Biol. 2005; 282: 467-479
        • Freeman A.S.
        • Chiodo L.A.
        • Lentz S.I.
        • Wade K.
        • Bannon M.J.
        Release of cholecystokinin from rat midbrain slices and modulatory effect of D2DA receptor stimulation.
        Brain Res. 1991; 555: 281-287
        • Evans R.C.
        • Zhu M.
        • Khaliq Z.M.
        Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-type calcium channels.
        J Neurosci. 2017; 37: 3704-3720
        • Cain S.M.
        • Snutch T.P.
        Contributions of T-type calcium channel isoforms to neuronal firing.
        Channels (Austin). 2010; 4: 475-482
        • Tracy M.E.
        • Tesic V.
        • Stamenic T.T.
        • Joksimovic S.M.
        • Busquet N.
        • Jevtovic-Todorovic V.
        • Todorovic S.M.
        CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.
        Neuropharmacology. 2018; 135: 343-354
        • Zamponi G.W.
        • Bourinet E.
        • Snutch T.P.
        Nickel block of a family of neuronal calcium channels: Subtype- and subunit-dependent action at multiple sites.
        J Membr Biol. 1996; 151: 77-90
        • Lee J.H.
        • Gomora J.C.
        • Cribbs L.L.
        • Perez-Reyes E.
        Nickel block of three cloned T-type calcium channels: Low concentrations selectively block alpha1H.
        Biophys J. 1999; 77: 3034-3042
        • Kennedy M.J.
        • Ehlers M.D.
        Mechanisms and function of dendritic exocytosis.
        Neuron. 2011; 69: 856-875
        • Mendez J.A.
        • Bourque M.J.
        • Fasano C.
        • Kortleven C.
        • Trudeau L.E.
        Somatodendritic dopamine release requires synaptotagmin 4 and 7 and the participation of voltage-gated calcium channels.
        J Biol Chem. 2011; 286: 23928-23937
        • Zhang Z.
        • Bhalla A.
        • Dean C.
        • Chapman E.R.
        • Jackson M.B.
        Synaptotagmin IV: A multifunctional regulator of peptidergic nerve terminals.
        Nat Neurosci. 2009; 12: 163-171
        • Delignat-Lavaud B.
        • Ducrot C.
        • Kouwenhoven W.
        • Feller N.
        • Trudeau L.É.
        Implication of Synaptotagmins 4 and 7 in Activity-Dependent Somatodendritic Dopamine Release.
        Open Biol. 2022; 12210339
        • Poulin J.F.
        • Caronia G.
        • Hofer C.
        • Cui Q.
        • Helm B.
        • Ramakrishnan C.
        • et al.
        Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches.
        Nat Neurosci. 2018; 21: 1260-1271
        • Bayer V.E.
        • Pickel V.M.
        Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: Relationship between immunolabeling density and neuronal associations.
        J Neurosci. 1990; 10: 2996-3013
        • Deutch A.Y.
        • Goldstein M.
        • Baldino Jr., F.
        • Roth R.H.
        Telencephalic projections of the A8 dopamine cell group.
        Ann N Y Acad Sci. 1988; 537: 27-50
        • Dolphin A.C.
        • Lee A.
        Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release.
        Nat Rev Neurosci. 2020; 21: 213-229
        • Dore R.
        • Krotenko R.
        • Reising J.P.
        • Murru L.
        • Sundaram S.M.
        • Di Spiezio A.
        • et al.
        Nesfatin-1 decreases the motivational and rewarding value of food.
        Neuropsychopharmacology. 2020; 45: 1645-1655
        • Perez-Bonilla P.
        • Santiago-Colon K.
        • Matasovsky J.
        • Ramirez-Virella J.
        • Khan R.
        • Garver H.
        • et al.
        Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss.
        Neuropharmacology. 2021; 195108639
        • Wolfart J.
        • Roeper J.
        Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons [published correction appears in J Neurosci 2002;22:5250].
        J Neurosci. 2002; 22: 3404-3413
        • Banerjee A.
        • Lee J.
        • Nemcova P.
        • Liu C.
        • Kaeser P.S.
        Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release.
        Elife. 2020; 9e58359
        • Frankfurt M.
        • Siegel R.A.
        • Sim I.
        • Wuttke W.
        Cholecystokinin and substance P concentrations in discrete areas of the rat brain: Sex differences.
        Brain Res. 1985; 358: 53-58
        • Frankfurt M.
        • Siegel R.A.
        • Sim I.
        • Wuttke W.
        Estrous cycle variations in cholecystokinin and substance P concentrations in discrete areas of the rat brain.
        Neuroendocrinology. 1986; 42: 226-231
        • Hill D.R.
        • Woodruff G.N.
        Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260.
        Brain Res. 1990; 526: 276-283
        • Dufresne M.
        • Seva C.
        • Fourmy D.
        Cholecystokinin and gastrin receptors.
        Physiol Rev. 2006; 86: 805-847
        • Gaudreau P.
        • Quirion R.
        • St-Pierre S.
        • Pert C.B.
        Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin.
        Peptides. 1983; 4: 755-762
        • Pélaprat D.
        • Broer Y.
        • Studler J.M.
        • Peschanski M.
        • Tassin J.P.
        • Glowinski J.
        • et al.
        Autoradiography of CCK receptors in the rat brain using [(3)H]Boc[Nle(28)(31)]CCK(27)-(33) and [(125)I]bolton-hunter CCK(8). Functional significance of subregional distributions.
        Neurochem Int. 1987; 10: 495-508
        • Niehoff D.L.
        Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125I-Bolton-Hunter-CCK8.
        Peptides. 1989; 10: 265-274
        • Honda T.
        • Wada E.
        • Battey J.F.
        • Wank S.A.
        Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain.
        Mol Cell Neurosci. 1993; 4: 143-154
        • Dacher M.
        • Nugent F.S.
        Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area.
        Neuropharmacology. 2011; 61: 1166-1171
        • Beckstead M.J.
        • Grandy D.K.
        • Wickman K.
        • Williams J.T.
        Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons.
        Neuron. 2004; 42: 939-946
        • Delignat-Lavaud B.
        • Kano J.
        • Ducrot C.
        • Massé I.
        • Mukherjee S.
        • Giguère N.
        • et al.
        The Calcium Sensor synaptotagmin-1 Is Critical for Phasic Axonal Dopamine Release in the Striatum and Mesencephalon, but Is Dispensable for Basic Motor Behaviors in Mice.
        bioRxiv. 2021; https://doi.org/10.1101/2021.09.15.460511
        • Hikima T.
        • Lee C.R.
        • Witkovsky P.
        • Chesler J.
        • Ichtchenko K.
        • Rice M.E.
        Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron.
        Cell Rep. 2021; 35108951
        • Berridge M.J.
        Neuronal calcium signaling.
        Neuron. 1998; 21: 13-26
        • Rose C.R.
        • Konnerth A.
        Stores not just for storage. Intracellular calcium release and synaptic plasticity.
        Neuron. 2001; 31: 519-522
        • Tawfik B.
        • Martins J.S.
        • Houy S.
        • Imig C.
        • Pinheiro P.S.
        • Wojcik S.M.
        • et al.
        Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming.
        Elife. 2021; 10e64527
        • Crivellato E.
        • Nico B.
        • Ribatti D.
        The chromaffin vesicle: Advances in understanding the composition of a versatile, multifunctional secretory organelle.
        Anat Rec (Hoboken). 2008; 291: 1587-1602
        • Winkler H.
        • Westhead E.
        The molecular organization of adrenal chromaffin granules.
        Neuroscience. 1980; 5: 1803-1823
        • Chen B.T.
        • Moran K.A.
        • Avshalumov M.V.
        • Rice M.E.
        Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
        J Neurochem. 2006; 96: 645-655
        • Ford C.P.
        • Beckstead M.J.
        • Williams J.T.
        Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
        J Neurophysiol. 2007; 97: 883-891
        • Ford C.P.
        • Gantz S.C.
        • Phillips P.E.
        • Williams J.T.
        Control of extracellular dopamine at dendrite and axon terminals.
        J Neurosci. 2010; 30: 6975-6983
        • Diana M.A.
        • Marty A.
        Endocannabinoid-mediated short-term synaptic plasticity: Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE).
        Br J Pharmacol. 2004; 142: 9-19
        • Heifets B.D.
        • Castillo P.E.
        Endocannabinoid signaling and long-term synaptic plasticity.
        Annu Rev Physiol. 2009; 71: 283-306
        • Jhou T.C.
        • Fields H.L.
        • Baxter M.G.
        • Saper C.B.
        • Holland P.C.
        The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses.
        Neuron. 2009; 61: 786-800
        • Markovic T.
        • Pedersen C.E.
        • Massaly N.
        • Vachez Y.M.
        • Ruyle B.
        • Murphy C.A.
        • et al.
        Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior.
        Nat Neurosci. 2021; 24: 1601-1613
        • Soden M.E.
        • Chung A.S.
        • Cuevas B.
        • Resnick J.M.
        • Awatramani R.
        • Zweifel L.S.
        Anatomic resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs.
        Nat Neurosci. 2020; 23: 968-980
        • Faget L.
        • Osakada F.
        • Duan J.
        • Ressler R.
        • Johnson A.B.
        • Proudfoot J.A.
        • et al.
        Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area.
        Cell Rep. 2016; 15: 2796-2808
        • Beier K.T.
        • Gao X.J.
        • Xie S.
        • DeLoach K.E.
        • Malenka R.C.
        • Luo L.
        Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input–output relations.
        Cell Rep. 2019; 26: 159-167.e6
        • Beier K.T.
        • Steinberg E.E.
        • DeLoach K.E.
        • Xie S.
        • Miyamichi K.
        • Schwarz L.
        • et al.
        Circuit architecture of VTA dopamine neurons revealed by systematic input–output mapping.
        Cell. 2015; 162: 622-634
        • Zahm D.S.
        • Heimer L.
        Two transpallidal pathways originating in the rat nucleus accumbens.
        J Comp Neurol. 1990; 302: 437-446
        • Kalivas P.W.
        • Churchill L.
        • Klitenick M.A.
        GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area.
        Neuroscience. 1993; 57: 1047-1060
        • Skirboll L.R.
        • Grace A.A.
        • Hommer D.W.
        • Rehfeld J.
        • Goldstein M.
        • Hökfelt T.
        • Bunney B.S.
        Peptide-monoamine coexistence: Studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons.
        Neuroscience. 1981; 6: 2111-2124
        • Brodie M.S.
        • Dunwiddie T.V.
        Cholecystokinin potentiates dopamine inhibition of mesencephalic dopamine neurons in vitro.
        Brain Res. 1987; 425: 106-113
        • Stittsworth Jr., J.D.
        • Mueller A.L.
        Cholecystokinin octapeptide potentiates the inhibitory response mediated by D2 dopamine receptors in slices of the ventral tegmental area of the brain in the rat.
        Neuropharmacology. 1990; 29: 119-127
        • Artaud F.
        • Baruch P.
        • Stutzmann J.M.
        • Saffroy M.
        • Godeheu G.
        • Barbeito L.
        • et al.
        Cholecystokinin: Corelease with dopamine from nigrostriatal neurons in the cat.
        Eur J Neurosci. 1989; 1: 162-171
        • Zhou Q.Y.
        • Palmiter R.D.
        Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic.
        Cell. 1995; 83: 1197-1209
        • van Zessen R.
        • Phillips J.L.
        • Budygin E.A.
        • Stuber G.D.
        Activation of VTA GABA neurons disrupts reward consumption.
        Neuron. 2012; 73: 1184-1194
        • Mikhailova M.A.
        • Bass C.E.
        • Grinevich V.P.
        • Chappell A.M.
        • Deal A.L.
        • Bonin K.D.
        • et al.
        Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.
        Neuroscience. 2016; 333: 54-64
        • Boekhoudt L.
        • Roelofs T.J.M.
        • de Jong J.W.
        • de Leeuw A.E.
        • Luijendijk M.C.M.
        • Wolterink-Donselaar I.G.
        • et al.
        Does activation of midbrain dopamine neurons promote or reduce feeding?.
        Int J Obes (Lond). 2017; 41: 1131-1140
        • Sandhu E.C.
        • Fernando A.B.P.
        • Irvine E.E.
        • Tossell K.
        • Kokkinou M.
        • Glegola J.
        • et al.
        Phasic stimulation of midbrain dopamine neuron activity reduces salt consumption.
        eNeuro. 2018; 5 (ENEURO.0064-18.2018)
        • Blevins J.E.
        • Hamel F.G.
        • Fairbairn E.
        • Stanley B.G.
        • Reidelberger R.D.
        Effects of paraventricular nucleus injection of CCK-8 on plasma CCK-8 levels in rats.
        Brain Res. 2000; 860: 11-20
        • May A.A.
        • Liu M.
        • Woods S.C.
        • Begg D.P.
        CCK increases the transport of insulin into the brain.
        Physiol Behav. 2016; 165: 392-397
        • Labouèbe G.
        • Liu S.
        • Dias C.
        • Zou H.
        • Wong J.C.
        • Karunakaran S.
        • et al.
        Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.
        Nat Neurosci. 2013; 16: 300-308
        • Liu S.
        • Globa A.K.
        • Mills F.
        • Naef L.
        • Qiao M.
        • Bamji S.X.
        • Borgland S.L.
        Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA.
        Proc Natl Acad Sci U S A. 2016; 113: 2520-2525
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Savasta M.
        • Ruberte E.
        • Palacios J.M.
        • Mengod G.
        The colocalization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined by in situ hybridization.
        Neuroscience. 1989; 29: 363-369
        • He F.
        • Zhang P.
        • Zhang Q.
        • Qi G.
        • Cai H.
        • Li T.
        • et al.
        Dopaminergic projection from ventral tegmental area to substantia nigra pars reticulata mediates chronic social defeat stress-induced hypolocomotion.
        Mol Neurobiol. 2021; 58: 5635-5648
        • Westerink B.H.
        • Teisman A.
        • de Vries J.B.
        Increase in dopamine release from the nucleus accumbens in response to feeding: A model to study interactions between drugs and naturally activated dopaminergic neurons in the rat brain.
        Naunyn Schmiedebergs Arch Pharmacol. 1994; 349: 230-235
        • Pieribone V.A.
        • Xu Z.Q.
        • Zhang X.
        • Grillner S.
        • Bartfai T.
        • Hökfelt T.
        Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice.
        Neuroscience. 1995; 64: 861-874
        • Sun Q.Q.
        • Baraban S.C.
        • Prince D.A.
        • Huguenard J.R.
        Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus.
        J Neurosci. 2003; 23: 9639-9649