Advertisement

Rapid Eye Movement Sleep Engages Melanin-Concentrating Hormone Neurons to Reduce Cocaine Seeking

      Abstract

      Background

      Persistent sleep disruptions following withdrawal from abused drugs may hold keys to battle drug relapse. It is posited that there may be sleep signatures that predict relapse propensity, identifying which may open new avenues for treating substance use disorders.

      Methods

      We trained male rats (approximately postnatal day 56) to self-administer cocaine. After long-term drug withdrawal (approximately postnatal day 100), we examined the correlations between the intensity of cocaine seeking and key sleep features. To test for causal relationships, we then used behavioral, chemogenetic, or optogenetic methods to selectively increase rapid eye movement sleep (REMS) and measured behavioral and electrophysiological outcomes to probe for cellular and circuit mechanisms underlying REMS-mediated regulation of cocaine seeking.

      Results

      A selective set of REMS features was preferentially associated with the intensity of cue-induced cocaine seeking after drug withdrawal. Moreover, selectively increasing REMS time and continuity by environmental warming attenuated a withdrawal time-dependent intensification of cocaine seeking, or incubation of cocaine craving, suggesting that REMS may benefit withdrawal. Warming increased the activity of lateral hypothalamic melanin-concentrating hormone (MCH) neurons selectively during prolonged REMS episodes and counteracted cocaine-induced synaptic accumulation of calcium-permeable AMPA receptors in the nucleus accumbens—a critical substrate for incubation. Finally, the warming effects were partly mimicked by chemogenetic or optogenetic stimulations of MCH neurons during sleep, or intra-accumbens infusions of MCH peptide during the rat’s inactive phase.

      Conclusions

      REMS may encode individual vulnerability to relapse, and MCH neuron activities can be selectively targeted during REMS to reduce drug relapse.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hunt W.A.
        • Barnett L.W.
        • Branch L.G.
        Relapse rates in addiction programs.
        J Clin Psychol. 1971; 27: 455-456
        • McLellan A.T.
        • Lewis D.C.
        • O'Brien C.P.
        • Kleber H.D.
        Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation.
        JAMA. 2000; 284: 1689-1695
        • Angarita G.A.
        • Emadi N.
        • Hodges S.
        • Morgan P.T.
        Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: A comprehensive review.
        Addict Sci Clin Pract. 2016; 11: 9
        • Jaehne A.
        • Unbehaun T.
        • Feige B.
        • Cohrs S.
        • Rodenbeck A.
        • Schutz A.L.
        • et al.
        Sleep changes in smokers before, during and 3 months after nicotine withdrawal.
        Addict Biol. 2015; 20: 747-755
        • Greenwald M.K.
        • Moses T.E.H.
        • Roehrs T.A.
        At the intersection of sleep deficiency and opioid use: Mechanisms and therapeutic opportunities.
        Transl Res. 2021; 234: 58-73
        • Eacret D.
        • Veasey S.C.
        • Blendy J.A.
        Bidirectional relationship between opioids and disrupted sleep: Putative mechanisms.
        Mol Pharmacol. 2020; 98: 445-453
        • Chen B.
        • Wang Y.
        • Liu X.
        • Liu Z.
        • Dong Y.
        • Huang Y.H.
        Sleep regulates incubation of cocaine craving.
        J Neurosci. 2015; 35: 13300-13310
        • Logan R.W.
        • Hasler B.P.
        • Forbes E.E.
        • Franzen P.L.
        • Torregrossa M.M.
        • Huang Y.H.
        • et al.
        Impact of sleep and circadian rhythms on addiction vulnerability in adolescents.
        Biol Psychiatry. 2018; 83: 987-996
        • Malcolm R.
        • Myrick L.H.
        • Veatch L.M.
        • Boyle E.
        • Randall P.K.
        Self-reported sleep, sleepiness, and repeated alcohol withdrawals: A randomized, double blind, controlled comparison of lorazepam vs gabapentin.
        J Clin Sleep Med. 2007; 3: 24-32
        • Puhl M.D.
        • Boisvert M.
        • Guan Z.
        • Fang J.
        • Grigson P.S.
        A novel model of chronic sleep restriction reveals an increase in the perceived incentive reward value of cocaine in high drug-taking rats.
        Pharmacol Biochem Behav. 2013; 109: 8-15
        • Puhl M.D.
        • Fang J.
        • Grigson P.S.
        Acute sleep deprivation increases the rate and efficiency of cocaine self-administration, but not the perceived value of cocaine reward in rats.
        Pharmacol Biochem Behav. 2009; 94: 262-270
        • Roehrs T.
        • Johanson C.E.
        • Meixner R.
        • Turner L.
        • Roth T.
        Reinforcing and subjective effects of methylphenidate: Dose and time in bed.
        Exp Clin Psychopharmacol. 2004; 12: 180-189
        • Teplin D.
        • Raz B.
        • Daiter J.
        • Varenbut M.
        • Tyrrell M.
        Screening for substance use patterns among patients referred for a variety of sleep complaints.
        Am J Drug Alcohol Abuse. 2006; 32: 111-120
        • Zhao D.
        • Zhang M.
        • Tian W.
        • Cao X.
        • Yin L.
        • Liu Y.
        • et al.
        Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder.
        Mol Psychiatry. 2021; 26: 6198-6208
      1. Guo R, Vaughan DT, Rojo ALA, Huang YH (2022): Sleep-mediated regulation of reward circuits: Implications in substance use disorders [published online ahead of print Jun 16]. Neuropsychopharmacology.

        • Abel T.
        • Havekes R.
        • Saletin J.M.
        • Walker M.P.
        Sleep, plasticity and memory from molecules to whole-brain networks.
        Curr Biol. 2013; 23: R774-R788
        • Baran B.
        • Pace-Schott E.F.
        • Ericson C.
        • Spencer R.M.
        Processing of emotional reactivity and emotional memory over sleep.
        J Neurosci. 2012; 32: 1035-1042
        • Gujar N.
        • McDonald S.A.
        • Nishida M.
        • Walker M.P.
        A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions.
        Cereb Cortex. 2011; 21: 115-123
        • Siegel J.M.
        Clues to the functions of mammalian sleep.
        Nature. 2005; 437: 1264-1271
        • Siegel J.M.
        REM sleep: A biological and psychological paradox.
        Sleep Med Rev. 2011; 15: 139-142
        • Vyazovskiy V.V.
        • Delogu A.
        NREM and REM sleep: Complementary roles in recovery after wakefulness.
        Neuroscientist. 2014; 20: 203-219
        • Kowatch R.A.
        • Schnoll S.S.
        • Knisely J.S.
        • Green D.
        • Elswick R.K.
        Electroencephalographic sleep and mood during cocaine withdrawal.
        J Addict Dis. 1992; 11: 21-45
        • Matuskey D.
        • Pittman B.
        • Forselius E.
        • Malison R.T.
        • Morgan P.T.
        A multistudy analysis of the effects of early cocaine abstinence on sleep.
        Drug Alcohol Depend. 2011; 115: 62-66
        • Morgan P.T.
        • Malison R.T.
        Pilot study of lorazepam and tiagabine effects on sleep, motor learning, and impulsivity in cocaine abstinence.
        Am J Drug Alcohol Abuse. 2008; 34: 692-702
        • Morgan P.T.
        • Pace-Schott E.
        • Pittman B.
        • Stickgold R.
        • Malison R.T.
        Normalizing effects of modafinil on sleep in chronic cocaine users.
        Am J Psychiatry. 2010; 167: 331-340
        • Morgan P.T.
        • Angarita G.A.
        • Canavan S.
        • Pittman B.
        • Oberleitner L.
        • Malison R.T.
        • et al.
        Modafinil and sleep architecture in an inpatient-outpatient treatment study of cocaine dependence.
        Drug Alcohol Depend. 2016; 160: 49-56
        • Ma Y.Y.
        • Lee B.R.
        • Wang X.
        • Guo C.
        • Liu L.
        • Cui R.
        • et al.
        Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections.
        Neuron. 2014; 83: 1453-1467
        • Ma Y.Y.
        • Wang X.
        • Huang Y.
        • Marie H.
        • Nestler E.J.
        • Schluter O.M.
        • et al.
        Re-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment.
        Proc Natl Acad Sci U S A. 2016; 113: 5089-5094
        • Wang Y.
        • Guo R.
        • Chen B.
        • Rahman T.
        • Cai L.
        • Li Y.
        • et al.
        Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal.
        Mol Psychiatry. 2021; 26: 3152-3168
        • O’Brien C.P.
        • Childress A.R.
        • Ehrman R.
        • Robbins S.J.
        Conditioning factors in drug abuse: Can they explain compulsion?.
        J Psychopharmacol. 1998; 12: 15-22
        • Dong Y.
        • Taylor J.R.
        • Wolf M.E.
        • Shaham Y.
        Circuit and synaptic plasticity mechanisms of drug relapse.
        J Neurosci. 2017; 37: 10867-10876
        • Grimm J.W.
        • Hope B.T.
        • Wise R.A.
        • Shaham Y.
        Neuroadaptation. Incubation of cocaine craving after withdrawal.
        Nature. 2001; 412: 141-142
        • Pickens C.L.
        • Airavaara M.
        • Theberge F.
        • Fanous S.
        • Hope B.T.
        • Shaham Y.
        Neurobiology of the incubation of drug craving.
        Trends Neurosci. 2011; 34: 411-420
        • Tran-Nguyen L.T.
        • Fuchs R.A.
        • Coffey G.P.
        • Baker D.A.
        • O’Dell L.E.
        • Neisewander J.L.
        Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal.
        Neuropsychopharmacology. 1998; 19: 48-59
        • Lu L.
        • Grimm J.W.
        • Hope B.T.
        • Shaham Y.
        Incubation of cocaine craving after withdrawal: A review of preclinical data.
        Neuropharmacology. 2004; 47: 214-226
        • Szymusiak R.
        • Satinoff E.
        Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate.
        Physiol Behav. 1981; 26: 687-690
        • Komagata N.
        • Latifi B.
        • Rusterholz T.
        • Bassetti C.L.A.
        • Adamantidis A.
        • Schmidt M.H.
        Dynamic REM sleep modulation by ambient temperature and the critical role of the melanin-concentrating hormone system.
        Curr Biol. 2019; 29: 1976-1987.e4
        • Kelley A.E.
        Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning.
        Neurosci Biobehav Rev. 2004; 27: 765-776
        • Mogenson G.J.
        • Jones D.L.
        • Yim C.Y.
        From motivation to action: Functional interface between the limbic system and the motor system.
        Prog Neurobiol. 1980; 14: 69-97
        • Robbins T.W.
        • Everitt B.J.
        Neurobehavioural mechanisms of reward and motivation.
        Curr Opin Neurobiol. 1996; 6: 228-236
        • Loweth J.A.
        • Tseng K.Y.
        • Wolf M.E.
        Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving.
        Neuropharmacology. 2014; 76: 287-300
        • Conrad K.L.
        • Tseng K.Y.
        • Uejima J.L.
        • Reimers J.M.
        • Heng L.J.
        • Shaham Y.
        • et al.
        Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving.
        Nature. 2008; 454: 118-121
        • McCutcheon J.E.
        • Wang X.
        • Tseng K.Y.
        • Wolf M.E.
        • Marinelli M.
        Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine.
        J Neurosci. 2011; 31: 5737-5743
        • Wolf M.E.
        Synaptic mechanisms underlying persistent cocaine craving.
        Nat Rev Neurosci. 2016; 17: 351-365
        • Terrier J.
        • Luscher C.
        • Pascoli V.
        Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving.
        Neuropsychopharmacology. 2016; 41: 1779-1789
        • Zinsmaier A.K.
        • Dong Y.
        • Huang Y.H.
        Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens.
        Mol Psychiatry. 2022; 27: 669-686
        • Park S.H.
        • Weber F.
        Neural and homeostatic regulation of REM sleep.
        Front Psychol. 2020; 11: 1662
        • Sapin E.
        • Berod A.
        • Leger L.
        • Herman P.A.
        • Luppi P.H.
        • Peyron C.
        A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia.
        PLoS One. 2010; 5e11766
        • Modirrousta M.
        • Mainville L.
        • Jones B.E.
        Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors.
        Eur J Neurosci. 2005; 21: 2807-2816
        • Hassani O.K.
        • Lee M.G.
        • Jones B.E.
        Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle.
        Proc Natl Acad Sci U S A. 2009; 106: 2418-2422
        • Jego S.
        • Glasgow S.D.
        • Herrera C.G.
        • Ekstrand M.
        • Reed S.J.
        • Boyce R.
        • et al.
        Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus.
        Nat Neurosci. 2013; 16: 1637-1643
        • Fraigne J.J.
        • Peever J.H.
        Melanin-concentrating hormone neurons promote and stabilize sleep.
        Sleep. 2013; 36: 1767-1768
        • Konadhode R.R.
        • Pelluru D.
        • Blanco-Centurion C.
        • Zayachkivsky A.
        • Liu M.
        • Uhde T.
        • et al.
        Optogenetic stimulation of MCH neurons increases sleep.
        J Neurosci. 2013; 33: 10257-10263
        • Konadhode R.R.
        • Pelluru D.
        • Shiromani P.J.
        Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep.
        Front Syst Neurosci. 2014; 8: 244
        • Tsunematsu T.
        • Ueno T.
        • Tabuchi S.
        • Inutsuka A.
        • Tanaka K.F.
        • Hasuwa H.
        • et al.
        Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation.
        J Neurosci. 2014; 34: 6896-6909
        • Kroeger D.
        • Bandaru S.S.
        • Madara J.C.
        • Vetrivelan R.
        Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons.
        Neuroscience. 2019; 406: 314-324
        • Harding E.C.
        • Yu X.
        • Miao A.
        • Andrews N.
        • Ma Y.
        • Ye Z.
        • et al.
        A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus.
        Curr Biol. 2018; 28: 2263-2273.e4
        • Kroeger D.
        • Absi G.
        • Gagliardi C.
        • Bandaru S.S.
        • Madara J.C.
        • Ferrari L.L.
        • et al.
        Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice.
        Nat Commun. 2018; 9: 4129
        • Tan C.L.
        • Cooke E.K.
        • Leib D.E.
        • Lin Y.C.
        • Daly G.E.
        • Zimmerman C.A.
        • et al.
        Warm-sensitive neurons that control body temperature.
        Cell. 2016; 167: 47-59.e15
        • Szymusiak R.
        • Gvilia I.
        • McGinty D.
        Hypothalamic control of sleep.
        Sleep Med. 2007; 8: 291-301
        • Chen T.W.
        • Wardill T.J.
        • Sun Y.
        • Pulver S.R.
        • Renninger S.L.
        • Baohan A.
        • et al.
        Ultrasensitive fluorescent proteins for imaging neuronal activity.
        Nature. 2013; 499: 295-300
        • Izawa S.
        • Chowdhury S.
        • Miyazaki T.
        • Mukai Y.
        • Ono D.
        • Inoue R.
        • et al.
        REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories.
        Science. 2019; 365: 1308-1313
        • Haemmerle C.A.
        • Campos A.M.
        • Bittencourt J.C.
        Melanin-concentrating hormone inputs to the nucleus accumbens originate from distinct hypothalamic sources and are apposed to GABAergic and cholinergic cells in the Long-Evans rat brain.
        Neuroscience. 2015; 289: 392-405
        • Saito Y.
        • Nothacker H.P.
        • Wang Z.
        • Lin S.H.
        • Leslie F.
        • Civelli O.
        Molecular characterization of the melanin-concentrating-hormone receptor.
        Nature. 1999; 400: 265-269
        • Georgescu D.
        • Sears R.M.
        • Hommel J.D.
        • Barrot M.
        • Bolanos C.A.
        • Marsh D.J.
        • et al.
        The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance.
        J Neurosci. 2005; 25: 2933-2940
        • Hervieu G.J.
        • Cluderay J.E.
        • Harrison D.
        • Meakin J.
        • Maycox P.
        • Nasir S.
        • et al.
        The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat.
        Eur J Neurosci. 2000; 12: 1194-1216
        • Saito Y.
        • Cheng M.
        • Leslie F.M.
        • Civelli O.
        Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain.
        J Comp Neurol. 2001; 435: 26-40
        • Tan C.P.
        • Sano H.
        • Iwaasa H.
        • Pan J.
        • Sailer A.W.
        • Hreniuk D.L.
        • et al.
        Melanin-concentrating hormone receptor subtypes 1 and 2: Species-specific gene expression.
        Genomics. 2002; 79: 785-792
        • Sears R.M.
        • Liu R.J.
        • Narayanan N.S.
        • Sharf R.
        • Yeckel M.F.
        • Laubach M.
        • et al.
        Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone.
        J Neurosci. 2010; 30: 8263-8273
        • Wolf M.E.
        • Tseng K.Y.
        Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why?.
        Front Mol Neurosci. 2012; 5: 72
        • Ferrario C.R.
        • Loweth J.A.
        • Milovanovic M.
        • Ford K.A.
        • Galinanes G.L.
        • Heng L.J.
        • et al.
        Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca(2)(+)-permeable AMPA receptors during the incubation of cocaine craving.
        Neuropharmacology. 2011; 61: 1141-1151
        • Barson J.R.
        • Morganstern I.
        • Leibowitz S.F.
        Complementary roles of orexin and melanin-concentrating hormone in feeding behavior.
        Int J Endocrinol. 2013; 2013983964
        • Dilsiz P.
        • Aklan I.
        • Sayar Atasoy N.
        • Yavuz Y.
        • Filiz G.
        • Koksalar F.
        • et al.
        MCH neuron activity is sufficient for reward and reinforces feeding.
        Neuroendocrinology. 2020; 110: 258-270
        • Noble E.E.
        • Hahn J.D.
        • Konanur V.R.
        • Hsu T.M.
        • Page S.J.
        • Cortella A.M.
        • et al.
        Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone.
        Cell Metab. 2018; 28: 55-68.e57
        • Oishi Y.
        • Xu Q.
        • Wang L.
        • Zhang B.J.
        • Takahashi K.
        • Takata Y.
        • et al.
        Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice.
        Nat Commun. 2017; 8: 734
        • Qiu M.H.
        • Liu W.
        • Qu W.M.
        • Urade Y.
        • Lu J.
        • Huang Z.L.
        The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.
        PLoS One. 2012; 7e45471
        • Luo Y.J.
        • Li Y.D.
        • Wang L.
        • Yang S.R.
        • Yuan X.S.
        • Wang J.
        • et al.
        Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors.
        Nat Commun. 2018; 9: 1576
        • McCullough K.M.
        • Missig G.
        • Robble M.A.
        • Foilb A.R.
        • Wells A.M.
        • Hartmann J.
        • et al.
        Nucleus accumbens medium spiny neuron subtypes differentially regulate stress-associated alterations in sleep architecture.
        Biol Psychiatry. 2021; 89: 1138-1149
        • van der Stel J.
        Precision in addiction care: Does it make a difference?.
        Yale J Biol Med. 2015; 88: 415-422
        • Brami-Cherrier K.
        • Lewis R.G.
        • Cervantes M.
        • Liu Y.
        • Tognini P.
        • Baldi P.
        • et al.
        Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARgamma activation.
        Nat Commun. 2020; 11: 4448
        • Vyazovskiy V.V.
        • Tobler I.
        Theta activity in the waking EEG is a marker of sleep propensity in the rat.
        Brain Res. 2005; 1050: 64-71
        • Cajochen C.
        • Brunner D.P.
        • Krauchi K.
        • Graw P.
        • Wirz-Justice A.
        Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness.
        Sleep. 1995; 18: 890-894
        • Baglioni C.
        • Regen W.
        • Teghen A.
        • Spiegelhalder K.
        • Feige B.
        • Nissen C.
        • et al.
        Sleep changes in the disorder of insomnia: A meta-analysis of polysomnographic studies.
        Sleep Med Rev. 2014; 18: 195-213
        • Van Someren E.J.W.
        Brain mechanisms of insomnia: New perspectives on causes and consequences.
        Physiol Rev. 2021; 101: 995-1046
        • Riemann D.
        • Spiegelhalder K.
        • Nissen C.
        • Hirscher V.
        • Baglioni C.
        • Feige B.
        REM sleep instability—a new pathway for insomnia?.
        Pharmacopsychiatry. 2012; 45: 167-176
        • Kaplan K.A.
        • McQuaid J.
        • Primich C.
        • Rosenlicht N.
        An evidence-based review of insomnia treatment in early recovery.
        J Addict Med. 2014; 8: 389-394
        • Rosenblum M.
        Substance abuse and insomnia.
        Minn Med. 2017; 100: 38-39
        • Fortuna L.R.
        • Cook B.
        • Porche M.V.
        • Wang Y.
        • Amaris A.M.
        • Alegria M.
        Sleep disturbance as a predictor of time to drug and alcohol use treatment in primary care.
        Sleep Med. 2018; 42: 31-37
        • Brower K.J.
        Insomnia, alcoholism and relapse.
        Sleep Med Rev. 2003; 7: 523-539
        • Brower K.J.
        • Perron B.E.
        Sleep disturbance as a universal risk factor for relapse in addictions to psychoactive substances.
        Med Hypotheses. 2010; 74: 928-933
        • Rolls A.
        • Colas D.
        • Adamantidis A.
        • Carter M.
        • Lanre-Amos T.
        • Heller H.C.
        • et al.
        Optogenetic disruption of sleep continuity impairs memory consolidation.
        Proc Natl Acad Sci U S A. 2011; 108: 13305-13310
        • Lee M.L.
        • Katsuyama A.M.
        • Duge L.S.
        • Sriram C.
        • Krushelnytskyy M.
        • Kim J.J.
        • et al.
        Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation.
        Sleep. 2016; 39: 2021-2031
        • Lipinska G.
        • Thomas K.G.F.
        Rapid eye movement fragmentation, not slow-wave sleep, predicts neutral declarative memory consolidation in posttraumatic stress disorder.
        J Sleep Res. 2019; 28e12846
        • Lipinska G.
        • Thomas K.G.F.
        The Interaction of REM fragmentation and night-time arousal modulates sleep-dependent emotional memory consolidation.
        Front Psychol. 2019; 10: 1766
        • Pesonen A.K.
        • Gradisar M.
        • Kuula L.
        • Short M.
        • Merikanto I.
        • Tark R.
        • et al.
        REM sleep fragmentation associated with depressive symptoms and genetic risk for depression in a community-based sample of adolescents.
        J Affect Disord. 2019; 245: 757-763
        • Simor P.
        • van der Wijk G.
        • Nobili L.
        • Peigneux P.
        The microstructure of REM sleep: Why phasic and tonic?.
        Sleep Med Rev. 2020; 52101305
        • Bittencourt J.C.
        • Presse F.
        • Arias C.
        • Peto C.
        • Vaughan J.
        • Nahon J.L.
        • et al.
        The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization.
        J Comp Neurol. 1992; 319: 218-245
        • Lagos P.
        • Torterolo P.
        • Jantos H.
        • Monti J.M.
        Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: Effects on sleep and wakefulness.
        Brain Res. 2011; 1369: 112-118
        • Torterolo P.
        • Scorza C.
        • Lagos P.
        • Urbanavicius J.
        • Benedetto L.
        • Pascovich C.
        • et al.
        Melanin-concentrating hormone (MCH): Role in REM sleep and depression.
        Front Neurosci. 2015; 9: 475
        • Tyree S.M.
        • de Lecea L.
        Lateral hypothalamic control of the ventral tegmental area: Reward evaluation and the driving of motivated behavior.
        Front Syst Neurosci. 2017; 11: 50
        • Domingos A.I.
        • Sordillo A.
        • Dietrich M.O.
        • Liu Z.W.
        • Tellez L.A.
        • Vaynshteyn J.
        • et al.
        Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar.
        eLife. 2013; 2e01462
        • Kitka T.
        • Adori C.
        • Katai Z.
        • Vas S.
        • Molnar E.
        • Papp R.S.
        • et al.
        Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation.
        Neurochem Int. 2011; 59: 686-694
        • Borowsky B.
        • Durkin M.M.
        • Ogozalek K.
        • Marzabadi M.R.
        • DeLeon J.
        • Lagu B.
        • et al.
        Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist.
        Nat Med. 2002; 8: 825-830
        • Chung S.
        • Parks G.S.
        • Lee C.
        • Civelli O.
        Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: Lessons from MCH1R antagonists.
        J Mol Neurosci. 2011; 43: 115-121
        • Mahler S.V.
        • Smith R.J.
        • Moorman D.E.
        • Sartor G.C.
        • Aston-Jones G.
        Multiple roles for orexin/hypocretin in addiction.
        Prog Brain Res. 2012; 198: 79-121
        • James M.H.
        • Stopper C.M.
        • Zimmer B.A.
        • Koll N.E.
        • Bowrey H.E.
        • Aston-Jones G.
        Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats.
        Biol Psychiatry. 2019; 85: 925-935
        • Rao Y.
        • Lu M.
        • Ge F.
        • Marsh D.J.
        • Qian S.
        • Wang A.H.
        • et al.
        Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus.
        J Neurosci. 2008; 28: 9101-9110
        • Noble E.E.
        • Wang Z.
        • Liu C.M.
        • Davis E.A.
        • Suarez A.N.
        • Stein L.M.
        • et al.
        Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone.
        Nat Commun. 2019; 10: 4923
        • Kerstetter K.A.
        • Aguilar V.R.
        • Parrish A.B.
        • Kippin T.E.
        Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats.
        Psychopharmacology. 2008; 198: 63-75
        • Nicolas C.
        • Zlebnik N.E.
        • Farokhnia M.
        • Leggio L.
        • Ikemoto S.
        • Shaham Y.
        Sex differences in opioid and psychostimulant craving and relapse: A critical review.
        Pharmacol Rev. 2022; 74: 119-140
        • Nicolas C.
        • Russell T.I.
        • Pierce A.F.
        • Maldera S.
        • Holley A.
        • You Z.B.
        • et al.
        Incubation of cocaine craving after intermittent-access self-administration: Sex differences and estrous cycle.
        Biol Psychiatry. 2019; 85: 915-924
        • Corbett C.M.
        • Dunn E.
        • Loweth J.A.
        Effects of sex and estrous cycle on the time course of incubation of cue-induced craving following extended-access cocaine self-administration.
        eNeuro. 2021; 8 (ENEURO.0054-21.2021)
        • Martinez L.A.
        • Gross K.S.
        • Himmler B.T.
        • Emmitt N.L.
        • Peterson B.M.
        • Zlebnik N.E.
        • et al.
        Estradiol facilitation of cocaine self-administration in female rats requires activation of mGluR5.
        eNeuro. 2016; 3 (ENEURO.0140-16.2016)
        • Jackson L.R.
        • Robinson T.E.
        • Becker J.B.
        Sex differences and hormonal influences on acquisition of cocaine self-administration in rats.
        Neuropsychopharmacology. 2006; 31: 129-138
        • Lynch W.J.
        • Taylor J.R.
        Decreased motivation following cocaine self-administration under extended access conditions: Effects of sex and ovarian hormones.
        Neuropsychopharmacology. 2005; 30: 927-935
        • Ramoa C.P.
        • Doyle S.E.
        • Naim D.W.
        • Lynch W.J.
        Estradiol as a mechanism for sex differences in the development of an addicted phenotype following extended access cocaine self-administration.
        Neuropsychopharmacology. 2013; 38: 1698-1705
        • Johnson A.R.
        • Thibeault K.C.
        • Lopez A.J.
        • Peck E.G.
        • Sands L.P.
        • Sanders C.M.
        • et al.
        Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement.
        Neuropsychopharmacology. 2019; 44: 1189-1197
        • Harding E.C.
        • Franks N.P.
        • Wisden W.
        The temperature dependence of sleep.
        Front Neurosci. 2019; 13: 336