Abstract
Background
Single nucleotide polymorphism–based heritability is a fundamental quantity in the
genetic analysis of complex traits. For case-control phenotypes, for which the continuous
distribution of risk in the population is unobserved, observed-scale heritability
estimates must be transformed to the more interpretable liability scale. This article
describes how the field standard approach incorrectly performs the liability correction
in that it does not appropriately account for variation in the proportion of cases
across the cohorts comprising the meta-analysis. We propose a simple solution that
incorporates cohort-specific ascertainment using the summation of effective sample
sizes across cohorts. This solution is applied at the stage of single nucleotide polymorphism–based
heritability estimation and does not require generating updated meta-analytic genome-wide
association study summary statistics.
Methods
We began by performing a series of simulations to examine the ability of the standard
approach and our proposed approach to recapture liability-scale heritability in the
population. We went on to examine the differences in estimates obtained from these
2 approaches for real data for 12 major case-control genome-wide association studies
of psychiatric and neurologic traits.
Results
We found that the field standard approach for performing the liability conversion
can downwardly bias estimates by as much as approximately 50% in simulation and approximately
30% in real data.
Conclusions
Prior estimates of liability-scale heritability for genome-wide association study
meta-analysis may be drastically underestimated. To this end, we strongly recommend
using our proposed approach of using the sum of effective sample sizes across contributing
cohorts to obtain unbiased estimates.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Biological PsychiatryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.Nat Genet. 2015; 47: 291-295
- Estimating missing heritability for disease from genome-wide association studies.Am J Hum Genet. 2011; 88: 294-305
- Heritability of threshold characters.Genetics. 1950; 35: 212-236
- Disease and polygenic architecture: Avoid trio design and appropriately account for unscreened control subjects for common disease.Am J Hum Genet. 2016; 98: 382-391
- Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits.Nat Hum Behav. 2019; 3: 513-525
- Multi-trait analysis of genome-wide association summary statistics using MTAG [published correction appears in Nat Genet 2019; 51:1190 and Nat Genet 2019; 51:1295].Nat Genet. 2018; 50: 229-237
- Reevaluation of SNP heritability in complex human traits.Nat Genet. 2017; 49: 986-992
- Identifying and correcting for misspecifications in GWAS summary statistics and polygenic scores.bioRxiv. 2022; https://doi.org/10.1101/2021.03.29.437510
- Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities.Cell Genom 2:100140. 2022;
- An atlas of genetic correlations across human diseases and traits.Nat Genet. 2015; 47: 1236-1241
- Multivariate modeling of direct and proxy GWAS indicates substantial common variant heritability of Alzheimer’s disease.medRxiv. 2021; https://doi.org/10.1101/2021.05.06.21256747
- Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder.Nat Genet. 2019; 51: 63-75
- Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders.Nat Neurosci. 2018; 21: 1656-1669
- Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing [published correction appears in Nat Genet 2019; 51:1423–1424].Nat Genet. 2019; 51: 414-430
- Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa.Nat Genet. 2019; 51: 1207-1214
- Identification of common genetic risk variants for autism spectrum disorder.Nat Genet. 2019; 51: 431-444
- Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.Nat Genet. 2021; 53: 817-829
- A large-scale genome-wide association study meta-analysis of cannabis use disorder [published correction appears in Lancet Psychiatry 2022; 9:e12].Lancet Psychiatry. 2020; 7: 1032-1045
- Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.Nat Genet. 2018; 50: 668-681
- Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis.Mol Psychiatry. 2018; 23: 1181-1188
- International meta-analysis of PTSD genome-wide association studies identifies sex-and ancestry-specific genetic risk loci.Nat Commun. 2019; 104558
- Mapping genomic loci implicates genes and synaptic biology in schizophrenia.Nature. 2022; 604: 502-508
- Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies.Am J Psychiatry. 2019; 176: 217-227
- GCTA: A tool for genome-wide complex trait analysis.Am J Hum Genet. 2011; 88: 76-82
- Embracing polygenicity: A review of methods and tools for psychiatric genetics research.Psychol Med. 2018; 48: 1055-1067
- Systematic review: Molecular studies of common genetic variation in child and adolescent psychiatric disorders [published correction appears in J Am Acad Child Adolesc Psychiatry 2022; 61:837].J Am Acad Child Adolesc Psychiatry. 2022; 61: 227-242
- Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.Hum Mol Genet. 2015; 24: 7445-7449
Article Info
Publication History
Published online: June 07, 2022
Accepted:
May 21,
2022
Received in revised form:
May 2,
2022
Received:
September 27,
2021
Publication stage
In Press Journal Pre-ProofIdentification
Copyright
© 2022 Society of Biological Psychiatry.