Advertisement

Check or Go? Impact of Doubt on the Hierarchical Organization of the Mediofrontal Area

      Abstract

      Background

      Based on numerous imaging and electrophysiological studies, the presupplementary motor area (pre-SMA) and the rostral cingulate motor area are cortical regions considered to be essential to voluntary movement initiation and behavioral control. However, their respective roles and functional interactions remain a long-standing and still debated question.

      Methods

      Here, we trained 2 rhesus monkeys (Macaca mulatta) in a complex cognitive task to compare the neuronal activity of these 2 regions on the medial wall during both perceptual and internally guided decisions.

      Results

      We confirmed the implication of both areas throughout the decision process. Critically, we demonstrate that instead of a stable invariant role, the pre-SMA and rostral cingulate motor area manifested a versatile hierarchical relationship depending on the mode of movement initiation. Whereas pre-SMA neurons were primarily engaged in decisions based on perceptual information, rostral cingulate motor area neurons preempted the decision process in case of an internally doubt-driven checking behavior, withholding pre-SMA recruitment during the time spent inhibiting the habitual action.

      Conclusions

      We identified a versatile hierarchical organization of the mediofrontal area that may substantially affect normal and pathological decision processes because adaptive behaviors, such as doubt-checking and its compulsive counterpart, rely on this subtle equilibrium in controlling action initiation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ullsperger M.
        • Danielmeier C.
        • Jocham G.
        Neurophysiology of performance monitoring and adaptive behavior.
        Physiol Rev. 2014; 94: 35-79
        • Akkal D.
        • Bioulac B.
        • Audin J.
        • Burbaud P.
        Comparison of neuronal activity in the rostral supplementary and cingulate motor areas during a task with cognitive and motor demands.
        Eur J Neurosci. 2002; 15: 887-904
        • Matsuzaka Y.
        • Aizawa H.
        • Tanji J.
        A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: Neuronal activity during a learned motor task.
        J Neurophysiol. 1992; 68: 653-662
        • Matsuzaka Y.
        • Tanji J.
        Changing directions of forthcoming arm movements: Neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex.
        J Neurophysiol. 1996; 76: 2327-2342
        • Escola L.
        • Michelet T.
        • Macia F.
        • Guehl D.
        • Bioulac B.
        • Burbaud P.
        Disruption of information processing in the supplementary motor area of the MPTP-treated monkey: A clue to the pathophysiology of akinesia?.
        Brain. 2003; 126: 95-114
        • Mataix-Cols D.
        • Wooderson S.
        • Lawrence N.
        • Brammer M.J.
        • Speckens A.
        • Phillips M.L.
        Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive–compulsive disorder.
        Arch Gen Psychiatry. 2004; 61: 564-576
        • Fitzgerald K.D.
        • Welsh R.C.
        • Gehring W.J.
        • Abelson J.L.
        • Himle J.A.
        • Liberzon I.
        • Taylor S.F.
        Error-related hyperactivity of the anterior cingulate cortex in obsessive–compulsive disorder.
        Biol Psychiatry. 2005; 57: 287-294
        • Bonini F.
        • Burle B.
        • Liégeois-Chauvel C.
        • Régis J.
        • Chauvel P.
        • Vidal F.
        Action monitoring and medial frontal cortex: Leading role of supplementary motor area.
        Science. 2014; 343: 888-891
        • Ridderinkhof K.R.
        • Ullsperger M.
        • Crone E.A.
        • Nieuwenhuis S.
        The role of the medial frontal cortex in cognitive control.
        Science. 2004; 306: 443-447
        • Botvinick M.
        • Nystrom L.E.
        • Fissell K.
        • Carter C.S.
        • Cohen J.D.
        Conflict monitoring versus selection-for-action in anterior cingulate cortex.
        Nature. 1999; 402: 179-181
        • Usami K.
        • Matsumoto R.
        • Kunieda T.
        • Shimotake A.
        • Matsuhashi M.
        • Miyamoto S.
        • et al.
        Pre-SMA actively engages in conflict processing in human: A combined study of epicortical ERPs and direct cortical stimulation.
        Neuropsychologia. 2013; 51: 1011-1017
        • Kerns J.G.
        • Cohen J.D.
        • MacDonald 3rd, A.W.
        • Cho R.Y.
        • Stenger V.A.
        • Carter C.S.
        Anterior cingulate conflict monitoring and adjustments in control.
        Science. 2004; 303: 1023-1026
        • Iwata J-i
        • Shima K.
        • Tanji J.
        • Mushiake H.
        Neurons in the cingulate motor area signal context-based and outcome-based volitional selection of action.
        Exp Brain Res. 2013; 229: 407-417
        • Takada M.
        • Nambu A.
        • Hatanaka N.
        • Tachibana Y.
        • Miyachi S.
        • Taira M.
        • Inase M.
        Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys.
        Eur J Neurosci. 2004; 19: 3328-3342
        • Deiber M.P.
        • Honda M.
        • Ibañez V.
        • Sadato N.
        • Hallett M.
        Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: Effect of movement type and rate.
        J Neurophysiol. 1999; 81: 3065-3077
        • Passingham R.E.
        • Bengtsson S.L.
        • Lau H.C.
        Medial frontal cortex: From self-generated action to reflection on one’s own performance.
        Trends Cogn Sci. 2010; 14: 16-21
        • Halsband U.
        • Matsuzaka Y.
        • Tanji J.
        Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements.
        Neurosci Res. 1994; 20: 149-155
        • Nachev P.
        • Husain M.
        Action and the fallacy of the ‘internal’: Comment on Passingham et al.
        Trends Cogn Sci. 2010; 14 (author reply 193–194): 192-193
        • Dehaene S.
        • Posner M.I.
        • Tucker D.M.
        Localization of a neural system for error detection and compensation.
        Psychol Sci. 1994; 5: 303-305
        • Grinband J.
        • Savitskaya J.
        • Wager T.D.
        • Teichert T.
        • Ferrera V.P.
        • Hirsch J.
        The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.
        NeuroImage. 2011; 57: 303-311
        • Bosc M.
        • Bioulac B.
        • Langbour N.
        • Nguyen T.H.
        • Goillandeau M.
        • Dehay B.
        • et al.
        Checking behavior in rhesus monkeys is related to anxiety and frontal activity.
        Sci Rep. 2017; 745267
        • de Lafuente V.
        • Romo R.
        How confident do you feel?.
        Neuron. 2014; 83: 751-753
        • Amemori S.
        • Amemori K.-I.
        • Cantor M.L.
        • Graybiel A.M.
        A non-invasive head-holding device for chronic neural recordings in awake behaving monkeys.
        J Neurosci Methods. 2015; 240: 154-160
        • DiCarlo J.J.
        • Maunsell J.H.
        Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks.
        J Neurophysiol. 2005; 93: 2974-2986
        • Behseta S.
        • Chenouri S.
        Comparison of two populations of curves with an application in neuronal data analysis.
        Stat Med. 2011; 30: 1441-1454
        • Hangya B.
        • Sanders J.I.
        • Kepecs A.
        A mathematical framework for statistical decision confidence.
        Neural Comput. 2016; 28: 1840-1858
        • Coull J.T.
        • Vidal F.
        • Burle B.
        When to act, or not to act: That’s the SMA’s question.
        Curr Opin Behav Sci. 2016; 8: 14-21
        • Mostofsky S.H.
        • Simmonds D.J.
        Response inhibition and response selection: Two sides of the same coin.
        J Cogn Neurosci. 2008; 20: 751-761
        • Luppino G.
        • Matelli M.
        • Camarda R.
        • Rizzolatti G.
        Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey.
        J Comp Neurol. 1993; 338: 114-140
        • Hatanaka N.
        • Tokuno H.
        • Hamada I.
        • Inase M.
        • Ito Y.
        • Imanishi M.
        • et al.
        Thalamocortical and intracortical connections of monkey cingulate motor areas.
        J Comp Neurol. 2003; 462: 121-138
        • Picard N.
        • Strick P.L.
        Imaging the premotor areas.
        Curr Opin Neurobiol. 2001; 11: 663-672
        • Dum R.P.
        • Strick P.L.
        The origin of corticospinal projections from the premotor areas in the frontal lobe.
        J Neurosci. 1991; 11: 667-689
        • Kalaska J.F.
        • Scott S.H.
        • Cisek P.
        • Sergio L.E.
        Cortical control of reaching movements.
        Curr Opin Neurobiol. 1997; 7: 849-859
        • Hoshi E.
        • Sawamura H.
        • Tanji J.
        Neurons in the rostral cingulate motor area monitor multiple phases of visuomotor behavior with modest parametric selectivity.
        J Neurophysiol. 2005; 94: 640-656
        • Yazawa S.
        • Ikeda A.
        • Kunieda T.
        • Ohara S.
        • Mima T.
        • Nagamine T.
        • et al.
        Human presupplementary motor area is active before voluntary movement: Subdural recording of bereitschaftspotential from medial frontal cortex.
        Exp Brain Res. 2000; 131: 165-177
        • Matsumoto M.
        • Matsumoto K.
        • Abe H.
        • Tanaka K.
        Medial prefrontal cell activity signaling prediction errors of action values.
        Nat Neurosci. 2007; 10: 647-656
        • Michelet T.
        • Bioulac B.
        • Guehl D.
        • Goillandeau M.
        • Burbaud P.
        Single medial prefrontal neurons cope with error.
        PLoS One. 2009; 4e6240
        • Michelet T.
        • Bioulac B.
        • Langbour N.
        • Goillandeau M.
        • Guehl D.
        • Burbaud P.
        Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex.
        Cereb Cortex. 2016; 26: 1684-1697
        • Wang Y.
        • Shima K.
        • Sawamura H.
        • Tanji J.
        Spatial distribution of cingulate cells projecting to the primary, supplementary, and pre-supplementary motor areas: A retrograde multiple labeling study in the macaque monkey.
        Neurosci Res. 2001; 39: 39-49
        • Ridderinkhof K.R.
        • van den Wildenberg W.P.
        • Segalowitz S.J.
        • Carter C.S.
        Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
        Brain Cogn. 2004; 56: 129-140
        • Stoll F.M.
        • Fontanier V.
        • Procyk E.
        Specific frontal neural dynamics contribute to decisions to check.
        Nat Commun. 2016; 711990
        • Barbas H.
        • Ghashghaei H.
        • Dombrowski S.M.
        • Rempel-Clower N.L.
        Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey.
        J Comp Neurol. 1999; 410: 343-367
        • Fuster J.M.
        Cortex and Mind: Unifying Cognition.
        Oxford University Press, Oxford2002
        • Murphy P.R.
        • Robertson I.H.
        • Harty S.
        • O’Connell R.G.
        Neural evidence accumulation persists after choice to inform metacognitive judgments.
        eLife. 2015; 4: 3478
        • Isoda M.
        • Hikosaka O.
        Switching from automatic to controlled action by monkey medial frontal cortex.
        Nat Neurosci. 2007; 10: 240-248
        • Geyer S.
        • Matelli M.
        • Luppino G.
        • Zilles K.
        Functional neuroanatomy of the primate isocortical motor system.
        Anat Embryol (Berl). 2000; 202: 443-474
        • Rizzolatti G.
        • Luppino G.
        • Matelli M.
        The organization of the cortical motor system: New concepts.
        Electroencephalogr Clin Neurophysiol. 1998; 106: 283-296
        • Nguyen V.T.
        • Breakspear M.
        • Cunnington R.
        Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions.
        J Neurosci. 2014; 34: 16397-16407
        • Kaiser T.
        • Feng G.
        Modeling psychiatric disorders for developing effective treatments.
        Nat Med. 2015; 21: 979-988
        • Chudasama Y.
        • Robbins T.W.
        Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans.
        Biol Psychol. 2006; 73: 19-38
        • Rakic P.
        Evolution of the neocortex: A perspective from developmental biology.
        Nat Rev Neurosci. 2009; 10: 724-735
        • Vogt B.A.
        Cingulate Neurobiology and Disease.
        Oxford University Press, Oxford2009