Advertisement

Alu-minating the Mechanisms Underlying Primate Cortex Evolution

      Abstract

      The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dunbar R.I.M.
        • Shultz S.
        Why are there so many explanations for primate brain evolution?.
        Philos Trans R Soc Lond B Biol Sci. 2017; 37220160244
        • Dicke U.
        • Roth G.
        Neuronal factors determining high intelligence.
        Philos Trans R Soc Lond B Biol Sci. 2016; 37120150180
        • Shultz S.
        • Dunbar R.I.M.
        Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates.
        J Comp Psychol. 2010; 124: 252-260
        • Sousa A.M.M.
        • Meyer K.A.
        • Santpere G.
        • Gulden F.O.
        • Sestan N.
        Evolution of the human nervous system function, structure, and development.
        Cell. 2017; 170: 226-247
        • Romero D.M.
        • Bahi-Buisson N.
        • Francis F.
        Genetics and mechanisms leading to human cortical malformations.
        Semin Cell Dev Biol. 2018; 76: 33-75
        • Sun T.
        • Hevner R.F.
        Growth and folding of the mammalian cerebral cortex: From molecules to malformations.
        Nat Rev Neurosci. 2014; 15: 217-232
        • Brunetti-Pierri N.
        • Berg J.S.
        • Scaglia F.
        • Belmont J.
        • Bacino C.A.
        • Sahoo T.
        • et al.
        Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities.
        Nat Genet. 2008; 40: 1466-1471
        • Buxbaum J.
        • Cicek E.
        • Devlin B.
        • Klei L.
        • Roeder K.
        • De Rubeis S.
        T9 – Combining autism and intellectual disability exome data implicates disruption of neocortical development in both disorders.
        Eur Neuropsychopharmacol. 2017; 27: S437
        • Alemany-González M.
        • Gener T.
        • Nebot P.
        • Vilademunt M.
        • Dierssen M.
        • Puig M.V.
        Prefrontal-hippocampal functional connectivity encodes recognition memory and is impaired in intellectual disability.
        Proc Natl Acad Sci U S A. 2020; 117: 11788-11798
        • Casanova M.F.
        • Casanova E.L.
        The modular organization of the cerebral cortex: Evolutionary significance and possible links to neurodevelopmental conditions.
        J Comp Neurol. 2019; 527: 1720-1730
        • Nunes A.S.
        • Vakorin V.A.
        • Kozhemiako N.
        • Peatfield N.
        • Ribary U.
        • Doesburg S.M.
        Atypical age-related changes in cortical thickness in autism spectrum disorder.
        Sci Rep. 2020; 1011067
        • Whitton L.
        • Apostolova G.
        • Rieder D.
        • Dechant G.
        • Rea S.
        • Donohoe G.
        • Morris D.W.
        Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment.
        PLoS Genet. 2018; 14e1007515
        • Lui J.H.
        • Hansen D.V.
        • Kriegstein A.R.
        Development and evolution of the human neocortex [published correction appears in Cell 2011; 146:332].
        Cell. 2011; 146: 18-36
        • Nowakowski T.J.
        • Pollen A.A.
        • Sandoval-Espinosa C.
        • Kriegstein A.R.
        Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development.
        Neuron. 2016; 91: 1219-1227
        • Vaid S.
        • Huttner W.B.
        Transcriptional regulators and human-specific/primate-specific genes in neocortical neurogenesis.
        Int J Mol Sci. 2020; 21: 4614
        • Pollen A.A.
        • Bhaduri A.
        • Andrews M.G.
        • Nowakowski T.J.
        • Meyerson O.S.
        • Mostajo-Radji M.A.
        • et al.
        Establishing cerebral organoids as models of human-specific brain evolution.
        Cell. 2019; 176: 743-756.e17
        • Penisson M.
        • Ladewig J.
        • Belvindrah R.
        • Francis F.
        Genes and mechanisms involved in the generation and amplification of basal radial glial cells [published correction appears in Front Cell Neurosci 2019; 13:462.
        Front Cell Neurosci. 2019; 13: 381
        • Lein E.S.
        • Belgard T.G.
        • Hawrylycz M.
        • Molnár Z.
        Transcriptomic perspectives on neocortical structure, development, evolution, and disease.
        Annu Rev Neurosci. 2017; 40: 629-652
        • Perez-Garcia C.G.
        • O’Leary D.D.M.
        Formation of the cortical subventricular zone requires MDGA1-mediated aggregation of basal progenitors.
        Cell Rep. 2016; 14: 560-571
        • Dehay C.
        • Kennedy H.
        • Kosik K.S.
        The outer subventricular zone and primate-specific cortical complexification.
        Neuron. 2015; 85: 683-694
        • Rash B.G.
        • Duque A.
        • Morozov Y.M.
        • Arellano J.I.
        • Micali N.
        • Rakic P.
        Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum.
        Proc Natl Acad Sci U S A. 2019; 116: 7089-7094
        • Khrameeva E.
        • Kurochkin I.
        • Han D.
        • Guijarro P.
        • Kanton S.
        • Santel M.
        • et al.
        Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains.
        Genome Res. 2020; 30: 776-789
        • Cordaux R.
        • Batzer M.A.
        The impact of retrotransposons on human genome evolution.
        Nat Rev Genet. 2009; 10: 691-703
        • Chen L.L.
        • Yang L.
        ALUternative regulation for gene expression.
        Trends Cell Biol. 2017; 27: 480-490
        • Kriegs J.O.
        • Churakov G.
        • Jurka J.
        • Brosius J.
        • Schmitz J.
        Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.
        Trends Genet. 2007; 23: 158-161
        • Linker S.B.
        • Marchetto M.C.
        • Narvaiza I.
        • Denli A.M.
        • Gage F.H.
        Examining non-LTR retrotransposons in the context of the evolving primate brain.
        BMC Biol. 2017; 15: 68
        • Gilbert S.L.
        • Dobyns W.B.
        • Lahn B.T.
        Genetic links between brain development and brain evolution.
        Nat Rev Genet. 2005; 6: 581-590
        • Van Essen D.C.
        • Donahue C.J.
        • Coalson T.S.
        • Kennedy H.
        • Hayashi T.
        • Glasser M.F.
        Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice.
        Proc Natl Acad Sci U S A. 2019; 116: 26173-26180
        • Semendeferi K.
        • Lu A.
        • Schenker N.
        • Damasio H.
        Humans and great apes share a large frontal cortex.
        Nat Neurosci. 2002; 5: 272-276
        • Deininger P.
        Alu elements: Know the SINEs.
        Genome Biol. 2011; 12: 236
        • Schmid C.W.
        Alu: A parasite’s parasite?.
        Nat Genet. 2003; 35: 15-16
        • Ferrari R.
        • de Llobet Cucalon L.I.
        • Di Vona C.
        • Le Dilly F.
        • Vidal E.
        • Lioutas A.
        • et al.
        TFIIIC binding to Alu elements controls gene expression via chromatin looping and histone acetylation.
        Mol Cell. 2020; 77: 475-487.e11
        • Bailey J.A.
        • Liu G.
        • Eichler E.E.
        An Alu transposition model for the origin and expansion of human segmental duplications.
        Am J Hum Genet. 2003; 73: 823-834
        • Zhou Y.
        • Mishra B.
        Quantifying the mechanisms for segmental duplications in mammalian genomes by statistical analysis and modeling.
        Proc Natl Acad Sci U S A. 2005; 102: 4051-4056
        • Hallast P.
        • Rull K.
        • Laan M.
        The evolution and genomic landscape of CGB1 and CGB2 genes.
        Mol Cell Endocrinol. 2007; 260–262: 2-11
        • Hallast P.
        • Nagirnaja L.
        • Margus T.
        • Laan M.
        Segmental duplications and gene conversion: Human luteinizing hormone/chorionic gonadotropin beta gene cluster.
        Genome Res. 2005; 15: 1535-1546
        • Wildman D.E.
        Review: Toward an integrated evolutionary understanding of the mammalian placenta.
        Placenta. 2011; 32: S142-S145
        • Bruijnesteijn J.
        • de Groot N.G.
        • Bontrop R.E.
        The genetic mechanisms driving diversification of the KIR gene cluster in primates.
        Front Immunol. 2020; 11582804
        • Vendelbosch S.
        • de Boer M.
        • van Leeuwen K.
        • Pourfarzad F.
        • Geissler J.
        • van den Berg T.K.
        • Kuijpers T.W.
        Novel insights in the genomic organization and hotspots of recombination in the human KIR locus through analysis of intergenic regions.
        Genes Immun. 2015; 16: 103-111
        • Traherne J.A.
        • Martin M.
        • Ward R.
        • Ohashi M.
        • Pellett F.
        • Gladman D.
        • et al.
        Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex.
        Hum Mol Genet. 2010; 19: 737-751
        • Dennis M.Y.
        • Nuttle X.
        • Sudmant P.H.
        • Antonacci F.
        • Graves T.A.
        • Nefedov M.
        • et al.
        Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication.
        Cell. 2012; 149: 912-922
        • Schmidt E.R.E.
        • Kupferman J.V.
        • Stackmann M.
        • Polleux F.
        The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development.
        Sci Rep. 2019; 918692
        • Fossati M.
        • Pizzarelli R.
        • Schmidt E.R.
        • Kupferman J.V.
        • Stroebel D.
        • Polleux F.
        • Charrier C.
        SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses.
        Neuron. 2016; 91: 356-369
        • Charrier C.
        • Joshi K.
        • Coutinho-Budd J.
        • Kim J.E.
        • Lambert N.
        • de Marchena J.
        • et al.
        Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation.
        Cell. 2012; 149: 923-935
        • Antonell A.
        • de Luis O.
        • Domingo-Roura X.
        • Pérez-Jurado L.A.
        Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23.
        Genome Res. 2005; 15: 1179-1188
        • Strong E.
        • Butcher D.T.
        • Singhania R.
        • Mervis C.B.
        • Morris C.A.
        • De Carvalho D.
        • et al.
        Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23.
        Am J Hum Genet. 2015; 97: 216-227
        • Schosserer M.
        • Minois N.
        • Angerer T.B.
        • Amring M.
        • Dellago H.
        • Harreither E.
        • et al.
        Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan [published correction appears in Nat Commun 2016; 7:11530].
        Nat Commun. 2015; 6: 6158
        • Chen P.
        • Zhang T.
        • Yuan Z.
        • Shen B.
        • Chen L.
        Expression of the RNA methyltransferase Nsun5 is essential for developing cerebral cortex.
        Mol Brain. 2019; 12: 74
        • Pollen A.A.
        • Nowakowski T.J.
        • Chen J.
        • Retallack H.
        • Sandoval-Espinosa C.
        • Nicholas C.R.
        • et al.
        Molecular identity of human outer radial glia during cortical development.
        Cell. 2015; 163: 55-67
        • Zhang T.
        • Chen P.
        • Li W.
        • Sha S.
        • Wang Y.
        • Yuan Z.
        • et al.
        Cognitive deficits in mice lacking Nsun5, a cytosine-5 RNA methyltransferase, with impairment of oligodendrocyte precursor cells.
        Glia. 2019; 67: 688-702
        • Jabbi M.
        • Chen Q.
        • Turner N.
        • Kohn P.
        • White M.
        • Kippenhan J.S.
        • et al.
        Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli.
        Transl Psychiatry. 2015; 5: e622
        • Sundaram V.
        • Wysocka J.
        Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes.
        Philos Trans R Soc Lond B Biol Sci. 2020; 37520190347
        • Pehrsson E.C.
        • Choudhary M.N.K.
        • Sundaram V.
        • Wang T.
        The epigenomic landscape of transposable elements across normal human development and anatomy.
        Nat Commun. 2019; 10: 5640
        • Xie M.
        • Hong C.
        • Zhang B.
        • Lowdon R.F.
        • Xing X.
        • Li D.
        • et al.
        DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape.
        Nat Genet. 2013; 45: 836-841
        • Nishihara H.
        • Smit A.F.A.
        • Okada N.
        Functional noncoding sequences derived from SINEs in the mammalian genome.
        Genome Res. 2006; 16: 864-874
        • Sasaki T.
        • Nishihara H.
        • Hirakawa M.
        • Fujimura K.
        • Tanaka M.
        • Kokubo N.
        • et al.
        Possible involvement of SINEs in mammalian-specific brain formation.
        Proc Natl Acad Sci U S A. 2008; 105: 4220-4225
        • Bejerano G.
        • Lowe C.B.
        • Ahituv N.
        • King B.
        • Siepel A.
        • Salama S.R.
        • et al.
        A distal enhancer and an ultraconserved exon are derived from a novel retroposon.
        Nature. 2006; 441: 87-90
        • Zhang X.O.
        • Gingeras T.R.
        • Weng Z.
        Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function.
        Genome Res. 2019; 29: 1402-1414
        • Li C.
        • Lenhard B.
        • Luscombe N.M.
        Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome.
        Genome Res. 2018; 28: 676-688
        • Policarpi C.
        • Crepaldi L.
        • Brookes E.
        • Nitarska J.
        • French S.M.
        • Coatti A.
        • Riccio A.
        Enhancer SINEs link Pol III to Pol II transcription in neurons.
        Cell Rep. 2017; 21: 2879-2894
        • Lee I.Y.
        • Westaway D.
        • Smit A.F.
        • Wang K.
        • Seto J.
        • Chen L.
        • et al.
        Complete genomic sequence and analysis of the prion protein gene region from three mammalian species.
        Genome Res. 1998; 8: 1022-1037
        • Arnold P.R.
        • Wells A.D.
        • Li X.C.
        Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate.
        Front Cell Dev Biol. 2020; 7: 377
        • Zemojtel T.
        • Kielbasa S.M.
        • Arndt P.F.
        • Chung H.R.
        • Vingron M.
        Methylation and deamination of CpGs generate p53-binding sites on a genomic scale.
        Trends Genet. 2009; 25: 63-66
        • Cui F.
        • Sirotin M.V.
        • Zhurkin V.B.
        Impact of Alu repeats on the evolution of human p53 binding sites.
        Biol Direct. 2011; 6: 2
        • Laperriere D.
        • Wang T.T.
        • White J.H.
        • Mader S.
        Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution.
        BMC Genomics. 2007; 8: 23
        • Evans R.M.
        • Mangelsdorf D.J.
        Nuclear receptors, RXR, and the big bang.
        Cell. 2014; 157: 255-266
        • Krieger T.G.
        • Moran C.M.
        • Frangini A.
        • Visser W.E.
        • Schoenmakers E.
        • Muntoni F.
        • et al.
        Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development [published correction appears in Proc Natl Acad Sci U S A 2020; 117:7537–7538].
        Proc Natl Acad Sci U S A. 2019; 116: 22754-22763
        • Bernal J.
        Thyroid hormone regulated genes in cerebral cortex development.
        J Endocrinol. 2017; 232: R83-R97
        • Simandi Z.
        • Horvath A.
        • Cuaranta-Monroy I.
        • Sauer S.
        • Deleuze J.F.
        • Nagy L.
        RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification.
        Mol Cell Endocrinol. 2018; 471: 51-62
        • Sharma S.
        • Shen T.
        • Chitranshi N.
        • Gupta V.
        • Basavarajappa D.
        • Sarkar S.
        • et al.
        Retinoid X receptor: Cellular and biochemical roles of nuclear receptor with a focus on neuropathological involvement [published correction appears in Mol Neurobiol 2022; 59:2051].
        Mol Neurobiol. 2022; 59: 2027-2050
        • Podleśny-Drabiniok A.
        • Sobska J.
        • de Lera A.R.
        • Gołembiowska K.
        • Kamińska K.
        • Dollé P.
        • et al.
        Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons.
        Sci Rep. 2017; 713671
        • Haushalter C.
        • Asselin L.
        • Fraulob V.
        • Dollé P.
        • Rhinn M.
        Retinoic acid controls early neurogenesis in the developing mouse cerebral cortex.
        Dev Biol. 2017; 430: 129-141
        • le Maire A.
        • Teyssier C.
        • Balaguer P.
        • Bourguet W.
        • Germain P.
        Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations.
        Cells. 2019; 8: 1392
        • Hu Q.
        • Tanasa B.
        • Trabucchi M.
        • Li W.
        • Zhang J.
        • Ohgi K.A.
        • et al.
        DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation.
        Nat Struct Mol Biol. 2012; 19: 1168-1175
        • Boija A.
        • Klein I.A.
        • Sabari B.R.
        • Dall’Agnese A.
        • Coffey E.L.
        • Zamudio A.V.
        • et al.
        Transcription factors activate genes through the phase-separation capacity of their activation domains.
        Cell. 2018; 175: 1842-1855.e16
        • Glinsky G.V.
        Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells [published correction appears in Chromosome Res 2018; 26:85–92].
        Chromosome Res. 2018; 26: 61-84
        • Zhou Y.H.
        • Zheng J.B.
        • Gu X.
        • Saunders G.F.
        • Yung W.K.A.
        Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation.
        Genome Res. 2002; 12: 1716-1722
        • Sorek R.
        • Ast G.
        • Graur D.
        Alu-containing exons are alternatively spliced.
        Genome Res. 2002; 12: 1060-1067
        • Florea L.
        • Payer L.
        • Antonescu C.
        • Yang G.
        • Burns K.
        Detection of Alu exonization events in human frontal cortex from RNA-seq data.
        Front Mol Biosci. 2021; 8727537
        • Daniel C.
        • Silberberg G.
        • Behm M.
        • Öhman M.
        Alu elements shape the primate transcriptome by cis-regulation of RNA editing.
        Genome Biol. 2014; 15: R28
        • Keren H.
        • Lev-Maor G.
        • Ast G.
        Alternative splicing and evolution: Diversification, exon definition and function.
        Nat Rev Genet. 2010; 11: 345-355
        • Shen S.
        • Lin L.
        • Cai J.J.
        • Jiang P.
        • Kenkel E.J.
        • Stroik M.R.
        • et al.
        Widespread establishment and regulatory impact of Alu exons in human genes.
        Proc Natl Acad Sci U S A. 2011; 108: 2837-2842
        • Avgan N.
        • Wang J.I.
        • Fernandez-Chamorro J.
        • Weatheritt R.J.
        Multilayered control of exon acquisition permits the emergence of novel forms of regulatory control.
        Genome Biol. 2019; 20: 141
        • Sibley C.R.
        • Blazquez L.
        • Ule J.
        Lessons from non-canonical splicing.
        Nat Rev Genet. 2016; 17: 407-421
        • Alesi V.
        • Bertoli M.
        • Barrano G.
        • Torres B.
        • Pusceddu S.
        • Pastorino M.
        • et al.
        335.4 kb microduplication in chromosome band Xp11.2p11.3 associated with developmental delay, growth retardation, autistic disorder and dysmorphic features.
        Gene. 2012; 505: 384-387
        • Kleefstra T.
        • Yntema H.G.
        • Oudakker A.R.
        • Banning M.J.G.
        • Kalscheuer V.M.
        • Chelly J.
        • et al.
        Zinc finger 81 (ZNF81) mutations associated with X-linked mental retardation.
        J Med Genet. 2004; 41: 394-399
        • Emerson R.O.
        • Thomas J.H.
        Adaptive evolution in zinc finger transcription factors.
        PLoS Genet. 2009; 5e1000325
        • Attig J.
        • Ruiz de Los Mozos I.
        • Haberman N.
        • Wang Z.
        • Emmett W.
        • Zarnack K.
        • et al.
        Splicing repression allows the gradual emergence of new Alu-exons in primate evolution.
        Elife. 2016; 5e19545
        • Larsen P.A.
        • Hunnicutt K.E.
        • Larsen R.J.
        • Yoder A.D.
        • Saunders A.M.
        Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease.
        Chromosome Res. 2018; 26: 93-111
        • Martinez-Gomez L.
        • Abascal F.
        • Jungreis I.
        • Pozo F.
        • Kellis M.
        • Mudge J.M.
        • Tress M.L.
        Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation.
        NAR Genom Bioinform. 2020; 2: lqz023
        • Xia B.
        • Zhang W.
        • Wudzinska A.
        • Huang E.
        • Brosh R.
        • Pour M.
        • et al.
        The genetic basis of tail-loss evolution in humans and apes.
        bioRxiv. 2021; https://doi.org/10.1101/2021.09.14.460388
        • Li Z.
        • Tian Y.
        • Tian N.
        • Zhao X.
        • Du C.
        • Han L.
        • Zhang H.
        Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma.
        Oncol Rep. 2015; 33: 2845-2852
        • Tan T.Y.
        • Sedmík J.
        • Fitzgerald M.P.
        • Halevy R.S.
        • Keegan L.P.
        • Helbig I.
        • et al.
        Bi-allelic ADARB1 variants associated with microcephaly, intellectual disability, and seizures.
        Am J Hum Genet. 2020; 106: 467-483
        • Heraud-Farlow J.E.
        • Walkley C.R.
        What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs.
        Open Biol. 2020; 10200085
        • Behm M.
        • Öhman M.
        RNA editing: A contributor to neuronal dynamics in the mammalian brain.
        Trends Genet. 2016; 32: 165-175
        • Attig J.
        • Agostini F.
        • Gooding C.
        • Chakrabarti A.M.
        • Singh A.
        • Haberman N.
        • et al.
        Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing.
        Cell. 2018; 174: 1067-1081.e17
        • Ule J.
        • Blencowe B.J.
        Alternative splicing regulatory networks: Functions, mechanisms, and evolution.
        Mol Cell. 2019; 76: 329-345
        • Li M.
        • Lee K.F.
        • Lu Y.
        • Clarke I.
        • Shih D.
        • Eberhart C.
        • et al.
        Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors [published correction appears in Cancer Cell 2010; 17:413.
        Cancer Cell. 2009; 16: 533-546
        • Du C.L.
        • Peng F.
        • Liu K.Q.
        miR-517a is up-regulated in glioma and promotes glioma tumorigenesis in vitro and in vivo.
        Biosci Rep. 2019; 39 (BSR20181196)
        • Lambo S.
        • Gröbner S.N.
        • Rausch T.
        • Waszak S.M.
        • Schmidt C.
        • Gorthi A.
        • et al.
        The molecular landscape of ETMR at diagnosis and relapse.
        Nature. 2019; 576: 274-280
        • Pandey R.
        • Bhattacharya A.
        • Bhardwaj V.
        • Jha V.
        • Mandal A.K.
        • Mukerji M.
        Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection.
        Sci Rep. 2016; 632348
        • Bridge K.S.
        • Shah K.M.
        • Li Y.
        • Foxler D.E.
        • Wong S.C.K.
        • Miller D.C.
        • et al.
        Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins.
        Cell Rep. 2017; 20: 173-187
        • O’Brien J.
        • Hayder H.
        • Zayed Y.
        • Peng C.
        Overview of microRNA biogenesis, mechanisms of actions, and circulation.
        Front Endocrinol (Lausanne). 2018; 9: 402
        • Smalheiser N.R.
        • Torvik V.I.
        Alu elements within human mRNAs are probable microRNA targets.
        Trends Genet. 2006; 22: 532-536
        • Bhattacharya A.
        • Jha V.
        • Singhal K.
        • Fatima M.
        • Singh D.
        • Chaturvedi G.
        • et al.
        Multiple Alu exonization in 3′UTR of a primate-specific isoform of CYP20A1 creates a potential miRNA sponge.
        Genome Biol Evol. 2021; 13evaa233
        • Nishioka M.
        • Bundo M.
        • Iwamoto K.
        • Kato T.
        Somatic mutations in the human brain: Implications for psychiatric research.
        Mol Psychiatry. 2019; 24: 839-856
        • D’Gama A.M.
        • Walsh C.A.
        Somatic mosaicism and neurodevelopmental disease.
        Nat Neurosci. 2018; 21: 1504-1514
        • Bedrosian T.A.
        • Quayle C.
        • Novaresi N.
        • Gage F.H.
        Early life experience drives structural variation of neural genomes in mice.
        Science. 2018; 359: 1395-1399
        • Larsen P.A.
        • Lutz M.W.
        • Hunnicutt K.E.
        • Mihovilovic M.
        • Saunders A.M.
        • Yoder A.D.
        • Roses A.D.
        The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease.
        Alzheimers Dement. 2017; 13: 828-838
        • Wu S.J.
        • Hsieh T.J.
        • Kuo M.C.
        • Tsai M.L.
        • Tsai K.L.
        • Chen C.H.
        • Yang Y.H.
        Functional regulation of Alu element of human angiotensin-converting enzyme gene in neuron cells.
        Neurobiol Aging. 2013; 34 (1921.e1–7)
        • Doyle G.A.
        • Crist R.C.
        • Karatas E.T.
        • Hammond M.J.
        • Ewing A.D.
        • Ferraro T.N.
        • et al.
        Analysis of LINE-1 elements in DNA from postmortem brains of individuals with schizophrenia.
        Neuropsychopharmacology. 2017; 42: 2602-2611
        • Li S.
        • Yang Q.
        • Hou Y.
        • Jiang T.
        • Zong L.
        • Wang Z.
        • et al.
        Hypomethylation of LINE-1 elements in schizophrenia and bipolar disorder.
        J Psychiatr Res. 2018; 107: 68-72
        • Baillie J.K.
        • Barnett M.W.
        • Upton K.R.
        • Gerhardt D.J.
        • Richmond T.A.
        • De Sapio F.
        • et al.
        Somatic retrotransposition alters the genetic landscape of the human brain.
        Nature. 2011; 479: 534-537
        • Liu W.
        • Li W.
        • Cai X.
        • Yang Z.
        • Li H.
        • Su X.
        • et al.
        Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci.
        Neuropsychopharmacology. 2020; 45: 1196-1206
        • Dhir A.
        • Buratti E.
        Alternative splicing: Role of pseudoexons in human disease and potential therapeutic strategies.
        FEBS J. 2010; 277: 841-855
        • Vorechovsky I.
        Transposable elements in disease-associated cryptic exons.
        Hum Genet. 2010; 127: 135-154
        • Ule J.
        Alu elements: At the crossroads between disease and evolution.
        Biochem Soc Trans. 2013; 41: 1532-1535
        • Kim J.
        • Hu C.
        • Moufawad El Achkar C.
        • Black L.E.
        • Douville J.
        • Larson A.
        • et al.
        Patient-customized oligonucleotide therapy for a rare genetic disease.
        N Engl J Med. 2019; 381: 1644-1652
        • Gu S.
        • Yuan B.
        • Campbell I.M.
        • Beck C.R.
        • Carvalho C.M.B.
        • Nagamani S.C.S.
        • et al.
        Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3.
        Hum Mol Genet. 2015; 24: 4061-4077
        • Blazejewski S.M.
        • Bennison S.A.
        • Smith T.H.
        • Toyo-Oka K.
        Neurodevelopmental genetic diseases associated with microdeletions and microduplications of chromosome 17p13.3.
        Front Genet. 2018; 9: 80
        • de la Torre-Ubieta L.
        • Won H.
        • Stein J.L.
        • Geschwind D.H.
        Advancing the understanding of autism disease mechanisms through genetics.
        Nat Med. 2016; 22: 345-361
        • Tammimies K.
        • Li D.
        • Rabkina I.
        • Stamouli S.
        • Becker M.
        • Nicolaou V.
        • et al.
        Association between copy number variation and response to social skills training in autism spectrum disorder.
        Sci Rep. 2019; 9: 9810
        • Grayton H.M.
        • Fernandes C.
        • Rujescu D.
        • Collier D.A.
        Copy number variations in neurodevelopmental disorders.
        Prog Neurobiol. 2012; 99: 81-91
        • Sønderby I.E.
        • van der Meer D.
        • Moreau C.
        • Kaufmann T.
        • Walters G.B.
        • Ellegaard M.
        • et al.
        1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans.
        Transl Psychiatry. 2021; 11: 182
        • Klein S.J.
        • O’Neill R.J.
        Transposable elements: Genome innovation, chromosome diversity, and centromere conflict.
        Chromosome Res. 2018; 26: 5-23
        • Xing J.
        • Hedges D.J.
        • Han K.
        • Wang H.
        • Cordaux R.
        • Batzer M.A.
        Alu element mutation spectra: Molecular clocks and the effect of DNA methylation.
        J Mol Biol. 2004; 344: 675-682
        • Liu G.E.
        • Alkan C.
        • Jiang L.
        • Zhao S.
        • Eichler E.E.
        Comparative analysis of Alu repeats in primate genomes.
        Genome Res. 2009; 19: 876-885
        • Rogers J.
        • Raveendran M.
        • Harris R.A.
        • Mailund T.
        • Leppälä K.
        • Athanasiadis G.
        • et al.
        The comparative genomics and complex population history of Papio baboons.
        Sci Adv. 2019; 5eaau6947
        • Tang W.
        • Liang P.
        Comparative genomics analysis reveals high levels of differential retrotransposition among primates from the Hominidae and the Cercopithecidae families.
        Genome Biol Evol. 2019; 11: 3309-3325
        • Steely C.J.
        • Baker J.N.
        • Walker J.A.
        • Loupe 3rd, C.D.
        • Batzer M.A.
        • Baboon Genome Analysis Consortium
        Analysis of lineage-specific Alu subfamilies in the genome of the olive baboon, Papio anubis.
        Mob DNA. 2018; 9: 10
        • Logsdon G.A.
        • Vollger M.R.
        • Eichler E.E.
        Long-read human genome sequencing and its applications.
        Nat Rev Genet. 2020; 21: 597-614
        • Gasperini M.
        • Hill A.J.
        • McFaline-Figueroa J.L.
        • Martin B.
        • Kim S.
        • Zhang M.D.
        • et al.
        A genome-wide framework for mapping gene regulation via cellular genetic screens [published correction appears in Cell 2019; 176:1516].
        Cell. 2019; 176: 377-390.e19
        • Fulco C.P.
        • Munschauer M.
        • Anyoha R.
        • Munson G.
        • Grossman S.R.
        • Perez E.M.
        • et al.
        Systematic mapping of functional enhancer-promoter connections with CRISPR interference.
        Science. 2016; 354: 769-773
        • Nasser J.
        • Bergman D.T.
        • Fulco C.P.
        • Guckelberger P.
        • Doughty B.R.
        • Patwardhan T.A.
        • et al.
        Genome-wide enhancer maps link risk variants to disease genes.
        Nature. 2021; 593: 238-243
        • Lopes R.
        • Sprouffske K.
        • Sheng C.
        • Uijttewaal E.C.H.
        • Wesdorp A.E.
        • Dahinden J.
        • et al.
        Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens.
        Sci Adv. 2021; 7eabf5733
        • Xie S.
        • Armendariz D.
        • Zhou P.
        • Duan J.
        • Hon G.C.
        Global analysis of enhancer targets reveals convergent enhancer-driven regulatory modules.
        Cell Rep. 2019; 29: 2570-2578.e5
        • Xie S.
        • Duan J.
        • Li B.
        • Zhou P.
        • Hon G.C.
        Multiplexed engineering and analysis of combinatorial enhancer activity in single cells.
        Mol Cell. 2017; 66: 285-299.e5
        • Tian R.
        • Abarientos A.
        • Hong J.
        • Hashemi S.H.
        • Yan R.
        • Dräger N.
        • et al.
        Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis.
        Nat Neurosci. 2021; 24: 1020-1034
        • Du M.
        • Jillette N.
        • Zhu J.J.
        • Li S.
        • Cheng A.W.
        CRISPR artificial splicing factors.
        Nat Commun. 2020; 11: 2973
        • Konermann S.
        • Lotfy P.
        • Brideau N.J.
        • Oki J.
        • Shokhirev M.N.
        • Hsu P.D.
        Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors.
        Cell. 2018; 173: 665-676.e14
        • Li S.
        • Li X.
        • Xue W.
        • Zhang L.
        • Yang L.Z.
        • Cao S.M.
        • et al.
        Screening for functional circular RNAs using the CRISPR–Cas13 system.
        Nat Methods. 2021; 18: 51-59
        • Jacquet K.
        • Vidal-Cruchez O.
        • Rezzonico R.
        • Nicolini V.J.
        • Mograbi B.
        • Hofman P.
        • et al.
        New technologies for improved relevance in miRNA research.
        Trends Genet. 2021; 37: 1060-1063
        • Faridani O.R.
        • Abdullayev I.
        • Hagemann-Jensen M.
        • Schell J.P.
        • Lanner F.
        • Sandberg R.
        Single-cell sequencing of the small-RNA transcriptome.
        Nat Biotechnol. 2016; 34: 1264-1266
        • Florio M.
        • Namba T.
        • Pääbo S.
        • Hiller M.
        • Huttner W.B.
        A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification.
        Sci Adv. 2016; 2e1601941
        • Boyd J.L.
        • Skove S.L.
        • Rouanet J.P.
        • Pilaz L.J.
        • Bepler T.
        • Gordân R.
        • et al.
        Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex.
        Curr Biol. 2015; 25: 772-779
        • Hou Q.Q.
        • Xiao Q.
        • Sun X.Y.
        • Ju X.C.
        • Luo Z.G.
        TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a.
        Sci Adv. 2021; 7 (eaba8053)
        • Esk C.
        • Lindenhofer D.
        • Haendeler S.
        • Wester R.A.
        • Pflug F.
        • Schroeder B.
        • et al.
        A human tissue screen identifies a regulator of ER secretion as a brain-size determinant.
        Science. 2020; 370: 935-941
        • Li Y.
        • Muffat J.
        • Omer A.
        • Bosch I.
        • Lancaster M.A.
        • Sur M.
        • et al.
        Induction of expansion and folding in human cerebral organoids.
        Cell Stem Cell. 2017; 20: 385-396.e3
        • Ziffra R.S.
        • Kim C.N.
        • Wilfert A.
        • Turner T.N.
        • Haeussler M.
        • Casella A.M.
        • et al.
        Single cell epigenomic atlas of the developing human brain and organoids.
        bioRxiv. 2020; https://doi.org/10.1101/2019.12.30.891549
        • Servant G.
        • Deininger P.L.
        Insertion of retrotransposons at chromosome ends: Adaptive response to chromosome maintenance.
        Front Genet. 2016; 6: 358
        • Elbarbary R.A.
        • Lucas B.A.
        • Maquat L.E.
        Retrotransposons as regulators of gene expression.
        Science. 2016; 351: aac7247
        • Ju X.C.
        • Hou Q.Q.
        • Sheng A.L.
        • Wu K.Y.
        • Zhou Y.
        • Jin Y.
        • et al.
        The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice.
        Elife. 2016; 5e18197
        • Marshall H.
        • Studer M.
        • Pöpperl H.
        • Aparicio S.
        • Kuroiwa A.
        • Brenner S.
        • Krumlauf R.
        A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1.
        Nature. 1994; 370: 567-571
        • Koop D.
        • Holland N.D.
        • Sémon M.
        • Alvarez S.
        • de Lera A.R.
        • Laudet V.
        • et al.
        Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan.
        Dev Biol. 2010; 338: 98-106
        • Reilly S.K.
        • Yin J.
        • Ayoub A.E.
        • Emera D.
        • Leng J.
        • Cotney J.
        • et al.
        Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis.
        Science. 2015; 347: 1155-1159
        • Prabhakar S.
        • Noonan J.P.
        • Pääbo S.
        • Rubin E.M.
        Accelerated evolution of conserved noncoding sequences in humans.
        Science. 2006; 314: 786
        • Won H.
        • Huang J.
        • Opland C.K.
        • Hartl C.L.
        • Geschwind D.H.
        Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility.
        Nat Commun. 2019; 10: 2396
        • Gerber A.
        • O’Connell M.A.
        • Keller W.
        Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette.
        RNA. 1997; 3: 453-463
        • Zhang X.
        • Chen M.H.
        • Wu X.
        • Kodani A.
        • Fan J.
        • Doan R.
        • et al.
        Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex.
        Cell. 2016; 166: 1147-1162.e15
        • Quesnel-Vallières M.
        • Irimia M.
        • Cordes S.P.
        • Blencowe B.J.
        Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development.
        Genes Dev. 2015; 29: 746-759
        • Gonatopoulos-Pournatzis T.
        • Niibori R.
        • Salter E.W.
        • Weatheritt R.J.
        • Tsang B.
        • Farhangmehr S.
        • et al.
        Autism-misregulated eIF4G microexons control synaptic translation and higher order cognitive functions.
        Mol Cell. 2020; 77: 1176-1192.e16
        • Quesnel-Vallières M.
        • Weatheritt R.J.
        • Cordes S.P.
        • Blencowe B.J.
        Autism spectrum disorder: Insights into convergent mechanisms from transcriptomics.
        Nat Rev Genet. 2019; 20: 51-63
        • Parras A.
        • Anta H.
        • Santos-Galindo M.
        • Swarup V.
        • Elorza A.
        • Nieto-González J.L.
        • et al.
        Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing.
        Nature. 2018; 560: 441-446
        • Bian S.
        • Xu T.L.
        • Sun T.
        Tuning the cell fate of neurons and glia by microRNAs.
        Curr Opin Neurobiol. 2013; 23: 928-934
        • Nowakowski T.J.
        • Fotaki V.
        • Pollock A.
        • Sun T.
        • Pratt T.
        • Price D.J.
        MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain.
        Proc Natl Acad Sci U S A. 2013; 110: 7056-7061
        • Prodromidou K.
        • Vlachos I.S.
        • Gaitanou M.
        • Kouroupi G.
        • Hatzigeorgiou A.G.
        • Matsas R.
        MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development.
        Elife. 2020; 9e50561
        • Bian S.
        • Hong J.
        • Li Q.
        • Schebelle L.
        • Pollock A.
        • Knauss J.L.
        • et al.
        MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex.
        Cell Rep. 2013; 3: 1398-1406