Advertisement

Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia

      Abstract

      Background

      The dopamine (DA) hypothesis postulates hyperactivity of subcortical DA transmission and hypoactivity of cortical DA in schizophrenia (SCH). Positron emission tomography provides the ability to assess this hypothesis in humans. However, no studies have examined the relationship between cortical DA and striatal DA in this illness.

      Methods

      D2/3 receptor radiotracer [11C]FLB457 BPND (binding potential relative to nondisplaceable uptake) was measured in 14 off-medication subjects with SCH and 14 healthy control (HC) subjects at baseline and after the administration of 0.5 mg/kg oral d-amphetamine. The amphetamine-induced change in BPND (ΔBPND) was calculated as the difference between BPND in the postamphetamine condition and BPND in the baseline condition and expressed as a percentage of BPND at baseline. DA release in the striatum using the radiotracer [11C]NPA was also measured in these subjects.

      Results

      [11C]FLB457 ΔBPND was greater in the HC group compared with the SCH group (F1,26 = 5.7; p = .02) with significant differences in [11C]FLB457 ΔBPND seen across cortical brain regions. Only in the SCH group was a significant negative correlation observed between [11C]FLB457 ΔBPND in the dorsolateral prefrontal cortex and [11C]NPA ΔBPND in the dorsal caudate (r = −0.71, p = .005).

      Conclusions

      Subjects with SCH demonstrated deficits of DA release in cortical brain regions relative to HC subjects. Examining both cortical and striatal DA release in the same subjects demonstrated an inverse relationship between cortical DA release and striatal DA release in SCH not present in HC subjects, providing support for the current DA hypothesis of SCH.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Davis K.L.
        • Kahn R.S.
        • Ko G.
        • Davidson M.
        Dopamine in schizophrenia: A review and reconceptualization.
        Am J Psychiatry. 1991; 148: 1474-1486
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Deutch A.Y.
        The regulation of subcortical dopamine systems by the prefrontal cortex: Interactions of central dopamine systems and the pathogenesis of schizophrenia.
        J Neural Transm Suppl. 1992; 36: 61-89
        • Pycock C.J.
        • Kerwin R.W.
        • Carter C.J.
        Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats.
        Nature. 1980; 286: 74-76
        • Sokolowski J.D.
        • Salamone J.D.
        Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat.
        Brain Res. 1994; 642: 20-28
        • Roberts A.C.
        • De Salvia M.A.
        • Wilkinson L.S.
        • Collins P.
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: Possible interactions with subcortical dopamine.
        J Neurosci. 1994; 14: 2531-2544
        • Clarke H.F.
        • Cardinal R.N.
        • Rygula R.
        • Hong Y.T.
        • Fryer T.D.
        • Sawiak S.J.
        • et al.
        Orbitofrontal dopamine depletion upregulates caudate dopamine and alters behavior via changes in reinforcement sensitivity.
        J Neurosci. 2014; 34: 7663-7676
        • Howes O.D.
        • Kambeitz J.
        • Kim E.
        • Stahl D.
        • Slifstein M.
        • Abi-Dargham A.
        • Kapur S.
        The nature of dopamine dysfunction in schizophrenia and what this means for treatment.
        Arch Gen Psychiatry. 2012; 69: 776-786
        • Laruelle M.
        • Abi-Dargham A.
        • van Dyck C.H.
        • Gil R.
        • D’Souza C.D.
        • Erdos J.
        • et al.
        Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.
        Proc Natl Acad Sci U S A. 1996; 93: 9235-9240
        • Abi-Dargham A.
        • Gil R.
        • Krystal J.
        • Baldwin R.M.
        • Seibyl J.P.
        • Bowers M.
        • et al.
        Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort.
        Am J Psychiatry. 1998; 155: 761-767
        • Abi-Dargham A.
        • Rodenhiser J.
        • Printz D.
        • Zea-Ponce Y.
        • Gil R.
        • Kegeles L.S.
        • et al.
        Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.
        Proc Natl Acad Sci U S A. 2000; 97: 8104-8109
        • McCutcheon R.
        • Beck K.
        • Jauhar S.
        • Howes O.D.
        Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis.
        Schizophr Bull. 2018; 44: 1301-1311
        • Demjaha A.
        • Murray R.M.
        • McGuire P.K.
        • Kapur S.
        • Howes O.D.
        Dopamine synthesis capacity in patients with treatment-resistant schizophrenia.
        Am J Psychiatry. 2012; 169: 1203-1210
        • Kegeles L.S.
        • Abi-Dargham A.
        • Frankle W.G.
        • Gil R.
        • Cooper T.B.
        • Slifstein M.
        • et al.
        Increased synaptic dopamine function in associative regions of the striatum in schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 231-239
        • Slifstein M.
        • van de Giessen E.
        • Van Snellenberg J.
        • Thompson J.L.
        • Narendran R.
        • Gil R.
        • et al.
        Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study.
        JAMA Psychiatry. 2015; 72: 316-324
        • Rao N.
        • Northoff G.
        • Tagore A.
        • Rusjan P.
        • Kenk M.
        • Wilson A.
        • et al.
        Impaired prefrontal cortical dopamine release in schizophrenia during a cognitive task: A [11C]FLB 457 positron emission tomography study.
        Schizophr Bull. 2019; 45: 670-679
        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Hoover J.E.
        • Strick P.L.
        Multiple output channels in the basal ganglia.
        Science. 1993; 259: 819-821
        • Ferry A.T.
        • Ongür D.
        • An X.
        • Price J.L.
        Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks.
        J Comp Neurol. 2000; 425: 447-470
        • Joel D.
        • Weiner I.
        The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum.
        Neuroscience. 2000; 96: 451-474
        • Parent A.
        • Hazrati L.N.
        Functional anatomy of the basal ganglia. I. The cortico-basal ganglia- thalamo-cortical loop.
        Brain Res Brain Res Rev. 1995; 20: 91-127
        • Haber S.N.
        The primate basal ganglia: Parallel and integrative networks.
        J Chem Neuroanat. 2003; 26: 317-330
        • Frankle W.G.
        • Paris J.
        • Himes M.
        • Mason N.S.
        • Mathis C.A.
        • Narendran R.
        Amphetamine-induced striatal dopamine release measured with an agonist radiotracer in schizophrenia.
        Biol Psychiatry. 2018; 83: 707-714
        • Spitzer R.L.
        • Williams J.B.
        • Gibbon M.
        • First M.B.
        The Structured Clinical interview for DSM-III-R (SCID). I. History, rationale and description.
        Arch Gen Psychiatry. 1992; 49: 624-629
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Nuechterlein K.H.
        • Green M.F.
        • Kern R.S.
        • Baade L.E.
        • Barch D.M.
        • Cohen J.D.
        • et al.
        The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity.
        Am J Psychiatry. 2008; 165: 203-213
        • Cohen J.D.
        • Perlstein W.M.
        • Braver T.S.
        • Nystrom L.E.
        • Noll D.C.
        • Jonides J.
        • Smith E.E.
        Temporal dynamics of brain activation during a working memory task.
        Nature. 1997; 386: 604-608
        • Cohen J.D.
        • Forman S.D.
        • Braver T.S.
        • Casey B.J.
        • Servan-Schreiber D.
        • Noll D.C.
        Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI.
        Hum Brain Mapp. 1994; 1: 293-304
        • Halldin C.
        • Farde L.
        • Högberg T.
        • Mohell N.
        • Hall H.
        • Suhara T.
        • et al.
        Carbon-11-FLB 457: A radioligand for extrastriatal D2 dopamine receptors.
        J Nucl Med. 1995; 36: 1275-1281
        • Sudo Y.
        • Suhara T.
        • Inoue M.
        • Ito H.
        • Suzuki K.
        • Saijo T.
        • et al.
        Reproducibility of [11 C]FLB 457 binding in extrastriatal regions.
        Nucl Med Commun. 2001; 22: 1215-1221
        • Narendran R.
        • Mason N.S.
        • May M.A.
        • Chen C.M.
        • Kendro S.
        • Ridler K.
        • et al.
        PET imaging of dopamine D2/3 receptors in the human cortex with [11C]FLB 457: Reproducibility studies.
        Synapse. 2011; 65: 35-40
        • Narendran R.
        • Mason N.S.
        • Chen C.M.
        • Himes M.
        • Keating P.
        • May M.A.
        • et al.
        Evaluation of dopamine D2/3 specific binding in the cerebellum for the positron emission tomography radiotracer [11C]FLB 457: Implications for measuring cortical dopamine release.
        Synapse. 2011; 65: 991-997
        • Innis R.B.
        • Cunningham V.J.
        • Delforge J.
        • Fujita M.
        • Gjedde A.
        • Gunn R.N.
        • et al.
        Consensus nomenclature for in vivo imaging of reversibly binding radioligands.
        J Cereb Blood Flow Metab. 2007; 27: 1533-1539
        • Lammertsma A.A.
        • Hume S.P.
        Simplified reference tissue model for PET receptor studies.
        Neuroimage. 1996; 4: 153-158
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc B. 1995; 57: 289-300
        • Diedenhofen B.
        • Musch J.
        cocor: A comprehensive solution for the statistical comparison of correlations [published correction appears in PLoS One 2015; 10:e0131499].
        PLoS One. 2015; 10e0121945
        • Clos M.
        • Bunzeck N.
        • Sommer T.
        Dopamine enhances item novelty detection via hippocampal and associative recall via left lateral prefrontal cortex mechanisms.
        J Neurosci. 2019; 39: 7920-7933
        • Narendran R.
        • Himes M.
        • Mason N.S.
        Reproducibility of post-amphetamine [11C]FLB 457 binding to cortical D2/3 receptors.
        PLoS One. 2013; 8e76905
        • Narendran R.
        • Jedema H.P.
        • Lopresti B.J.
        • Mason N.S.
        • Gurnsey K.
        • Ruszkiewicz J.
        • et al.
        Imaging dopamine transmission in the frontal cortex: A simultaneous microdialysis and [11C]FLB 457 PET study [published correction appears in Mol Psychiatry 2014; 19:399].
        Mol Psychiatry. 2014; 19: 302-310
        • Gertler J.
        • Tollefson S.
        • Jordan R.
        • Himes M.L.
        • Mason N.S.
        • Frankle W.G.
        • Narendran R.
        Failure to detect amphetamine-induced dopamine release in the cortex with [11C]FLB 457 positron emission tomography (PET): Methodological considerations.
        Synapse. 2018; 72e22037
        • Olsson H.
        • Halldin C.
        • Swahn C.G.
        • Farde L.
        Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain.
        J Cereb Blood Flow Metab. 1999; 19: 1164-1173
        • Olsson H.
        • Halldin C.
        • Farde L.
        Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET.
        Neuroimage. 2004; 22: 794-803
        • Delforge J.
        • Bottlaender M.
        • Loc'h C.
        • Guenther I.
        • Fuseau C.
        • Bendriem B.
        • et al.
        Quantitation of extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multi-injection approach.
        J Cereb Blood Flow Metab. 1999; 19: 533-546
        • Asselin M.C.
        • Montgomery A.J.
        • Grasby P.M.
        • Hume S.P.
        Quantification of PET studies with the very high-affinity dopamine D2/D3 receptor ligand [11C]FLB 457: Re-evaluation of the validity of using a cerebellar reference region.
        J Cereb Blood Flow Metab. 2007; 27: 378-392
        • Farde L.
        • Suhara T.
        • Nyberg S.
        • Karlsson P.
        • Nakashima Y.
        • Hietala J.
        • Halldin C.
        A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients.
        Psychopharmacology (Berl). 1997; 133: 396-404
        • Simpson E.H.
        • Kellendonk C.
        • Kandel E.
        A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia.
        Neuron. 2010; 65: 585-596
        • Battig K.
        • Rosvold H.E.
        • Mishkin M.
        Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys.
        J Comp Physiol Psychol. 1960; 53: 400-404
        • Chorover S.L.
        • Gross C.G.
        Caudate nucleus lesions: Behavioral effects in the rat.
        Science. 1963; 141: 826-827
        • Lewis S.J.G.
        • Dove A.
        • Robbins T.W.
        • Barker R.A.
        • Owen A.M.
        Striatal contributions to working memory: A functional magnetic resonance imaging study in humans.
        Eur J Neurosci. 2004; 19: 755-760
        • Monchi O.
        • Petrides M.
        • Mejia-Constain B.
        • Strafella A.P.
        Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement.
        Brain. 2007; 130: 233-244
        • Monchi O.
        • Petrides M.
        • Strafella A.P.
        • Worsley K.J.
        • Doyon J.
        Functional role of the basal ganglia in the planning and execution of actions.
        Ann Neurol. 2006; 59: 257-264
        • Owen A.M.
        Cognitive dysfunction in Parkinson’s disease: The role of frontostriatal circuitry.
        Neuroscientist. 2004; 10: 525-537
        • Monchi O.
        • Ko J.H.
        • Strafella A.P.
        Striatal dopamine release during performance of executive functions: A [(11)C] raclopride PET study.
        Neuroimage. 2006; 33: 907-912
        • Cools R.
        • Gibbs S.E.
        • Miyakawa A.
        • Jagust W.
        • D’Esposito M.
        Working memory capacity predicts dopamine synthesis capacity in the human striatum.
        J Neurosci. 2008; 28: 1208-1212
        • Landau S.M.
        • Lal R.
        • O’Neil J.P.
        • Baker S.
        • Jagust W.J.
        Striatal dopamine and working memory.
        Cereb Cortex. 2009; 19: 445-454
        • Shalgunov V.
        • van Waarde A.
        • Booij J.
        • Michel M.C.
        • Dierckx R.A.J.O.
        • Elsinga P.H.
        Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging.
        Med Res Rev. 2019; 39: 1014-1052
        • Kellendonk C.
        • Simpson E.H.
        • Polan H.J.
        • Malleret G.
        • Vronskaya S.
        • Winiger V.
        • et al.
        Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning.
        Neuron. 2006; 49: 603-615
        • Graff-Guerrero A.
        • Mizrahi R.
        • Agid O.
        • Marcon H.
        • Barsoum P.
        • Rusjan P.
        • et al.
        The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: A clinical [11C]-(+)-PHNO PET study.
        Neuropsychopharmacology. 2009; 34: 1078-1086
        • Haber S.N.
        Corticostriatal circuitry.
        Dialogues Clin Neurosci. 2016; 18: 7-21
        • Quidé Y.
        • Morris R.W.
        • Shepherd A.M.
        • Rowland J.E.
        • Green M.J.
        Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia.
        Schizophr Res. 2013; 150: 468-475
        • Horga G.
        • Cassidy C.M.
        • Xu X.
        • Moore H.
        • Slifstein M.
        • Van Snellenberg J.X.
        • Abi-Dargham A.
        Dopamine-related disruption of functional topography of striatal connections in unmedicated patients with schizophrenia.
        JAMA Psychiatry. 2016; 73: 862-870
        • De Lean A.
        • Stadel J.M.
        • Lefkowitz R.J.
        A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor.
        J Biol Chem. 1980; 255: 7108-7117
        • Samama P.
        • Cotecchia S.
        • Costa T.
        • Lefkowitz R.J.
        A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model.
        J Biol Chem. 1993; 268: 4625-4636
        • Laruelle M.
        Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review.
        J Cereb Blood Flow Metab. 2000; 20: 423-451