Advertisement

Conditioned Hallucinations and Prior Overweighting Are State-Sensitive Markers of Hallucination Susceptibility

      Abstract

      Background

      Recent advances in computational psychiatry have identified latent cognitive and perceptual states that predispose to psychotic symptoms. Behavioral data fit to Bayesian models have demonstrated an overreliance on priors (i.e., prior overweighting) during perception in select samples of individuals with hallucinations, corresponding to increased precision of prior expectations over incoming sensory evidence. However, the clinical utility of this observation depends on the extent to which it reflects static symptom risk or current symptom state.

      Methods

      To determine whether task performance and estimated prior weighting relate to specific elements of symptom expression, a large, heterogeneous, and deeply phenotyped sample of hallucinators (n = 249) and nonhallucinators (n = 209) performed the conditioned hallucination (CH) task.

      Results

      We found that CH rates predicted stable measures of hallucination status (i.e., peak frequency). However, CH rates were more sensitive to hallucination state (i.e., recent frequency), significantly correlating with recent hallucination severity and driven by heightened reliance on past experiences (priors). To further test the sensitivity of CH rate and prior weighting to symptom severity, a subset of participants with hallucinations (n = 40) performed a repeated-measures version of the CH task. Changes in both CH frequency and prior weighting varied with changes in auditory hallucination frequency on follow-up.

      Conclusions

      These results indicate that CH rate and prior overweighting are state markers of hallucination status, potentially useful in tracking disease development and treatment response.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Papaleontiou M.
        • Cappola A.R.
        Thyroid-stimulating hormone in the evaluation of subclinical hypothyroidism.
        JAMA. 2016; 316: 1592-1593
        • Stephan K.E.
        • Mathys C.
        Computational approaches to psychiatry.
        Curr Opin Neurobiol. 2014; 25: 85-92
        • Wang X.J.
        • Krystal J.H.
        Computational psychiatry.
        Neuron. 2014; 84: 638-654
        • Browning M.
        • Carter C.S.
        • Chatham C.
        • Den Ouden H.
        • Gillan C.M.
        • Baker J.T.
        • et al.
        Realizing the clinical potential of computational psychiatry: Report from the Banbury Center Meeting, February 2019.
        Biol Psychiatry. 2020; 88: e5-e10
        • Adams R.A.
        • Stephan K.E.
        • Brown H.R.
        • Frith C.D.
        • Friston K.J.
        The computational anatomy of psychosis.
        Front Psychiatry. 2013; 4: 47
        • Fletcher P.C.
        • Frith C.D.
        Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia.
        Nat Rev Neurosci. 2009; 10: 48-58
        • Friston K.J.
        Hallucinations and perceptual inference.
        Behav Brain Sci. 2005; 28: 764-766
        • Summerfield C.
        • Egner T.
        • Greene M.
        • Koechlin E.
        • Mangels J.
        • Hirsch J.
        Predictive codes for forthcoming perception in the frontal cortex.
        Science. 2006; 314: 1311-1314
        • Hohwy J.
        Attention and conscious perception in the hypothesis testing brain.
        Front Psychol. 2012; 3: 96
        • Friston K.
        • Kiebel S.
        Predictive coding under the free-energy principle.
        Philos Trans R Soc Lond B Biol Sci. 2009; 364: 1211-1221
        • Powers III, A.R.
        • Kelley M.
        • Corlett P.R.
        Hallucinations as top-down effects on perception.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 393-400
        • Corlett P.R.
        • Horga G.
        • Fletcher P.C.
        • Alderson-Day B.
        • Schmack K.
        • Powers 3rd, A.R.
        Hallucinations and strong priors.
        Trends Cogn Sci. 2019; 23: 114-127
        • Teufel C.
        • Subramaniam N.
        • Dobler V.
        • Perez J.
        • Finnemann J.
        • Mehta P.R.
        • et al.
        Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals.
        Proc Natl Acad Sci U S A. 2015; 112: 13401-13406
        • Alderson-Day B.
        • Lima C.F.
        • Evans S.
        • Krishnan S.
        • Shanmugalingam P.
        • Fernyhough C.
        • Scott S.K.
        Distinct processing of ambiguous speech in people with non-clinical auditory verbal hallucinations.
        Brain. 2017; 140: 2475-2489
        • Zarkali A.
        • Adams R.A.
        • Psarras S.
        • Leyland L.A.
        • Rees G.
        • Weil R.S.
        Increased weighting on prior knowledge in Lewy body-associated visual hallucinations.
        Brain Commun. 2019; 1: fcz007
        • Cassidy C.M.
        • Balsam P.D.
        • Weinstein J.J.
        • Rosengard R.J.
        • Slifstein M.
        • Daw N.D.
        • et al.
        A perceptual inference mechanism for hallucinations linked to striatal dopamine.
        Curr Biol. 2018; 28: 503-514.e4
        • Powers A.R.
        • Mathys C.
        • Corlett P.R.
        Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors.
        Science. 2017; 357: 596-600
        • Kafadar E.
        • Mittal V.A.
        • Strauss G.P.
        • Chapman H.C.
        • Ellman L.M.
        • Bansal S.
        • et al.
        Modeling perception and behavior in individuals at clinical high risk for psychosis: Support for the predictive processing framework.
        Schizophr Res. 2020; 226: 167-175
        • Harris P.A.
        • Taylor R.
        • Minor B.L.
        • Elliott V.
        • Fernandez M.
        • O’Neal L.
        • et al.
        The REDCap consortium: Building an international community of software platform partners.
        J Biomed Inform. 2019; 95: 103208
        • Harris P.A.
        • Taylor R.
        • Thielke R.
        • Payne J.
        • Gonzalez N.
        • Conde J.G.
        Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support.
        J Biomed Inform. 2009; 42: 377-381
        • Kern B.
        • Axelrod J.
        • Gao Y.
        • Keedy S.
        Exchange the magnifying glass for a microscope: The Chicago Hallucination Assessment Tool (CHAT).
        Schizophr Bull. 2015; 41: S110
        • Launay G.
        • Slade P.
        The measurement of hallucinatory predisposition in male and female prisoners.
        Pers Individ Dif. 1981; 2: 221-234
        • Bentall R.P.
        • Slade P.D.
        Reliability of a scale measuring disposition towards hallucination: A brief report.
        Pers Individ Dif. 1985; 6: 527-529
        • Peters E.
        • Joseph S.
        • Day S.
        • Garety P.
        Measuring delusional ideation: The 21-item Peters et al. Delusions Inventory (PDI).
        Schizophr Bull. 2004; 30: 1005-1022
        • Bilker W.B.
        • Hansen J.A.
        • Brensinger C.M.
        • Richard J.
        • Gur R.E.
        • Gur R.C.
        Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test.
        Assessment. 2012; 19: 354-369
        • Powers A.R.
        • Corlett P.R.
        • Ross D.A.
        Guided by voices: Hallucinations and the psychosis spectrum.
        Biol Psychiatry. 2018; 84: e43-e45
        • Seashore C.E.
        Measurements of illusions and hallucinations in normal life.
        Studies from the Yale Psychological Laboratory. 1895; 3: 1-67
        • Ellson D.G.
        Hallucinations produced by sensory conditioning.
        J Exp Psychol. 1941; 28: 1-20
        • Kot T.
        • Serper M.
        Increased susceptibility to auditory conditioning in hallucinating schizophrenic patients: A preliminary investigation.
        J Nerv Ment Dis. 2002; 190: 282-288
        • Daalman K.
        • Boks M.P.M.
        • Diederen K.M.J.
        • de Weijer A.D.
        • Blom J.D.
        • Kahn R.S.
        • Sommer I.E.C.
        The same or different? A phenomenological comparison of auditory verbal hallucinations in healthy and psychotic individuals.
        J Clin Psychiatry. 2011; 72: 320-325
        • Ohayon M.M.
        Prevalence of hallucinations and their pathological associations in the general population.
        Psychiatry Res. 2000; 97: 153-164
        • Choong C.
        • Hunter M.D.
        • Woodruff P.W.R.
        Auditory hallucinations in those populations that do not suffer from schizophrenia.
        Curr Psychiatry Rep. 2007; 9: 206-212
        • Beavan V.
        • Read J.
        • Cartwright C.
        The prevalence of voice-hearers in the general population: A literature review.
        J Ment Health. 2011; 20: 281-292
        • Mathys C.D.
        • Lomakina E.I.
        • Daunizeau J.
        • Iglesias S.
        • Brodersen K.H.
        • Friston K.J.
        • Stephan K.E.
        Uncertainty in perception and the Hierarchical Gaussian Filter.
        Front Hum Neurosci. 2014; 8: 825
        • Mathys C.
        • Daunizeau J.
        • Friston K.J.
        • Stephan K.E.
        A Bayesian foundation for individual learning under uncertainty.
        Front Hum Neurosci. 2011; 5: 39
        • Frässle S.
        • Aponte E.A.
        • Bollmann S.
        • Brodersen K.H.
        • Do C.T.
        • Harrison O.K.
        • et al.
        TAPAS: An open-source software package for translational neuromodeling and computational psychiatry.
        Front Psychiatry. 2021; 12: 680811
        • Powers III, A.R.
        • Hillock-Dunn A.
        • Wallace M.T.
        Generalization of multisensory perceptual learning.
        Sci Rep. 2016; 6: 23374
        • Shams L.
        • Seitz A.R.
        Benefits of multisensory learning.
        Trends Cogn Sci. 2008; 12: 411-417
        • Kim R.S.
        • Seitz A.R.
        • Shams L.
        Benefits of stimulus congruency for multisensory facilitation of visual learning.
        PLoS One. 2008; 3: e1532
        • Barron D.S.
        • Baker J.T.
        • Budde K.S.
        • Bzdok D.
        • Eickhoff S.B.
        • Friston K.J.
        • et al.
        Decision models and technology can help psychiatry develop biomarkers.
        Front Psychiatry. 2021; 12: 706655
        • García-Gutiérrez M.S.
        • Navarrete F.
        • Sala F.
        • Gasparyan A.
        • Austrich-Olivares A.
        • Manzanares J.
        Biomarkers in psychiatry: Concept, definition, types and relevance to the clinical reality.
        Front Psychiatry. 2020; 11: 432
        • Lema Y.Y.
        • Gamo N.J.
        • Yang K.
        • Ishizuka K.
        Trait and state biomarkers for psychiatric disorders: Importance of infrastructure to bridge the gap between basic and clinical research and industry.
        Psychiatry Clin Neurosci. 2018; 72: 482-489
        • Powers III, A.R.
        • McGlashan T.H.
        • Woods S.W.
        Clinical phenomenology of the prodrome for psychosis.
        in: Tamminga C.A. van Os J. Reininghaus U. Ivleva E. Psychotic Disorders: Comprehensive Conceptualization and Treatments. Oxford University Press, Oxford2020: 105-112
        • Singh T.
        • Poterba T.
        • Curtis D.
        • Akil H.
        • Al Eissa M.
        • Barchas J.D.
        • et al.
        Rare coding variants in ten genes confer substantial risk for schizophrenia.
        Nature. 2022; 604: 509-516
        • Velakoulis D.
        • Pantelis C.
        • McGorry P.D.
        • Dudgeon P.
        • Brewer W.
        • Cook M.
        • et al.
        Hippocampal volume in first-episode psychoses and chronic schizophrenia: A high-resolution magnetic resonance imaging study.
        Arch Gen Psychiatry. 1999; 56: 133-141
        • Velakoulis D.
        • Wood S.J.
        • Wong M.T.H.
        • McGorry P.D.
        • Yung A.
        • Phillips L.
        • et al.
        Hippocampal and amygdala volumes according to psychosis stage and diagnosis: A magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals.
        Arch Gen Psychiatry. 2006; 63: 139-149
      1. Kubicki M. Shenton M.E. Neuroimaging in Schizophrenia. Springer Nature, Cham, Switzerland2020
        • Davis K.L.
        • Stewart D.G.
        • Friedman J.I.
        • Buchsbaum M.
        • Harvey P.D.
        • Hof P.R.
        • et al.
        White matter changes in schizophrenia: Evidence for myelin-related dysfunction.
        Arch Gen Psychiatry. 2003; 60: 443-456
        • Friston K.J.
        • Stephan K.E.
        • Montague R.
        • Dolan R.J.
        Computational psychiatry: The brain as a phantastic organ.
        Lancet Psychiatry. 2014; 1: 148-158
        • Hidalgo-Mazzei D.
        • Young A.H.
        • Vieta E.
        • Colom F.
        Behavioural biomarkers and mobile mental health: A new paradigm.
        Int J Bipolar Disord. 2018; 6: 9
        • Marshall L.
        • Mathys C.
        • Ruge D.
        • de Berker A.O.
        • Dayan P.
        • Stephan K.E.
        • Bestmann S.
        Pharmacological fingerprints of contextual uncertainty.
        PLoS Biol. 2016; 14e1002575