Advertisement

Frequent Low-Dose Δ9-Tetrahydrocannabinol in Adolescence Disrupts Microglia Homeostasis and Disables Responses to Microbial Infection and Social Stress in Young Adulthood

      Abstract

      Background

      During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug’s psychotropic constituent, Δ9-tetrahydrocannabinol (THC), might persistently alter microglia function.

      Methods

      We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat. We used high-dimensional mass cytometry by time-of-flight to map brain immune cell populations after lipopolysaccharide challenge.

      Results

      Adolescent THC exposure produced in mice of both sexes a state of microglial dyshomeostasis that persisted until young adulthood (PND70) but receded with further aging (PND120). Key features of this state included broad alterations in genes involved in microglia homeostasis and innate immunity along with marked impairments in the responses to lipopolysaccharide- and repeated social defeat–induced psychosocial stress. The endocannabinoid system was also dysfunctional. The effects of THC were prevented by coadministration of either a global CB1 receptor inverse agonist or a peripheral CB1 neutral antagonist and were not replicated when THC was administered in young adulthood (PND70–84).

      Conclusions

      Daily low-intensity CB1 receptor activation by THC during adolescence may disable critical functions served by microglia until young adulthood with potentially wide-ranging consequences for brain and mental health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carliner H.
        • Brown Q.L.
        • Sarvet A.L.
        • Hasin D.S.
        Cannabis use, attitudes, and legal status in the U.S.: A review.
        Prev Med. 2017; 104: 13-23
        • Kolk S.M.
        • Rakic P.
        Development of prefrontal cortex.
        Neuropsychopharmacology. 2022; 47: 41-57
        • Rubino T.
        • Parolaro D.
        Long lasting consequences of cannabis exposure in adolescence.
        Mol Cell Endocrinol. 2008; 286: S108-S113
        • Levine A.
        • Clemenza K.
        • Rynn M.
        • Lieberman J.
        Evidence for the risks and consequences of adolescent cannabis exposure.
        J Am Acad Child Adolesc Psychiatry. 2017; 56: 214-225
        • Albaugh M.D.
        • Ottino-Gonzalez J.
        • Sidwell A.
        • Lepage C.
        • Juliano A.
        • Owens M.M.
        • et al.
        Association of cannabis use during adolescence with neurodevelopment.
        JAMA Psychiatry. 2021; 78: 1031-1040
        • Schweinsburg A.D.
        • Brown S.A.
        • Tapert S.F.
        The influence of marijuana use on neurocognitive functioning in adolescents.
        Curr Drug Abuse Rev. 2008; 1: 99-111
        • Chadwick B.
        • Miller M.L.
        • Hurd Y.L.
        Cannabis use during adolescent development: Susceptibility to psychiatric illness.
        Front Psychiatry. 2013; 4: 129
        • Renard J.
        • Krebs M.O.
        • Le Pen G.
        • Jay T.M.
        Long-term consequences of adolescent cannabinoid exposure in adult psychopathology.
        Front Neurosci. 2014; 8: 361
        • Rogeberg O.
        Correlations between cannabis use and IQ change in the Dunedin cohort are consistent with confounding from socioeconomic status.
        Proc Natl Acad Sci U S A. 2013; 110: 4251-4254
        • Schneider M.
        Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure.
        Addict Biol. 2008; 13: 253-263
        • Rubino T.
        • Parolaro D.
        The impact of exposure to cannabinoids in adolescence: Insights from animal models.
        Biol Psychiatry. 2016; 79: 578-585
        • Piomelli D.
        • Mabou Tagne A.
        Endocannabinoid-based therapies.
        Annu Rev Pharmacol Toxicol. 2022; 62: 483-507
        • Harkany T.
        • Cinquina V.
        Physiological rules of endocannabinoid action during fetal and neonatal brain development.
        Cannabis Cannabinoid Res. 2021; 6: 381-388
        • Piomelli D.
        More surprises lying ahead. The endocannabinoids keep us guessing.
        Neuropharmacology. 2014; 76 Pt B: 228-234
        • Piomelli D.
        The molecular logic of endocannabinoid signalling.
        Nat Rev Neurosci. 2003; 4: 873-884
        • Laprairie R.B.
        • Kelly M.E.M.
        • Denovan-Wright E.M.
        The dynamic nature of type 1 cannabinoid receptor (CB(1) ) gene transcription.
        Br J Pharmacol. 2012; 167: 1583-1595
        • Wenger T.
        • Gerendai I.
        • Fezza F.
        • González S.
        • Bisogno T.
        • Fernandez-Ruiz J.
        • Di Marzo V.
        The hypothalamic levels of the endocannabinoid, anandamide, peak immediately before the onset of puberty in female rats [published correction appears in Life Sci 2002; 71:1349–1350].
        Life Sci. 2002; 70: 1407-1414
        • Casey B.J.
        • Glatt C.E.
        • Lee F.S.
        Treating the developing versus developed brain: Translating preclinical mouse and human studies.
        Neuron. 2015; 86: 1358-1368
        • Balogh K.N.
        • Mayes L.C.
        • Potenza M.N.
        Risk-taking and decision-making in youth: Relationships to addiction vulnerability.
        J Behav Addict. 2013; 2https://doi.org/10.1556/JBA.2.2013.1.1
        • Stella N.
        Endocannabinoid signaling in microglial cells.
        Neuropharmacology. 2009; 56: 244-253
        • Duffy S.S.
        • Hayes J.P.
        • Fiore N.T.
        • Moalem-Taylor G.
        The cannabinoid system and microglia in health and disease.
        Neuropharmacology. 2021; 190: 108555
        • Ransohoff R.M.
        • Cardona A.E.
        The myeloid cells of the central nervous system parenchyma.
        Nature. 2010; 468: 253-262
        • Prinz M.
        • Masuda T.
        • Wheeler M.A.
        • Quintana F.J.
        Microglia and central nervous system-associated macrophages – From origin to disease modulation.
        Annu Rev Immunol. 2021; 39: 251-277
        • Masuda T.
        • Sankowski R.
        • Staszewski O.
        • Prinz M.
        Microglia heterogeneity in the single-cell era.
        Cell Rep. 2020; 30: 1271-1281
        • Song W.M.
        • Colonna M.
        The identity and function of microglia in neurodegeneration.
        Nat Immunol. 2018; 19: 1048-1058
        • Butovsky O.
        • Weiner H.L.
        Microglial signatures and their role in health and disease.
        Nat Rev Neurosci. 2018; 19: 622-635
        • Mondelli V.
        • Vernon A.C.
        • Turkheimer F.
        • Dazzan P.
        • Pariante C.M.
        Brain microglia in psychiatric disorders.
        Lancet Psychiatry. 2017; 4: 563-572
        • Catale C.
        • Bussone S.
        • Lo Iacono L.
        • Carola V.
        Microglial alterations induced by psychoactive drugs: A possible mechanism in substance use disorder?.
        Semin Cell Dev Biol. 2019; 94: 164-175
        • Leduc-Pessah H.
        • Weilinger N.L.
        • Fan C.Y.
        • Burma N.E.
        • Thompson R.J.
        • Trang T.
        Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance.
        J Neurosci. 2017; 37: 10154-10172
        • Qu J.
        • Tao X.Y.
        • Teng P.
        • Zhang Y.
        • Guo C.L.
        • Hu L.
        • et al.
        Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation.
        J Neuroinflammation. 2017; 14: 228
        • Schwarz J.M.
        • Bilbo S.D.
        Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction.
        J Neurosci. 2013; 33: 961-971
        • Mariani M.M.
        • Kielian T.
        Microglia in infectious diseases of the central nervous system.
        J Neuroimmune Pharmacol. 2009; 4: 448-461
        • Ramirez K.
        • Fornaguera-Trías J.
        • Sheridan J.F.
        Stress-induced microglia activation and monocyte trafficking to the brain underlie the development of anxiety and depression.
        Curr Top Behav Neurosci. 2017; 31: 155-172
        • Goldman J.M.
        • Murr A.S.
        • Cooper R.L.
        The rodent estrous cycle: Characterization of vaginal cytology and its utility in toxicological studies.
        Birth Defects Res B Dev Reprod Toxicol. 2007; 80: 84-97
        • McLean A.C.
        • Valenzuela N.
        • Fai S.
        • Bennett S.A.L.
        Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification.
        J Vis Exp. 2012; : e4389
        • Dutta S.
        • Sengupta P.
        Men and mice: Relating their ages.
        Life Sci. 2016; 152: 244-248
        • Torrens A.
        • Vozella V.
        • Huff H.
        • McNeil B.
        • Ahmed F.
        • Ghidini A.
        • et al.
        Comparative pharmacokinetics of Δ9-tetrahydrocannabinol in adolescent and adult male mice.
        J Pharmacol Exp Ther. 2020; 374: 151-160
        • Deczkowska A.
        • Keren-Shaul H.
        • Weiner A.
        • Colonna M.
        • Schwartz M.
        • Amit I.
        Disease-associated microglia: A universal immune sensor of neurodegeneration.
        Cell. 2018; 173: 1073-1081
        • Imai Y.
        • Kohsaka S.
        Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1.
        Glia. 2002; 40: 164-174
        • Hickman S.E.
        • Kingery N.D.
        • Ohsumi T.K.
        • Borowsky M.L.
        • Wang L.C.
        • Means T.K.
        • El Khoury J.
        The microglial sensome revealed by direct RNA sequencing.
        Nat Neurosci. 2013; 16: 1896-1905
        • Zhang B.
        • Gaiteri C.
        • Bodea L.G.
        • Wang Z.
        • McElwee J.
        • Podtelezhnikov A.A.
        • et al.
        Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease.
        Cell. 2013; 153: 707-720
        • Piomelli D.
        • Scalvini L.
        • Fotio Y.
        • Lodola A.
        • Spadoni G.
        • Tarzia G.
        • Mor M.
        N-Acylethanolamine acid amidase (NAAA): Structure, function, and inhibition.
        J Med Chem. 2020; 63: 7475-7490
        • Bandura D.R.
        • Baranov V.I.
        • Ornatsky O.I.
        • Antonov A.
        • Kinach R.
        • Lou X.
        • et al.
        Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.
        Anal Chem. 2009; 81: 6813-6822
        • Mrdjen D.
        • Pavlovic A.
        • Hartmann F.J.
        • Schreiner B.
        • Utz S.G.
        • Leung B.P.
        • et al.
        High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease [published correction appears in Immunity 2018; 48:599].
        Immunity. 2018; 48: 380-395.e6
        • Amir E.A.D.
        • Davis K.L.
        • Tadmor M.D.
        • Simonds E.F.
        • Levine J.H.
        • Bendall S.C.
        • et al.
        viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
        Nat Biotechnol. 2013; 31: 545-552
        • Qiu P.
        • Simonds E.F.
        • Bendall S.C.
        • Gibbs Jr., K.D.
        • Bruggner R.V.
        • Linderman M.D.
        • et al.
        Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.
        Nat Biotechnol. 2011; 29: 886-891
        • Tan K.L.
        • Chia W.C.
        • How C.W.
        • Tor Y.S.
        • Show P.L.
        • Looi Q.H.D.
        • Foo J.B.
        Benchtop isolation and characterisation of small extracellular vesicles from human mesenchymal stem cells.
        Mol Biotechnol. 2021; 63: 780-791
        • Chen L.
        • Flies D.B.
        Molecular mechanisms of T cell co-stimulation and co-inhibition [published correction appears in Nat Rev Immunol 2013; 13:542].
        Nat Rev Immunol. 2013; 13: 227-242
        • Waddell L.A.
        • Lefevre L.
        • Bush S.J.
        • Raper A.
        • Young R.
        • Lisowski Z.M.
        • et al.
        ADGRE1 (EMR1, F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages.
        Front Immunol. 2018; 9: 2246
        • Gritti D.
        • Delvecchio G.
        • Ferro A.
        • Bressi C.
        • Brambilla P.
        Neuroinflammation in major depressive disorder: A review of PET imaging studies examining the 18-kDa translocator protein.
        J Affect Disord. 2021; 292: 642-651
        • Golden S.A.
        • Covington 3rd, H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice [published correction appears in Nat Protoc 2015; 10:643].
        Nat Protoc. 2011; 6: 1183-1191
        • Powell N.D.
        • Sloan E.K.
        • Bailey M.T.
        • Arevalo J.M.G.
        • Miller G.E.
        • Chen E.
        • et al.
        Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis.
        Proc Natl Acad Sci U S A. 2013; 110: 16574-16579
        • Wohleb E.S.
        • Powell N.D.
        • Godbout J.P.
        • Sheridan J.F.
        Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior.
        J Neurosci. 2013; 33: 13820-13833
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Kinsey S.G.
        • Bailey M.T.
        • Sheridan J.F.
        • Padgett D.A.
        • Avitsur R.
        Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice.
        Brain Behav Immun. 2007; 21: 458-466
        • Isingrini E.
        • Perret L.
        • Rainer Q.
        • Amilhon B.
        • Guma E.
        • Tanti A.
        • et al.
        Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons.
        Nat Neurosci. 2016; 19: 560-563
        • Pertwee R.G.
        • Howlett A.C.
        • Abood M.E.
        • Alexander S.P.H.
        • Di Marzo V.
        • Elphick M.R.
        • et al.
        International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2.
        Pharmacol Rev. 2010; 62: 588-631
        • Howlett A.C.
        • Barth F.
        • Bonner T.I.
        • Cabral G.
        • Casellas P.
        • Devane W.A.
        • et al.
        International Union of Pharmacology. XXVII. Classification of cannabinoid receptors.
        Pharmacol Rev. 2002; 54: 161-202
        • Tam J.
        • Vemuri V.K.
        • Liu J.
        • Bátkai S.
        • Mukhopadhyay B.
        • Godlewski G.
        • et al.
        Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity [published correction appears in J Clin Invest 2010; 120:3735].
        J Clin Invest. 2010; 120: 2953-2966
        • Guneykaya D.
        • Ivanov A.
        • Hernandez D.P.
        • Haage V.
        • Wojtas B.
        • Meyer N.
        • et al.
        Transcriptional and translational differences of microglia from male and female brains.
        Cell Rep. 2018; 24: 2773-2783.e6
        • Hanamsagar R.
        • Alter M.D.
        • Block C.S.
        • Sullivan H.
        • Bolton J.L.
        • Bilbo S.D.
        Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity [published correction appears in Glia 2018; 66:460].
        Glia. 2017; 65: 1504-1520
        • Schwarz J.M.
        • Sholar P.W.
        • Bilbo S.D.
        Sex differences in microglial colonization of the developing rat brain.
        J Neurochem. 2012; 120: 948-963
        • Weinhard L.
        • Neniskyte U.
        • Vadisiute A.
        • di Bartolomei G.
        • Aygün N.
        • Riviere L.
        • et al.
        Sexual dimorphism of microglia and synapses during mouse postnatal development.
        Dev Neurobiol. 2018; 78: 618-626
        • Pitychoutis P.M.
        • Nakamura K.
        • Tsonis P.A.
        • Papadopoulou-Daifoti Z.
        Neurochemical and behavioral alterations in an inflammatory model of depression: Sex differences exposed.
        Neuroscience. 2009; 159: 1216-1232
        • Huestis M.A.
        • Cone E.J.
        Relationship of delta 9-tetrahydrocannabinol concentrations in oral fluid and plasma after controlled administration of smoked cannabis.
        J Anal Toxicol. 2004; 28: 394-399
        • Cooper Z.D.
        • Haney M.
        Comparison of subjective, pharmacokinetic, and physiological effects of marijuana smoked as joints and blunts.
        Drug Alcohol Depend. 2009; 103: 107-113
        • Zamberletti E.
        • Gabaglio M.
        • Prini P.
        • Rubino T.
        • Parolaro D.
        Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats.
        Eur Neuropsychopharmacol. 2015; 25: 2404-2415
        • Rubino T.
        • Realini N.
        • Braida D.
        • Guidi S.
        • Capurro V.
        • Viganò D.
        • et al.
        Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood.
        Hippocampus. 2009; 19: 763-772
        • Rubino T.
        • Vigano’ D.
        • Realini N.
        • Guidali C.
        • Braida D.
        • Capurro V.
        • et al.
        Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: Behavioral and biochemical correlates.
        Neuropsychopharmacology. 2008; 33: 2760-2771
        • Gabaglio M.
        • Zamberletti E.
        • Manenti C.
        • Parolaro D.
        • Rubino T.
        Long-term consequences of adolescent exposure to THC-rich/CBD-poor and CBD-rich/THC-poor combinations: A comparison with pure THC treatment in female rats.
        Int J Mol Sci. 2021; 22: 8899
        • Lopez-Rodriguez A.B.
        • Llorente-Berzal A.
        • Garcia-Segura L.M.
        • Viveros M.P.
        Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats.
        Br J Pharmacol. 2014; 171: 1435-1447
        • Konishi H.
        • Kiyama H.
        Microglial TREM2/DAP12 signaling: A double-edged sword in neural diseases.
        Front Cell Neurosci. 2018; 12: 206
        • Cabral G.A.
        • Jamerson M.
        Marijuana use and brain immune mechanisms.
        Int Rev Neurobiol. 2014; 118: 199-230
        • Pasca S.
        • Jurj A.
        • Petrushev B.
        • Tomuleasa C.
        • Matei D.
        MicroRNA-155 implication in M1 polarization and the impact in inflammatory diseases.
        Front Immunol. 2020; 11: 625
        • Mahesh G.
        • Biswas R.
        MicroRNA-155: A master regulator of inflammation.
        J Interferon Cytokine Res. 2019; 39: 321-330
        • Weber M.D.
        • McKim D.B.
        • Niraula A.
        • Witcher K.G.
        • Yin W.
        • Sobol C.G.
        • et al.
        The influence of microglial elimination and repopulation on stress sensitization induced by repeated social defeat.
        Biol Psychiatry. 2019; 85: 667-678
        • Dhabhar F.S.
        The short-term stress response – Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.
        Front Neuroendocrinol. 2018; 49: 175-192
        • Dhabhar F.S.
        Effects of stress on immune function: The good, the bad, and the beautiful.
        Immunol Res. 2014; 58: 193-210
        • Réu P.
        • Khosravi A.
        • Bernard S.
        • Mold J.E.
        • Salehpour M.
        • Alkass K.
        • et al.
        The lifespan and turnover of microglia in the human brain.
        Cell Rep. 2017; 20: 779-784
        • Weber M.D.
        • Godbout J.P.
        • Sheridan J.F.
        Repeated social defeat, neuroinflammation, and behavior: Monocytes carry the signal.
        Neuropsychopharmacology. 2017; 42: 46-61
        • Malcangio M.
        Role of the immune system in neuropathic pain.
        Scand J Pain. 2019; 20: 33-37
        • Rayasam A.
        • Fukuzaki Y.
        • Vexler Z.S.
        Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain.
        Acta Physiol (Oxf). 2021; 233: e13674
        • Wagner J.A.
        • Varga K.
        • Ellis E.F.
        • Rzigalinski B.A.
        • Martin B.R.
        • Kunos G.
        Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock.
        Nature. 1997; 390: 518-521
        • Onaivi E.S.
        • Chaudhuri G.
        • Abaci A.S.
        • Parker M.
        • Manier D.H.
        • Martin P.R.
        • Hubbard J.R.
        Expression of cannabinoid receptors and their gene transcripts in human blood cells.
        Prog Neuropsychopharmacol Biol Psychiatry. 1999; 23: 1063-1077