Advertisement

Functional Connectome–Based Predictive Modeling in Autism

      Abstract

      Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging–based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McPartland J.C.
        • Reichow B.
        • Volkmar F.R.
        Sensitivity and specificity of proposed DSM-5 diagnostic criteria for autism spectrum disorder.
        J Am Acad Child Adolesc Psychiatry. 2012; 51: 368-383
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • Gabrieli J.D.E.
        • Ghosh S.S.
        • Whitfield-Gabrieli S.
        Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.
        Neuron. 2015; 85: 11-26
        • Scheinost D.
        • Noble S.
        • Horien C.
        • Greene A.S.
        • Lake E.M.
        • Salehi M.
        • et al.
        Ten simple rules for predictive modeling of individual differences in neuroimaging.
        Neuroimage. 2019; 193: 35-45
        • Yarkoni T.
        • Westfall J.
        Choosing prediction over explanation in psychology: Lessons from machine learning.
        Perspect Psychol Sci. 2017; 12: 1100-1122
        • Rosenberg M.D.
        • Casey B.J.
        • Holmes A.J.
        Prediction complements explanation in understanding the developing brain.
        Nat Commun. 2018; 9: 589
        • McPartland J.C.
        Developing clinically practicable biomarkers for autism spectrum disorder.
        J Autism Dev Disord. 2017; 47: 2935-2937
        • Finn E.S.
        • Rosenberg M.D.
        Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes.
        Neuroimage. 2021; 239: 118254
        • Liu M.
        • Li B.
        • Hu D.
        Autism spectrum disorder studies using fMRI data and machine learning: A review.
        Front Neurosci. 2021; 15: 697870
        • Uddin L.Q.
        • Dajani D.R.
        • Voorhies W.
        • Bednarz H.
        • Kana R.K.
        Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.
        Transl Psychiatry. 2017; 7: e1218
        • Wolfers T.
        • Floris D.L.
        • Dinga R.
        • van Rooij D.
        • Isakoglou C.
        • Kia S.M.
        • et al.
        From pattern classification to stratification: Towards conceptualizing the heterogeneity of autism spectrum disorder.
        Neurosci Biobehav Rev. 2019; 104: 240-254
        • Abraham A.
        • Milham M.P.
        • Di Martino A.
        • Craddock R.C.
        • Samaras D.
        • Thirion B.
        • Varoquaux G.
        Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example.
        Neuroimage. 2017; 147: 736-745
        • Marek S.
        • Tervo-Clemmens B.
        • Calabro F.J.
        • Montez D.F.
        • Kay B.P.
        • Hatoum A.S.
        • et al.
        Reproducible brain-wide association studies require thousands of individuals [published correction appears in Nature 2022; 605(7911):E11].
        Nature. 2022; 603: 654-660
        • Di Martino A.
        • O’Connor D.
        • Chen B.
        • Alaerts K.
        • Anderson J.S.
        • Assaf M.
        • et al.
        Enhancing studies of the connectome in autism using the Autism Brain Imaging Data Exchange II.
        Sci Data. 2017; 4: 170010
        • Di Martino A.
        • Yan C.G.
        • Li Q.
        • Denio E.
        • Castellanos F.X.
        • Alaerts K.
        • et al.
        The Autism Brain Imaging Data Exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism.
        Mol Psychiatry. 2014; 19: 659-667
        • Loth E.
        • Charman T.
        • Mason L.
        • Tillmann J.
        • Jones E.J.H.
        • Wooldridge C.
        • et al.
        The EU-AIMS Longitudinal European Autism Project (LEAP): Design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders.
        Mol Autism. 2017; 8: 24
        • Thompson W.H.
        • Wright J.
        • Bissett P.G.
        • Poldrack R.A.
        Dataset decay and the problem of sequential analyses on open datasets.
        Elife. 2020; 9e53498
        • Smith S.M.
        • Nichols T.E.
        Statistical challenges in “big data” human neuroimaging.
        Neuron. 2018; 97: 263-268
        • Yamashita A.
        • Yahata N.
        • Itahashi T.
        • Lisi G.
        • Yamada T.
        • Ichikawa N.
        • et al.
        Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias.
        PLoS Biol. 2019; 17e3000042
        • Yu M.
        • Linn K.A.
        • Cook P.A.
        • Phillips M.L.
        • McInnis M.
        • Fava M.
        • et al.
        Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data.
        Hum Brain Mapp. 2018; 39: 4213-4227
        • Horien C.
        • Noble S.
        • Greene A.S.
        • Lee K.
        • Barron D.S.
        • Gao S.
        • et al.
        A hitchhiker’s guide to working with large, open-source neuroimaging datasets.
        Nat Hum Behav. 2021; 5: 185-193
        • Rosenberg M.D.
        • Scheinost D.
        • Greene A.S.
        • Avery E.W.
        • Kwon Y.H.
        • Finn E.S.
        • et al.
        Functional connectivity predicts changes in attention observed across minutes, days, and months.
        Proc Natl Acad Sci U S A. 2020; 117: 3797-3807
        • Yarkoni T.
        The generalizability crisis.
        Behav Brain Sci. 2020; 45: e1
        • Power J.D.
        • Schlaggar B.L.
        • Petersen S.E.
        Recent progress and outstanding issues in motion correction in resting state fMRI.
        Neuroimage. 2015; 105: 536-551
        • Yerys B.E.
        • Jankowski K.F.
        • Shook D.
        • Rosenberger L.R.
        • Barnes K.A.
        • Berl M.M.
        • et al.
        The fMRI success rate of children and adolescents: Typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders.
        Hum Brain Mapp. 2009; 30: 3426-3435
        • Power J.D.
        • Plitt M.
        • Laumann T.O.
        • Martin A.
        Sources and implications of whole-brain fMRI signals in humans.
        Neuroimage. 2017; 146: 609-625
        • Lake E.M.R.
        • Finn E.S.
        • Noble S.M.
        • Vanderwal T.
        • Shen X.
        • Rosenberg M.D.
        • et al.
        The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2019; 86: 315-326
        • Li J.
        • Kong R.
        • Liégeois R.
        • Orban C.
        • Tan Y.
        • Sun N.
        • et al.
        Global signal regression strengthens association between resting-state functional connectivity and behavior.
        Neuroimage. 2019; 196: 126-141
        • Gotts S.J.
        • Saad Z.S.
        • Jo H.J.
        • Wallace G.L.
        • Cox R.W.
        • Martin A.
        The perils of global signal regression for group comparisons: A case study of autism spectrum disorders.
        Front Hum Neurosci. 2013; 7: 356
        • Murphy K.
        • Fox M.D.
        Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
        Neuroimage. 2017; 154: 169-173
        • Greene A.S.
        • Gao S.
        • Scheinost D.
        • Constable R.T.
        Task-induced brain state manipulation improves prediction of individual traits.
        Nat Commun. 2018; 9: 2807
        • Birn R.M.
        • Molloy E.K.
        • Patriat R.
        • Parker T.
        • Meier T.B.
        • Kirk G.R.
        • et al.
        The effect of scan length on the reliability of resting-state fMRI connectivity estimates.
        Neuroimage. 2013; 83: 550-558
        • Alfaro-Almagro F.
        • McCarthy P.
        • Afyouni S.
        • Andersson J.L.R.
        • Bastiani M.
        • Miller K.L.
        • et al.
        Confound modelling in UK Biobank brain imaging.
        Neuroimage. 2021; 224: 117002
        • Dosenbach N.U.F.
        • Koller J.M.
        • Earl E.A.
        • Miranda-Dominguez O.
        • Klein R.L.
        • Van A.N.
        • et al.
        Real-time motion analytics during brain MRI improve data quality and reduce costs.
        Neuroimage. 2017; 161: 80-93
        • Horien C.
        • Fontenelle 4th, S.
        • Joseph K.
        • Powell N.
        • Nutor C.
        • Fortes D.
        • et al.
        Low-motion fMRI data can be obtained in pediatric participants undergoing a 60-minute scan protocol.
        Sci Rep. 2020; 10: 21855
        • Vanderwal T.
        • Kelly C.
        • Eilbott J.
        • Mayes L.C.
        • Castellanos F.X.
        Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging.
        Neuroimage. 2015; 122: 222-232
        • Antshel K.M.
        • Zhang-James Y.
        • Faraone S.V.
        The comorbidity of ADHD and autism spectrum disorder.
        Expert Rev Neurother. 2013; 13: 1117-1128
        • Zaboski B.A.
        • Storch E.A.
        Comorbid autism spectrum disorder and anxiety disorders: A brief review.
        Future Neurol. 2018; 13: 31-37
        • Matson J.L.
        • Shoemaker M.
        Intellectual disability and its relationship to autism spectrum disorders.
        Res Dev Disabil. 2009; 30: 1107-1114
        • Lombardo M.V.
        • Pramparo T.
        • Gazestani V.
        • Warrier V.
        • Bethlehem R.A.I.
        • Carter Barnes C.
        • et al.
        Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.
        Nat Neurosci. 2018; 21: 1680-1688
        • Tang S.
        • Sun N.
        • Floris D.L.
        • Zhang X.
        • Di Martino A.
        • Yeo B.T.T.
        Reconciling dimensional and categorical models of autism heterogeneity: A brain connectomics and behavioral study [published correction appears in Biol Psychiatry 2021; 90:275].
        Biol Psychiatry. 2020; 87: 1071-1082
        • Loomes R.
        • Hull L.
        • Mandy W.P.L.
        What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis.
        J Am Acad Child Adolesc Psychiatry. 2017; 56: 466-474
        • Lai M.C.
        • Lombardo M.V.
        • Auyeung B.
        • Chakrabarti B.
        • Baron-Cohen S.
        Sex/gender differences and autism: Setting the scene for future research.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 11-24
        • Ratto A.B.
        • Kenworthy L.
        • Yerys B.E.
        • Bascom J.
        • Wieckowski A.T.
        • White S.W.
        • et al.
        What about the girls? Sex-based differences in autistic traits and adaptive skills.
        J Autism Dev Disord. 2018; 48: 1698-1711
        • Weis S.
        • Patil K.R.
        • Hoffstaedter F.
        • Nostro A.
        • Yeo B.T.T.
        • Eickhoff S.B.
        Sex classification by resting state brain connectivity.
        Cereb Cortex. 2020; 30: 824-835
        • Chen C.P.
        • Keown C.L.
        • Jahedi A.
        • Nair A.
        • Pflieger M.E.
        • Bailey B.A.
        • Müller R.A.
        Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.
        Neuroimage Clin. 2015; 8: 238-245
        • Chen H.
        • Duan X.
        • Liu F.
        • Lu F.
        • Ma X.
        • Zhang Y.
        • et al.
        Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—A multi-center study.
        Prog Neuropsychopharmacol Biol Psychiatry. 2016; 64: 1-9
        • Emerson R.W.
        • Adams C.
        • Nishino T.
        • Hazlett H.C.
        • Wolff J.J.
        • Zwaigenbaum L.
        • et al.
        Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age.
        Sci Transl Med. 2017; 9eaag2882
        • Iidaka T.
        Resting state functional magnetic resonance imaging and neural network classified autism and control.
        Cortex. 2015; 63: 55-67
        • Murdaugh D.L.
        • Shinkareva S.V.
        • Deshpande H.R.
        • Wang J.
        • Pennick M.R.
        • Kana R.K.
        Differential deactivation during mentalizing and classification of autism based on default mode network connectivity.
        PLoS One. 2012; 7e50064
        • Plitt M.
        • Barnes K.A.
        • Martin A.
        Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards.
        Neuroimage Clin. 2014; 7: 359-366
        • Uddin L.Q.
        • Supekar K.
        • Lynch C.J.
        • Khouzam A.
        • Phillips J.
        • Feinstein C.
        • et al.
        Salience network-based classification and prediction of symptom severity in children with autism.
        JAMA Psychiatry. 2013; 70: 869-879
        • Wang H.
        • Chen C.
        • Fushing H.
        Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders.
        PLoS One. 2012; 7e45502
        • Yahata N.
        • Morimoto J.
        • Hashimoto R.
        • Lisi G.
        • Shibata K.
        • Kawakubo Y.
        • et al.
        A small number of abnormal brain connections predicts adult autism spectrum disorder.
        Nat Commun. 2016; 7: 11254
        • Guo X.
        • Dominick K.C.
        • Minai A.A.
        • Li H.
        • Erickson C.A.
        • Lu L.J.
        Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method.
        Front Neurosci. 2017; 11: 460
        • Heinsfeld A.S.
        • Franco A.R.
        • Craddock R.C.
        • Buchweitz A.
        • Meneguzzi F.
        Identification of autism spectrum disorder using deep learning and the ABIDE dataset.
        Neuroimage Clin. 2017; 17: 16-23
        • Jahedi A.
        • Nasamran C.A.
        • Faires B.
        • Fan J.
        • Müller R.A.
        Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort.
        Brain Connect. 2017; 7: 515-525
        • Kazeminejad A.
        • Sotero R.C.
        Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification.
        Front Neurosci. 2018; 12: 1018
        • Eslami T.
        • Mirjalili V.
        • Fong A.
        • Laird A.R.
        • Saeed F.
        ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data.
        Front Neuroinform. 2019; 13: 70
        • Niu K.
        • Guo J.
        • Pan Y.
        • Gao X.
        • Peng X.
        • Li N.
        • Li H.
        Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data.
        Complexity. 2020; 2020: 1-9
        • Liu Y.
        • Xu L.
        • Li J.
        • Yu J.
        • Yu X.
        Attentional connectivity-based prediction of autism using heterogeneous rs-fMRI data from CC200 atlas.
        Exp Neurobiol. 2020; 29: 27-37
        • Sherkatghanad Z.
        • Akhondzadeh M.
        • Salari S.
        • Zomorodi-Moghadam M.
        • Abdar M.
        • Acharya U.R.
        • et al.
        Automated detection of autism spectrum disorder using a convolutional neural network.
        Front Neurosci. 2020; 13: 1325
        • Tang M.
        • Kumar P.
        • Chen H.
        • Shrivastava A.
        Deep multimodal learning for the diagnosis of autism spectrum disorder.
        J Imaging. 2020; 6: 47
        • Zhao F.
        • Chen Z.
        • Rekik I.
        • Lee S.W.
        • Shen D.
        Diagnosis of autism spectrum disorder using central-moment features from low- and high-order dynamic resting-state functional connectivity networks.
        Front Neurosci. 2020; 14: 258
        • Huang Z.A.
        • Zhu Z.
        • Yau C.H.
        • Tan K.C.
        Identifying autism spectrum disorder from resting-state fMRI using deep belief network.
        IEEE Trans Neural Netw Learn Syst. 2021; 32: 2847-2861
        • Yin W.
        • Mostafa S.
        • Wu F.X.
        Diagnosis of autism spectrum disorder based on functional brain networks with deep learning.
        J Comput Biol. 2021; 28: 146-165
        • Reiter M.A.
        • Jahedi A.
        • Jac Fredo A.R.
        • Fishman I.
        • Bailey B.
        • Müller R.A.
        Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity.
        Neural Comput Appl. 2021; 33: 3299-3310
        • Anderson J.S.
        • Nielsen J.A.
        • Froehlich A.L.
        • DuBray M.B.
        • Druzgal T.J.
        • Cariello A.N.
        • et al.
        Functional connectivity magnetic resonance imaging classification of autism.
        Brain. 2011; 134: 3742-3754
        • Di Martino A.
        • Fair D.A.
        • Kelly C.
        • Satterthwaite T.D.
        • Castellanos F.X.
        • Thomason M.E.
        • et al.
        Unraveling the miswired connectome: A developmental perspective.
        Neuron. 2014; 83: 1335-1353
        • Fountain C.
        • Winter A.S.
        • Bearman P.S.
        Six developmental trajectories characterize children with autism.
        Pediatrics. 2012; 129: e1112-e1120
        • Benkarim O.
        • Paquola C.
        • Park B.Y.
        • Kebets V.
        • Hong S.J.
        • de Wael R.V.
        • et al.
        The cost of untracked diversity in brain-imaging prediction.
        bioRxiv. 2021; https://doi.org/10.1101/2021.2006.2016.448764
        • Lanka P.
        • Rangaprakash D.
        • Dretsch M.N.
        • Katz J.S.
        • Denney Jr., T.S.
        • Deshpande G.
        Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets.
        Brain Imaging Behav. 2020; 14: 2378-2416
        • Ferrari E.
        • Bosco P.
        • Calderoni S.
        • Oliva P.
        • Palumbo L.
        • Spera G.
        • et al.
        Dealing with confounders and outliers in classification medical studies: The Autism Spectrum Disorders case study.
        Artif Intell Med. 2020; 108: 101926
        • Sydnor V.J.
        • Larsen B.
        • Bassett D.S.
        • Alexander-Bloch A.
        • Fair D.A.
        • Liston C.
        • et al.
        Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology.
        Neuron. 2021; 109: 2820-2846
        • Casey B.J.
        • Tottenham N.
        • Liston C.
        • Durston S.
        Imaging the developing brain: What have we learned about cognitive development?.
        Trends Cogn Sci. 2005; 9: 104-110
        • Lawrence K.E.
        • Hernandez L.M.
        • Bookheimer S.Y.
        • Dapretto M.
        Atypical longitudinal development of functional connectivity in adolescents with autism spectrum disorder.
        Autism Res. 2019; 12: 53-65
        • Benkarim O.
        • Paquola C.
        • Park B.Y.
        • Hong S.J.
        • Royer J.
        • Vos de Wael R.
        • et al.
        Connectivity alterations in autism reflect functional idiosyncrasy.
        Commun Biol. 2021; 4: 1078
        • Hong S.J.
        • Vos de Wael R.
        • Bethlehem R.A.I.
        • Lariviere S.
        • Paquola C.
        • Valk S.L.
        • et al.
        Atypical functional connectome hierarchy in autism.
        Nat Commun. 2019; 10: 1022
        • Whitehouse A.J.O.
        • Varcin K.J.
        • Pillar S.
        • Billingham W.
        • Alvares G.A.
        • Barbaro J.
        • et al.
        Effect of preemptive intervention on developmental outcomes among infants showing early signs of autism: A randomized clinical trial of outcomes to diagnosis.
        JAMA Pediatr. 2021; 175e213298
        • Molnar-Szakacs I.
        • Kupis L.
        • Uddin L.Q.
        Neuroimaging markers of risk and pathways to resilience in autism spectrum disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 200-210
        • Dinstein I.
        • Pierce K.
        • Eyler L.
        • Solso S.
        • Malach R.
        • Behrmann M.
        • Courchesne E.
        Disrupted neural synchronization in toddlers with autism.
        Neuron. 2011; 70: 1218-1225
        • Uddin M.
        • Tammimies K.
        • Pellecchia G.
        • Alipanahi B.
        • Hu P.
        • Wang Z.
        • et al.
        Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder.
        Nat Genet. 2014; 46: 742-747
        • van den Heuvel M.I.
        • Thomason M.E.
        Functional connectivity of the human brain in utero.
        Trends Cogn Sci. 2016; 20: 931-939
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • McPartland J.C.
        Considerations in biomarker development for neurodevelopmental disorders.
        Curr Opin Neurol. 2016; 29: 118-122
        • Ilioska I.
        • Oldehinkel M.
        • Llera A.
        • Chopra S.
        • Looden T.
        • Chauvin R.
        • et al.
        Connectome-wide mega-analysis reveals robust patterns of atypical functional connectivity in autism.
        medRxiv. 2022; https://doi.org/10.1101/2022.2001.2009.22268936
        • Plitt M.
        • Barnes K.A.
        • Wallace G.L.
        • Kenworthy L.
        • Martin A.
        Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.
        Proc Natl Acad Sci U S A. 2015; 112: E6699-E6706
        • Rohr C.S.
        • Kamal S.
        • Bray S.
        Building functional connectivity neuromarkers of behavioral self-regulation across children with and without autism spectrum disorder.
        Dev Cogn Neurosci. 2020; 41: 100747
        • Xiao J.
        • Chen H.
        • Shan X.
        • He C.
        • Li Y.
        • Guo X.
        • et al.
        Linked social-communication dimensions and connectivity in functional brain networks in autism spectrum disorder.
        Cereb Cortex. 2021; 31: 3899-3910
        • Buckner R.L.
        The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging.
        Neuron. 2013; 80: 807-815
        • Reiersen A.M.
        • Constantino J.N.
        • Volk H.E.
        • Todd R.D.
        Autistic traits in a population-based ADHD twin sample.
        J Child Psychol Psychiatry. 2007; 48: 464-472
        • Rosenberg M.D.
        • Finn E.S.
        • Scheinost D.
        • Papademetris X.
        • Shen X.
        • Constable R.T.
        • Chun M.M.
        A neuromarker of sustained attention from whole-brain functional connectivity.
        Nat Neurosci. 2016; 19: 165-171
        • Buckner R.L.
        • DiNicola L.M.
        The brain’s default network: Updated anatomy, physiology and evolving insights.
        Nat Rev Neurosci. 2019; 20: 593-608
        • Padmanabhan A.
        • Lynch C.J.
        • Schaer M.
        • Menon V.
        The default mode network in autism.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 476-486
        • Yip S.W.
        • Konova A.B.
        Densely sampled neuroimaging for maximizing clinical insight in psychiatric and addiction disorders.
        Neuropsychopharmacology. 2022; 47: 395-396
        • Marquand A.F.
        • Rezek I.
        • Buitelaar J.
        • Beckmann C.F.
        Understanding heterogeneity in clinical cohorts using normative models: Beyond case-control studies.
        Biol Psychiatry. 2016; 80: 552-561
        • Bethlehem R.A.I.
        • Seidlitz J.
        • Romero-Garcia R.
        • Trakoshis S.
        • Dumas G.
        • Lombardo M.V.
        A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder.
        Commun Biol. 2020; 3: 486
        • Shan X.
        • Uddin L.Q.
        • Xiao J.
        • He C.
        • Ling Z.
        • Li L.
        • et al.
        Mapping the heterogeneous brain structural phenotype of autism spectrum disorder using the normative model.
        Biol Psychiatry. 2022; 91: 967-976
        • Looden T.
        • Floris D.L.
        • Llera A.
        • Chauvin R.J.
        • Charman T.
        • Banaschewski T.
        • et al.
        Patterns of connectome variability in autism across five functional activation tasks. Findings from the LEAP project.
        bioRxiv. 2022; https://doi.org/10.1101/2022.2002.2022.481408
        • Xie Y.
        • Xu Z.
        • Xia M.
        • Liu J.
        • Shou X.
        • Cui Z.
        • et al.
        Alterations in connectome dynamics in autism spectrum disorder: A harmonized mega- and meta-analysis study using the autism brain imaging data exchange dataset.
        Biol Psychiatry. 2022; 91: 945-955
        • Hong S.J.
        • Vogelstein J.T.
        • Gozzi A.
        • Bernhardt B.C.
        • Yeo B.T.T.
        • Milham M.P.
        • Di Martino A.
        Toward neurosubtypes in autism.
        Biol Psychiatry. 2020; 88: 111-128
        • Chen H.
        • Uddin L.Q.
        • Guo X.
        • Wang J.
        • Wang R.
        • Wang X.
        • et al.
        Parsing brain structural heterogeneity in males with autism spectrum disorder reveals distinct clinical subtypes.
        Hum Brain Mapp. 2019; 40: 628-637
        • Hong S.J.
        • Valk S.L.
        • Di Martino A.
        • Milham M.P.
        • Bernhardt B.C.
        Multidimensional neuroanatomical subtyping of autism spectrum disorder.
        Cereb Cortex. 2018; 28: 3578-3588
        • Duffy F.H.
        • Als H.
        Autism, spectrum or clusters? An EEG coherence study.
        BMC Neurol. 2019; 19: 27
        • Pierce K.
        • Conant D.
        • Hazin R.
        • Stoner R.
        • Desmond J.
        Preference for geometric patterns early in life as a risk factor for autism.
        Arch Gen Psychiatry. 2011; 68: 101-109
        • Pierce K.
        • Marinero S.
        • Hazin R.
        • McKenna B.
        • Barnes C.C.
        • Malige A.
        Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity.
        Biol Psychiatry. 2016; 79: 657-666
        • Feczko E.
        • Balba N.M.
        • Miranda-Dominguez O.
        • Cordova M.
        • Karalunas S.L.
        • Irwin L.
        • et al.
        Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm.
        Neuroimage. 2018; 172: 674-688
        • Choi E.J.
        • Vandewouw M.M.
        • Taylor M.J.
        • Arnold P.D.
        • Brian J.
        • Crosbie J.
        • et al.
        Beyond diagnosis: Cross-diagnostic features in canonical resting-state networks in children with neurodevelopmental disorders.
        Neuroimage Clin. 2020; 28: 102476
        • Easson A.K.
        • Fatima Z.
        • McIntosh A.R.
        Functional connectivity-based subtypes of individuals with and without autism spectrum disorder.
        Netw Neurosci. 2019; 3: 344-362
        • Jao Keehn R.J.
        • Nair S.
        • Pueschel E.B.
        • Linke A.C.
        • Fishman I.
        • Müller R.A.
        Atypical local and distal patterns of occipito-frontal functional connectivity are related to symptom severity in autism.
        Cereb Cortex. 2019; 29: 3319-3330
        • Kernbach J.M.
        • Satterthwaite T.D.
        • Bassett D.S.
        • Smallwood J.
        • Margulies D.
        • Krall S.
        • et al.
        Shared endo-phenotypes of default mode dsfunction in attention deficit/hyperactivity disorder and autism spectrum disorder.
        Transl Psychiatry. 2018; 8: 133
        • Reardon A.M.
        • Li K.
        • Langley J.
        • Hu X.P.
        Subtyping autism spectrum disorder via joint modeling of clinical and connectomic profiles.
        Brain Connect. 2022; 12: 193-205
        • Finn E.S.
        • Scheinost D.
        • Finn D.M.
        • Shen X.
        • Papademetris X.
        • Constable R.T.
        Can brain state be manipulated to emphasize individual differences in functional connectivity?.
        Neuroimage. 2017; 160: 140-151
        • Agelink van Rentergem J.A.
        • Deserno M.K.
        • Geurts H.M.
        Validation strategies for subtypes in psychiatry: A systematic review of research on autism spectrum disorder.
        Clin Psychol Rev. 2021; 87: 102033
        • Beaty R.E.
        • Kenett Y.N.
        • Christensen A.P.
        • Rosenberg M.D.
        • Benedek M.
        • Chen Q.
        • et al.
        Robust prediction of individual creative ability from brain functional connectivity.
        Proc Natl Acad Sci U S A. 2018; 115: 1087-1092
        • Lombardo M.V.
        • Eyler L.
        • Moore A.
        • Datko M.
        • Carter Barnes C.
        • Cha D.
        • et al.
        Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties.
        Elife. 2019; 8e47427
        • Lombardo M.V.
        • Pierce K.
        • Eyler L.T.
        • Carter Barnes C.
        • Ahrens-Barbeau C.
        • Solso S.
        • et al.
        Different functional neural substrates for good and poor language outcome in autism.
        Neuron. 2015; 86: 567-577
        • Noble S.
        • Scheinost D.
        • Constable R.T.
        A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis.
        Neuroimage. 2019; 203: 116157
        • Byrge L.
        • Kennedy D.P.
        Accurate prediction of individual subject identity and task, but not autism diagnosis, from functional connectomes.
        Hum Brain Mapp. 2020; 41: 2249-2262
        • Tian Y.
        • Zalesky A.
        Machine learning prediction of cognition from functional connectivity: Are feature weights reliable?.
        Neuroimage. 2021; 245: 118648
        • Ross C.A.
        • Margolis R.L.
        Research domain criteria: Strengths, weaknesses, and potential alternatives for future psychiatric research.
        Mol Neuropsychiatry. 2019; 5: 218-236
        • Feczko E.
        • Miranda-Dominguez O.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The heterogeneity problem: Approaches to identify psychiatric subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Dang J.
        • King K.M.
        • Inzlicht M.
        Why are self-report and behavioral measures weakly correlated?.
        Trends Cogn Sci. 2020; 24: 267-269
        • Shen X.
        • Finn E.S.
        • Scheinost D.
        • Rosenberg M.D.
        • Chun M.M.
        • Papademetris X.
        • Constable R.T.
        Using connectome-based predictive modeling to predict individual behavior from brain connectivity.
        Nat Protoc. 2017; 12: 506-518
        • Dinga R.
        • Schmaal L.
        • Penninx B.W.J.H.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017).
        Neuroimage Clin. 2019; 22: 101796
        • Esterman M.
        • Stumps A.
        • Jagger-Rickels A.
        • Rothlein D.
        • DeGutis J.
        • Fortenbaugh F.
        • et al.
        Evaluating the evidence for a neuroimaging subtype of posttraumatic stress disorder.
        Sci Transl Med. 2020; 12eaaz9343
        • Dajani D.R.
        • Burrows C.A.
        • Nebel M.B.
        • Mostofsky S.H.
        • Gates K.M.
        • Uddin L.Q.
        Parsing heterogeneity in autism spectrum disorder and attention-deficit/hyperactivity disorder with individual connectome mapping.
        Brain Connect. 2019; 9: 673-691
        • Linn K.A.
        • Gaonkar B.
        • Doshi J.
        • Davatzikos C.
        • Shinohara R.T.
        Addressing confounding in predictive models with an application to neuroimaging.
        Int J Biostat. 2016; 12: 31-44
        • Rao A.
        • Monteiro J.M.
        • Mourao-Miranda J.
        • Alzheimer's Disease Initiative
        Predictive modelling using neuroimaging data in the presence of confounds.
        Neuroimage. 2017; 150: 23-49
        • Lombardo M.V.
        • Lai M.C.
        • Baron-Cohen S.
        Big data approaches to decomposing heterogeneity across the autism spectrum.
        Mol Psychiatry. 2019; 24: 1435-1450
        • Richiardi J.
        • Altmann A.
        • Milazzo A.C.
        • Chang C.
        • Chakravarty M.M.
        • Banaschewski T.
        • et al.
        Brain networks. Correlated gene expression supports synchronous activity in brain networks.
        Science. 2015; 348: 1241-1244
        • Mazzoni A.
        • Grove R.
        • Eapen V.
        • Lenroot R.K.
        • Bruggemann J.
        The promise of functional near-infrared spectroscopy in autism research: What do we know and where do we go?.
        Soc Neurosci. 2019; 14: 505-518
        • Mash L.E.
        • Keehn B.
        • Linke A.C.
        • Liu T.T.
        • Helm J.L.
        • Haist F.
        • et al.
        Atypical relationships between spontaneous EEG and fMRI activity in autism.
        Brain Connect. 2020; 10: 18-28
        • Gordon E.M.
        • Laumann T.O.
        • Gilmore A.W.
        • Newbold D.J.
        • Greene D.J.
        • Berg J.J.
        • et al.
        Precision functional mapping of individual human brains.
        Neuron. 2017; 95: 791-807.e7
        • Vanderwal T.
        • Eilbott J.
        • Castellanos F.X.
        Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging.
        Dev Cogn Neurosci. 2019; 36: 100600
        • Milham M.P.
        • Vogelstein J.
        • Xu T.
        Removing the reliability bottleneck in functional magnetic resonance imaging research to achieve clinical utility.
        JAMA Psychiatr. 2021; 78: 587-588
        • Chekroud A.M.
        • Koutsouleris N.
        The perilous path from publication to practice.
        Mol Psychiatry. 2018; 23: 24-25
        • Chekroud A.M.
        Bigger data, harder questions–Opportunities throughout mental health care.
        JAMA Psychiatry. 2017; 74: 1183-1184
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Power J.D.
        • Cohen A.L.
        • Nelson S.M.
        • Wig G.S.
        • Barnes K.A.
        • Church J.A.
        • et al.
        Functional network organization of the human brain.
        Neuron. 2011; 72: 665-678
        • Dosenbach N.U.F.
        • Nardos B.
        • Cohen A.L.
        • Fair D.A.
        • Power J.D.
        • Church J.A.
        • et al.
        Prediction of individual brain maturity using fMRI [published correction appears in Science 2010; 330:756].
        Science. 2010; 329: 1358-1361
        • Perrot M.
        • Rivière D.
        • Mangin J.F.
        Cortical sulci recognition and spatial normalization.
        Med Image Anal. 2011; 15: 529-550
        • Abraham A.
        • Dohmatob E.
        • Thirion B.
        • Samaras D.
        • Varoquaux G.
        Extracting brain regions from rest fMRI with total-variation constrained dictionary learning.
        Med Image Comput Comput Assist Interv. 2013; 16: 607-615
        • Craddock R.C.
        • James G.A.
        • Holtzheimer 3rd, P.E.
        • Hu X.P.
        • Mayberg H.S.
        A whole brain fMRI atlas generated via spatially constrained spectral clustering.
        Hum Brain Mapp. 2012; 33: 1914-1928
        • Gordon E.M.
        • Laumann T.O.
        • Adeyemo B.
        • Huckins J.F.
        • Kelley W.M.
        • Petersen S.E.
        Generation and evaluation of a cortical area parcellation from resting-state correlations.
        Cereb Cortex. 2016; 26: 288-303
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Diedrichsen J.
        • Balsters J.H.
        • Flavell J.
        • Cussans E.
        • Ramnani N.
        A probabilistic MR atlas of the human cerebellum.
        Neuroimage. 2009; 46: 39-46
        • Shen X.
        • Tokoglu F.
        • Papademetris X.
        • Constable R.T.
        Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.
        Neuroimage. 2013; 82: 403-415
        • Schaefer A.
        • Kong R.
        • Gordon E.M.
        • Laumann T.O.
        • Zuo X.N.
        • Holmes A.J.
        • et al.
        Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI.
        Cereb Cortex. 2018; 28: 3095-3114
        • Klein A.
        • Tourville J.
        101 labeled brain images and a consistent human cortical labeling protocol.
        Front Neurosci. 2012; 6: 171