Advertisement

The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders

      Abstract

      Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kerscher O.
        • Felberbaum R.
        • Hochstrasser M.
        Modification of proteins by ubiquitin and ubiquitin-like proteins.
        Annu Rev Cell Dev Biol. 2006; 22: 159-180
        • Kasherman M.A.
        • Premarathne S.
        • Burne T.H.J.
        • Wood S.A.
        • Piper M.
        The ubiquitin system: A regulatory hub for intellectual disability and autism spectrum disorder.
        Mol Neurobiol. 2020; 57: 2179-2193
        • Werner A.
        • Manford A.G.
        • Rape M.
        Ubiquitin-dependent regulation of stem cell biology.
        Trends Cell Biol. 2017; 27: 568-579
        • Nijman S.M.B.
        • Luna-Vargas M.P.A.
        • Velds A.
        • Brummelkamp T.R.
        • Dirac A.M.G.
        • Sixma T.K.
        • Bernards R.
        A genomic and functional inventory of deubiquitinating enzymes.
        Cell. 2005; 123: 773-786
        • Basar M.A.
        • Beck D.B.
        • Werner A.
        Deubiquitylases in developmental ubiquitin signaling and congenital diseases.
        Cell Death Differ. 2021; 28: 538-556
        • Hanpude P.
        • Bhattacharya S.
        • Dey A.K.
        • Maiti T.K.
        Deubiquitinating enzymes in cellular signaling and disease regulation.
        IUBMB Life. 2015; 67: 544-555
        • Kliza K.
        • Husnjak K.
        Resolving the complexity of ubiquitin networks.
        Front Mol Biosci. 2020; 7: 21
        • Komander D.
        • Rape M.
        The ubiquitin code.
        Annu Rev Biochem. 2012; 81: 203-229
        • Millard S.M.
        • Wood S.A.
        Riding the DUBway: Regulation of protein trafficking by deubiquitylating enzymes.
        J Cell Biol. 2006; 173: 463-468
        • Eletr Z.M.
        • Wilkinson K.D.
        Regulation of proteolysis by human deubiquitinating enzymes.
        Biochim Biophys Acta. 2014; 1843: 114-128
        • Clague M.J.
        • Urbé S.
        • Komander D.
        Breaking the chains: Deubiquitylating enzyme specificity begets function [published correction appears in Nat Rev Mol Cell Biol 2019; 20:321].
        Nat Rev Mol Cell Biol. 2019; 20: 338-352
        • Oughtred R.
        • Rust J.
        • Chang C.
        • Breitkreutz B.J.
        • Stark C.
        • Willems A.
        • et al.
        The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions.
        Protein Sci. 2021; 30: 187-200
        • Huttlin E.L.
        • Bruckner R.J.
        • Navarrete-Perea J.
        • Cannon J.R.
        • Baltier K.
        • Gebreab F.
        • et al.
        Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.
        Cell. 2021; 184: 3022-3040.e28
        • Sowa M.E.
        • Bennett E.J.
        • Gygi S.P.
        • Harper J.W.
        Defining the human deubiquitinating enzyme interaction landscape.
        Cell. 2009; 138: 389-403
        • Mevissen T.E.T.
        • Komander D.
        Mechanisms of deubiquitinase specificity and regulation.
        Annu Rev Biochem. 2017; 86: 159-192
        • Sahtoe D.D.
        • Sixma T.K.
        Layers of DUB regulation.
        Trends Biochem Sci. 2015; 40: 456-467
        • Leznicki P.
        • Kulathu Y.
        Mechanisms of regulation and diversification of deubiquitylating enzyme function.
        J Cell Sci. 2017; 130: 1997-2006
        • Liu B.
        • Ruan J.
        • Chen M.
        • Li Z.
        • Manjengwa G.
        • Schlüter D.
        • et al.
        Deubiquitinating enzymes (DUBs): Decipher underlying basis of neurodegenerative diseases.
        Mol Psychiatry. 2022; 27: 259-268
        • Komander D.
        • Clague M.J.
        • Urbé S.
        Breaking the chains: Structure and function of the deubiquitinases.
        Nat Rev Mol Cell Biol. 2009; 10: 550-563
        • Hao Y.H.
        • Fountain Jr., M.D.
        • Fon Tacer K.
        • Xia F.
        • Bi W.
        • Kang S.H.L.
        • et al.
        USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder.
        Mol Cell. 2015; 59: 956-969
        • Fountain M.D.
        • Oleson D.S.
        • Rech M.E.
        • Segebrecht L.
        • Hunter J.V.
        • McCarthy J.M.
        • et al.
        Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies.
        Genet Med. 2019; 21: 1797-1807
        • Kon N.
        • Zhong J.
        • Kobayashi Y.
        • Li M.
        • Szabolcs M.
        • Ludwig T.
        • et al.
        Roles of HAUSP-mediated p53 regulation in central nervous system development.
        Cell Death Differ. 2011; 18: 1366-1375
        • Homan C.C.
        • Kumar R.
        • Nguyen L.S.
        • Haan E.
        • Raymond F.L.
        • Abidi F.
        • et al.
        Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth.
        Am J Hum Genet. 2014; 94: 470-478
        • Johnson B.V.
        • Kumar R.
        • Oishi S.
        • Alexander S.
        • Kasherman M.
        • Vega M.S.
        • et al.
        Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling.
        Biol Psychiatry. 2020; 87: 100-112
        • Paemka L.
        • Mahajan V.B.
        • Ehaideb S.N.
        • Skeie J.M.
        • Tan M.C.
        • Wu S.
        • et al.
        Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase.
        PLoS Genet. 2015; 11e1005022
        • Reijnders M.R.F.
        • Zachariadis V.
        • Latour B.
        • Jolly L.
        • Mancini G.M.
        • Pfundt R.
        • et al.
        De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations.
        Am J Hum Genet. 2016; 98: 373-381
        • Jolly L.A.
        • Parnell E.
        • Gardner A.E.
        • Corbett M.A.
        • Pérez-Jurado L.A.
        • Shaw M.
        • et al.
        Missense variant contribution to USP9X-female syndrome.
        NPJ Genom Med. 2020; 5: 53
        • Kasherman M.A.
        • Currey L.
        • Kurniawan N.D.
        • Zalucki O.
        • Vega M.S.
        • Jolly L.A.
        • et al.
        Abnormal behavior and cortical connectivity deficits in mice lacking Usp9x.
        Cereb Cortex. 2021; 31: 1763-1775
        • Stegeman S.
        • Jolly L.A.
        • Premarathne S.
        • Gecz J.
        • Richards L.J.
        • Mackay-Sim A.
        • Wood S.A.
        Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis.
        PLoS One. 2013; 8e68287
        • Yoon S.
        • Parnell E.
        • Kasherman M.
        • Forrest M.P.
        • Myczek K.
        • Premarathne S.
        • et al.
        Usp9X controls ankyrin-repeat domain protein homeostasis during dendritic spine development.
        Neuron. 2020; 105: 506-521.e7
        • Premarathne S.
        • Murtaza M.
        • Matigian N.
        • Jolly L.A.
        • Wood S.A.
        Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors.
        Sci Rep. 2017; 7: 8109
        • Murtaza M.
        • Jolly L.A.
        • Gecz J.
        • Wood S.A.
        La FAM fatale: USP9X in development and disease.
        Cell Mol Life Sci. 2015; 72: 2075-2089
        • Jolly L.A.
        • Taylor V.
        • Wood S.A.
        USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors.
        Mol Biol Cell. 2009; 20: 2015-2029
        • Bridges C.R.
        • Tan M.C.
        • Premarathne S.
        • Nanayakkara D.
        • Bellette B.
        • Zencak D.
        • et al.
        USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors.
        Sci Rep. 2017; 7: 391
        • O’Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Chen R.
        • Davis L.K.
        • Guter S.
        • Wei Q.
        • Jacob S.
        • Potter M.H.
        • et al.
        Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism.
        Mol Autism. 2017; 8: 14
        • Torre S.
        • Polyak M.J.
        • Langlais D.
        • Fodil N.
        • Kennedy J.M.
        • Radovanovic I.
        • et al.
        USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation [published correction appears in Nat Immunol 2016; 17:1479].
        Nat Immunol. 2017; 18: 54-63
        • Alsohime F.
        • Martin-Fernandez M.
        • Temsah M.H.
        • Alabdulhafid M.
        • Le Voyer T.
        • Alghamdi M.
        • et al.
        JAK inhibitor therapy in a child with inherited USP18 deficiency.
        N Engl J Med. 2020; 382: 256-265
        • Meuwissen M.E.C.
        • Schot R.
        • Buta S.
        • Oudesluijs G.
        • Tinschert S.
        • Speer S.D.
        • et al.
        Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome.
        J Exp Med. 2016; 213: 1163-1174
        • Zhang D.
        • Zhang D.E.
        Interferon-stimulated gene 15 and the protein ISGylation system.
        J Interferon Cytokine Res. 2011; 31: 119-130
        • Ritchie K.J.
        • Malakhov M.P.
        • Hetherington C.J.
        • Zhou L.
        • Little M.T.
        • Malakhova O.A.
        • et al.
        Dysregulation of protein modification by ISG15 results in brain cell injury.
        Genes Dev. 2002; 16: 2207-2212
        • Hu H.
        • Haas S.A.
        • Chelly J.
        • Van Esch H.
        • Raynaud M.
        • de Brouwer A.P.
        • et al.
        X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.
        Mol Psychiatry. 2016; 21: 133-148
        • Firth H.V.
        • Richards S.M.
        • Bevan A.P.
        • Clayton S.
        • Corpas M.
        • Rajan D.
        • et al.
        DECIPHER: Database of chromosomal imbalance and phenotype in humans using Ensembl resources.
        Am J Hum Genet. 2009; 84: 524-533
        • Kobayashi T.
        • Iwamoto Y.
        • Takashima K.
        • Isomura A.
        • Kosodo Y.
        • Kawakami K.
        • et al.
        Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation.
        FEBS J. 2015; 282: 2411-2423
        • Yi Z.
        • Ouyang J.
        • Sun W.
        • Xiao X.
        • Li S.
        • Jia X.
        • et al.
        Biallelic mutations in USP45, encoding a deubiquitinating enzyme, are associated with Leber congenital amaurosis.
        J Med Genet. 2019; 56: 325-331
        • Saida K.
        • Fukuda T.
        • Scott D.A.
        • Sengoku T.
        • Ogata K.
        • Nicosia A.
        • et al.
        OTUD5 variants associated with X-linked intellectual disability and congenital malformation.
        Front Cell Dev Biol. 2021; 9: 631428
        • Beck D.B.
        • Basar M.A.
        • Asmar A.J.
        • Thompson J.J.
        • Oda H.
        • Uehara D.T.
        • et al.
        Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation.
        Sci Adv. 2021; 7eabe2116
        • Tripolszki K.
        • Sasaki E.
        • Hotakainen R.
        • Kassim A.H.
        • Pereira C.
        • Rolfs A.
        • et al.
        An X-linked syndrome with severe neurodevelopmental delay, hydrocephalus, and early lethality caused by a missense variation in the OTUD5 gene.
        Clin Genet. 2021; 99: 303-308
        • Santiago-Sim T.
        • Burrage L.C.
        • Ebstein F.
        • Tokita M.J.
        • Miller M.
        • Bi W.
        • et al.
        Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features.
        Am J Hum Genet. 2017; 100: 676-688
        • Straniero L.
        • Rimoldi V.
        • Soldà G.
        • Bellini M.
        • Biasucci G.
        • Asselta R.
        • Duga S.
        First replication of the involvement of OTUD6B in intellectual disability syndrome with seizures and dysmorphic features.
        Front Genet. 2018; 9: 464
        • Romero-Ibarguengoitia M.E.
        • Cantú-Reyna C.
        • Gutierrez-González D.
        • Cruz-Camino H.
        • González-Cantú A.
        • Sanz Sánchez M.A.
        Comparison of genetic variants and manifestations of OTUD6B-related disorder: The first Mexican case.
        J Investig Med High Impact Case Rep. 2020; 8 (2324709620957777)
        • Lowther C.
        • Costain G.
        • Stavropoulos D.J.
        • Melvin R.
        • Silversides C.K.
        • Andrade D.M.
        • et al.
        Delineating the 15q13.3 microdeletion phenotype: A case series and comprehensive review of the literature.
        Genet Med. 2015; 17: 149-157
        • Suzuki H.
        • Inaba M.
        • Yamada M.
        • Uehara T.
        • Takenouchi T.
        • Mizuno S.
        • et al.
        Biallelic loss of OTUD7A causes severe muscular hypotonia, intellectual disability, and seizures.
        Am J Med Genet A. 2021; 185: 1182-1186
        • Garret P.
        • Ebstein F.
        • Delplancq G.
        • Dozieres-Puyravel B.
        • Boughalem A.
        • Auvin S.
        • et al.
        Report of the first patient with a homozygous OTUD7A variant responsible for epileptic encephalopathy and related proteasome dysfunction.
        Clin Genet. 2020; 97: 567-575
        • Uddin M.
        • Unda B.K.
        • Kwan V.
        • Holzapfel N.T.
        • White S.H.
        • Chalil L.
        • et al.
        OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome.
        Am J Hum Genet. 2018; 102: 278-295
        • Yin J.
        • Chen W.
        • Chao E.S.
        • Soriano S.
        • Wang L.
        • Wang W.
        • et al.
        Otud7a knockout mice recapitulate many neurological features of 15q13.3 microdeletion syndrome.
        Am J Hum Genet. 2018; 102: 296-308
        • McDonell L.M.
        • Mirzaa G.M.
        • Alcantara D.
        • Schwartzentruber J.
        • Carter M.T.
        • Lee L.J.
        • et al.
        Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome.
        Nat Genet. 2013; 45: 556-562
        • Suzuki S.
        • Tamai K.
        • Watanabe M.
        • Kyuuma M.
        • Ono M.
        • Sugamura K.
        • Tanaka N.
        AMSH is required to degrade ubiquitinated proteins in the central nervous system.
        Biochem Biophys Res Commun. 2011; 408: 582-588
        • Bilguvar K.
        • Tyagi N.K.
        • Ozkara C.
        • Tuysuz B.
        • Bakircioglu M.
        • Choi M.
        • et al.
        Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration.
        Proc Natl Acad Sci U S A. 2013; 110: 3489-3494
        • Rydning S.L.
        • Backe P.H.
        • Sousa M.M.L.
        • Iqbal Z.
        • Øye A.M.
        • Sheng Y.
        • et al.
        Novel UCHL1 mutations reveal new insights into ubiquitin processing [published correction appears in Hum Mol Genet 2017; 26:1217–1218].
        Hum Mol Genet. 2017; 26: 1031-1040
        • Das Bhowmik A.
        • Patil S.J.
        • Deshpande D.V.
        • Bhat V.
        • Dalal A.
        Novel splice-site variant of UCHL1 in an Indian family with autosomal recessive spastic paraplegia-79.
        J Hum Genet. 2018; 63: 927-933
        • McMacken G.
        • Lochmüller H.
        • Bansagi B.
        • Pyle A.
        • Lochmüller A.
        • Chinnery P.F.
        • et al.
        Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion.
        J Neurol. 2020; 267: 3643-3649
        • Reinicke A.T.
        • Laban K.
        • Sachs M.
        • Kraus V.
        • Walden M.
        • Damme M.
        • et al.
        Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks.
        Proc Natl Acad Sci U S A. 2019; 116: 7963-7972
        • Saigoh K.
        • Wang Y.L.
        • Suh J.G.
        • Yamanishi T.
        • Sakai Y.
        • Kiyosawa H.
        • et al.
        Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice.
        Nat Genet. 1999; 23: 47-51
        • Chen F.
        • Sugiura Y.
        • Myers K.G.
        • Liu Y.
        • Lin W.
        Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction.
        Proc Natl Acad Sci U S A. 2010; 107: 1636-1641
        • Donis K.C.
        • Morales Saute J.A.
        • Krum-Santos A.C.
        • Furtado G.V.
        • Mattos E.P.
        • Saraiva-Pereira M.L.
        • et al.
        Spinocerebellar ataxia type 3/Machado-Joseph disease starting before adolescence.
        Neurogenetics. 2016; 17: 107-113
        • Switonski P.M.
        • Szlachcic W.J.
        • Krzyzosiak W.J.
        • Figiel M.
        A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD.
        Neurobiol Dis. 2015; 73: 174-188
        • Adorno M.
        • Sikandar S.
        • Mitra S.S.
        • Kuo A.
        • Nicolis Di Robilant B.
        • Haro-Acosta V.
        • et al.
        Usp16 contributes to somatic stem-cell defects in Down's syndrome.
        Nature. 2013; 501: 380-384
        • Chiang S.Y.
        • Wu H.C.
        • Lin S.Y.
        • Chen H.Y.
        • Wang C.F.
        • Yeh N.H.
        • et al.
        Usp11 controls cortical neurogenesis and neuronal migration through Sox11 stabilization.
        Sci Adv. 2021; 7eabc6093
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders.
        Cell. 2019; 179: 1469-1482.e11
        • Cui C.P.
        • Zhang Y.
        • Wang C.
        • Yuan F.
        • Li H.
        • Yao Y.
        • et al.
        Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation [published correction appears in Nat Commun 2019; 10:173].
        Nat Commun. 2018; 9: 4648
        • Huo Y.
        • Khatri N.
        • Hou Q.
        • Gilbert J.
        • Wang G.
        • Man H.Y.
        The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking [published correction appears in J Neurochem 2017; 141:472].
        J Neurochem. 2015; 134: 1067-1080
        • Scudder S.L.
        • Goo M.S.
        • Cartier A.E.
        • Molteni A.
        • Schwarz L.A.
        • Wright R.
        • Patrick G.N.
        Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8.
        J Neurosci. 2014; 34: 16637-16649
        • Imai S.
        • Mamiya T.
        • Tsukada A.
        • Sakai Y.
        • Mouri A.
        • Nabeshima T.
        • Ebihara S.
        Ubiquitin-specific peptidase 46 (Usp46) regulates mouse immobile behavior in the tail suspension test through the GABAergic system.
        PLoS One. 2012; 7e39084
        • Tomida S.
        • Mamiya T.
        • Sakamaki H.
        • Miura M.
        • Aosaki T.
        • Masuda M.
        • et al.
        Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests.
        Nat Genet. 2009; 41: 688-695
        • Dufner A.
        • Knobeloch K.P.
        Ubiquitin-specific protease 8 (USP8/UBPy): A prototypic multidomain deubiquitinating enzyme with pleiotropic functions.
        Biochem Soc Trans. 2019; 47: 1867-1879
        • Wilson S.M.
        • Bhattacharyya B.
        • Rachel R.A.
        • Coppola V.
        • Tessarollo L.
        • Householder D.B.
        • et al.
        Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease.
        Nat Genet. 2002; 32: 420-425
        • Chen P.C.
        • Qin L.N.
        • Li X.M.
        • Walters B.J.
        • Wilson J.A.
        • Mei L.
        • Wilson S.M.
        The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions.
        J Neurosci. 2009; 29: 10909-10919
        • Anckar J.
        • Bonni A.
        Regulation of neuronal morphogenesis and positioning by ubiquitin-specific proteases in the cerebellum [published correction appears in PLoS One 2015; 10:e0133943] [published correction appears in PLoS One 2015; 10:e0135535].
        PLoS One. 2015; 10e0117076
        • Zhang J.
        • Chen M.
        • Li B.
        • Lv B.
        • Jin K.
        • Zheng S.
        • et al.
        Altered striatal rhythmic activity in cylindromatosis knock-out mice due to enhanced GABAergic inhibition.
        Neuropharmacology. 2016; 110: 260-267
        • Jin C.
        • Kim S.
        • Kang H.
        • Yun K.N.
        • Lee Y.
        • Zhang Y.
        • et al.
        Shank3 regulates striatal synaptic abundance of Cyld, a deubiquitinase specific for Lys63-linked polyubiquitin chains.
        J Neurochem. 2019; 150: 776-786
        • Wood M.A.
        • Kaplan M.P.
        • Brensinger C.M.
        • Guo W.
        • Abel T.
        Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory.
        Hippocampus. 2005; 15: 610-621
        • Al-Shami A.
        • Jhaver K.G.
        • Vogel P.
        • Wilkins C.
        • Humphries J.
        • Davis J.J.
        • et al.
        Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development.
        PLoS One. 2010; 5e13654
        • Rivkin E.
        • Almeida S.M.
        • Ceccarelli D.F.
        • Juang Y.C.
        • MacLean T.A.
        • Srikumar T.
        • et al.
        The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis.
        Nature. 2013; 498: 318-324
        • Ng B.G.
        • Eklund E.A.
        • Shiryaev S.A.
        • Dong Y.Y.
        • Abbott M.A.
        • Asteggiano C.
        • et al.
        Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions.
        J Inherit Metab Dis. 2020; 43: 1333-1348
        • Martin H.C.
        • Jones W.D.
        • McIntyre R.
        • Sanchez-Andrade G.
        • Sanderson M.
        • Stephenson J.D.
        • et al.
        Quantifying the contribution of recessive coding variation to developmental disorders.
        Science. 2018; 362: 1161-1164
        • Hüffmeier U.
        • Kraus C.
        • Reuter M.S.
        • Uebe S.
        • Abbott M.A.
        • Ahmed S.A.
        • et al.
        EIF3F-related neurodevelopmental disorder: Refining the phenotypic and expanding the molecular spectrum.
        Orphanet J Rare Dis. 2021; 16: 136
        • Lee A.S.Y.
        • Kranzusch P.J.
        • Cate J.H.D.
        eIF3 targets cell-proliferation messenger RNAs for translational activation or repression.
        Nature. 2015; 522: 111-114
        • Moretti J.
        • Chastagner P.
        • Gastaldello S.
        • Heuss S.F.
        • Dirac A.M.
        • Bernards R.
        • et al.
        The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation.
        PLoS Biol. 2010; 8e1000545
        • Růžičková Š.
        • Staněk D.
        Mutations in spliceosomal proteins and retina degeneration.
        RNA Biol. 2017; 14: 544-552
        • Georgiou M.
        • Ali N.
        • Yang E.
        • Grewal P.S.
        • Rotsos T.
        • Pontikos N.
        • et al.
        Extending the phenotypic spectrum of PRPF8, PRPH2, RP1 and RPGR, and the genotypic spectrum of early-onset severe retinal dystrophy.
        Orphanet J Rare Dis. 2021; 16: 128
        • GTEx Consortium
        The Genotype-Tissue Expression (GTEx) project.
        Nat Genet. 2013; 45: 580-585
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • Cummings B.B.
        • Alföldi J.
        • Wang Q.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans [published correction appears in Nature 2021; 590:E53] [published correction appears in Nature 2021; 597:E3–E4].
        Nature. 2020; 581: 434-443
        • Bishop P.
        • Rocca D.
        • Henley J.M.
        Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction.
        Biochem J. 2016; 473: 2453-2462
        • Wright M.H.
        • Berlin I.
        • Nash P.D.
        Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination.
        Cell Biochem Biophys. 2011; 60: 39-46
        • Paudel P.
        • Zhang Q.
        • Leung C.
        • Greenberg H.C.
        • Guo Y.
        • Chern Y.H.
        • et al.
        Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9X.
        Proc Natl Acad Sci U S A. 2019; 116: 7288-7297
        • Zajicek A.
        • Yao W.D.
        Remodeling without destruction: Non-proteolytic ubiquitin chains in neural function and brain disorders.
        Mol Psychiatry. 2021; 26: 247-264
        • Friocourt G.
        • Kappeler C.
        • Saillour Y.
        • Fauchereau F.
        • Rodriguez M.S.
        • Bahi N.
        • et al.
        Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes.
        Mol Cell Neurosci. 2005; 28: 153-164
        • Wei X.
        • Guo J.
        • Li Q.
        • Jia Q.
        • Jing Q.
        • Li Y.
        • et al.
        Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells.
        Sci Adv. 2019; 5eaau7887
        • Szklarczyk D.
        • Gable A.L.
        • Lyon D.
        • Junge A.
        • Wyder S.
        • Huerta-Cepas J.
        • et al.
        STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.
        Nucleic Acids Res. 2019; 47: D607-D613
        • Han S.
        • Li J.
        • Ting A.Y.
        Proximity labeling: Spatially resolved proteomic mapping for neurobiology.
        Curr Opin Neurobiol. 2018; 50: 17-23
        • Qin W.
        • Cho K.F.
        • Cavanagh P.E.
        • Ting A.Y.
        Deciphering molecular interactions by proximity labeling.
        Nat Methods. 2021; 18: 133-143
        • Kim W.
        • Bennett E.J.
        • Huttlin E.L.
        • Guo A.
        • Li J.
        • Possemato A.
        • et al.
        Systematic and quantitative assessment of the ubiquitin-modified proteome.
        Mol Cell. 2011; 44: 325-340
        • Swatek K.N.
        • Usher J.L.
        • Kueck A.F.
        • Gladkova C.
        • Mevissen T.E.T.
        • Pruneda J.N.
        • et al.
        Insights into ubiquitin chain architecture using Ub-clipping.
        Nature. 2019; 572: 533-537
        • Hjerpe R.
        • Aillet F.
        • Lopitz-Otsoa F.
        • Lang V.
        • England P.
        • Rodriguez M.S.
        Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities.
        EMBO Rep. 2009; 10: 1250-1258
        • Hu Z.
        • Li H.
        • Wang X.
        • Ullah K.
        • Xu G.
        Proteomic approaches for the profiling of ubiquitylation events and their applications in drug discovery.
        J Proteomics. 2021; 231: 103996
        • Matsumoto M.L.
        • Dong K.C.
        • Yu C.
        • Phu L.
        • Gao X.
        • Hannoush R.N.
        • et al.
        Engineering and structural characterization of a linear polyubiquitin-specific antibody.
        J Mol Biol. 2012; 418: 134-144
        • Matsumoto M.L.
        • Wickliffe K.E.
        • Dong K.C.
        • Yu C.
        • Bosanac I.
        • Bustos D.
        • et al.
        K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody.
        Mol Cell. 2010; 39: 477-484
        • Newton K.
        • Matsumoto M.L.
        • Ferrando R.E.
        • Wickliffe K.E.
        • Rape M.
        • Kelley R.F.
        • Dixit V.M.
        Using linkage-specific monoclonal antibodies to analyze cellular ubiquitylation.
        Methods Mol Biol. 2012; 832: 185-196
        • Newton K.
        • Matsumoto M.L.
        • Wertz I.E.
        • Kirkpatrick D.S.
        • Lill J.R.
        • Tan J.
        • et al.
        Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.
        Cell. 2008; 134: 668-678
        • Ordureau A.
        • Paulo J.A.
        • Zhang J.
        • An H.
        • Swatek K.N.
        • Cannon J.R.
        • et al.
        Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling.
        Mol Cell. 2020; 77: 1124-1142.e10
        • Jahan A.S.
        • Lestra M.
        • Swee L.K.
        • Fan Y.
        • Lamers M.M.
        • Tafesse F.G.
        • et al.
        Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling.
        Proc Natl Acad Sci U S A. 2016; 113: E705-E714
        • Eldridge A.G.
        • O’Brien T.
        Therapeutic strategies within the ubiquitin proteasome system.
        Cell Death Differ. 2010; 17: 4-13
        • Zhang W.
        • Sidhu S.S.
        Development of inhibitors in the ubiquitination cascade.
        FEBS Lett. 2014; 588: 356-367
        • Fajner V.
        • Maspero E.
        • Polo S.
        Targeting HECT-type E3 ligases—Insights from catalysis, regulation and inhibitors.
        FEBS Lett. 2017; 591: 2636-2647
        • Gabrielsen M.
        • Buetow L.
        • Nakasone M.A.
        • Ahmed S.F.
        • Sibbet G.J.
        • Smith B.O.
        • et al.
        A general strategy for discovery of inhibitors and activators of RING and U-box E3 ligases with ubiquitin variants.
        Mol Cell. 2017; 68: 456-470.e10
        • Zhang W.
        • Wu K.P.
        • Sartori M.A.
        • Kamadurai H.B.
        • Ordureau A.
        • Jiang C.
        • et al.
        System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes.
        Mol Cell. 2016; 62: 121-136
        • Skaar J.R.
        • Pagan J.K.
        • Pagano M.
        SCF ubiquitin ligase-targeted therapies.
        Nat Rev Drug Discov. 2014; 13: 889-903
        • Kanner S.A.
        • Shuja Z.
        • Choudhury P.
        • Jain A.
        • Colecraft H.M.
        Targeted deubiquitination rescues distinct trafficking-deficient ion channelopathies.
        Nat Methods. 2020; 17: 1245-1253
        • Huang X.
        • Dixit V.M.
        Drugging the undruggables: Exploring the ubiquitin system for drug development.
        Cell Res. 2016; 26: 484-498