Advertisement

Cerebellar Structure and Cognitive Ability in Psychosis

      Abstract

      Background

      Dysconnectivity theories, combined with advances in fundamental cognitive neuroscience, have led to increased interest in characterizing cerebellar abnormalities in psychosis. Smaller cerebellar gray matter volume has been found in schizophrenia spectrum disorders. However, the course of these deficits across illness stage, specificity to schizophrenia (vs. psychosis more broadly), and relationship to clinical phenotypes, primarily cognitive impairment, remain unclear.

      Methods

      The Spatially Unbiased Infratentorial toolbox, a gold standard for analyzing human neuroimaging data of the cerebellum, was used to quantify cerebellar volumes and conduct voxel-based morphometry on structural magnetic resonance images obtained from 574 individuals (249 schizophrenia spectrum, 108 bipolar with psychotic features, 217 nonpsychiatric control). Analyses examining diagnosis (schizophrenia spectrum, bipolar disorder), illness stage (early, chronic), and cognitive effects on cerebellum structure in psychosis were performed.

      Results

      Cerebellar structure in psychosis did not differ significantly from healthy participants, regardless of diagnosis and illness stage (effect size = 0.01–0.14). In contrast, low premorbid cognitive functioning was associated with smaller whole and regional cerebellum volumes, including cognitive (lobules VI and VII, Crus I, frontoparietal and attention networks) and motor (lobules I–IV, V, and X; somatomotor network) regions in psychosis (effect size = 0.36−0.60). These effects were not present in psychosis cohorts with average estimated premorbid cognition.

      Conclusions

      Cerebellar structural abnormalities in psychosis are related to lower premorbid cognitive functioning implicating early antecedents, atypical neurodevelopment, or both in cerebellar dysfunction. Future research focused on identifying the impact of early-life risk factors for psychosis on the development of the cerebellum and cognition is warranted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stransky E.
        Zur Lehre der dementia praecox. [On the doctrine of dementia praecox.].
        Zbl Nervenheilk. 1904; 27: 1-19
        • Andreasen N.C.
        • Pierson R.
        The role of the cerebellum in schizophrenia.
        Biol Psychiatry. 2008; 64: 81-88
        • Andreasen N.C.
        • Nopoulos P.
        • O’Leary D.S.
        • Miller D.D.
        • Wassink T.
        • Flaum M.
        Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms.
        Biol Psychiatry. 1999; 46: 908-920
        • Moberget T.
        • Ivry R.B.
        Cerebellar contributions to motor control and language comprehension: Searching for common computational principles.
        Ann N Y Acad Sci. 2016; 1369: 154-171
        • Buckner R.L.
        The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging.
        Neuron. 2013; 80: 807-815
        • Sokolov A.A.
        The cerebellum in social cognition.
        Front Cell Neurosci. 2018; 12: 145
        • Van Overwalle F.
        • Manto M.
        • Cattaneo Z.
        • Clausi S.
        • Ferrari C.
        • Gabrieli J.D.E.
        • et al.
        Consensus paper: Cerebellum and social cognition.
        Cerebellum. 2020; 19: 833-868
        • Timmann D.
        • Drepper J.
        • Frings M.
        • Maschke M.
        • Richter S.
        • Gerwig M.
        • Kolb F.P.
        The human cerebellum contributes to motor, emotional and cognitive associative learning.
        A review. Cortex. 2010; 46: 845-857
        • Schmahmann J.D.
        The cerebellum and cognition.
        Neurosci Lett. 2019; 688: 62-75
        • Wang S.S.H.
        • Kloth A.D.
        • Badura A.
        The cerebellum, sensitive periods, and autism.
        Neuron. 2014; 83: 518-532
        • ten Donkelaar H.J.
        • Lammens M.
        • Wesseling P.
        • Thijssen H.O.M.
        • Renier W.O.
        Development and developmental disorders of the human cerebellum.
        J Neurol. 2003; 250: 1025-1036
        • Herculano-Houzel S.
        Not all brains are made the same: New views on brain scaling in evolution.
        Brain Behav Evol. 2011; 78: 22-36
        • Sereno M.I.
        • Diedrichsen J.
        • Tachrount M.
        • Testa-Silva G.
        • d’Arceuil H.
        • De Zeeuw C.
        The human cerebellum has almost 80% of the surface area of the neocortex.
        Proc Natl Acad Sci U S A. 2020; 117: 19538-19543
        • Zhuo C.
        • Wang C.
        • Wang L.
        • Guo X.
        • Xu Q.
        • Liu Y.
        • Zhu J.
        Altered resting-state functional connectivity of the cerebellum in schizophrenia.
        Brain Imaging Behav. 2018; 12: 383-389
        • Kim D.J.
        • Moussa-Tooks A.B.
        • Bolbecker A.R.
        • Apthorp D.
        • Newman S.D.
        • O’Donnell B.F.
        • Hetrick W.P.
        Cerebellar-cortical dysconnectivity in resting-state associated with sensorimotor tasks in schizophrenia.
        Hum Brain Mapp. 2020; 41: 3119-3132
        • He H.
        • Luo C.
        • Luo Y.
        • Duan M.
        • Yi Q.
        • Biswal B.B.
        • Yao D.
        Reduction in gray matter of cerebellum in schizophrenia and its influence on static and dynamic connectivity.
        Hum Brain Mapp. 2019; 40: 517-528
        • Guo W.
        • Liu F.
        • Chen J.
        • Wu R.
        • Zhang Z.
        • Yu M.
        • et al.
        Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings.
        Sci Rep. 2015; 5: 17275
        • Liu H.
        • Fan G.
        • Xu K.
        • Wang F.
        Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: A combined resting-state functional MRI and diffusion tensor imaging study.
        J Magn Reson Imaging. 2011; 34: 1430-1438
        • Collin G.
        • Hulshoff Pol H.E.
        • Haijma S.V.
        • Cahn W.
        • Kahn R.S.
        • van den Heuvel M.P.
        Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings.
        Front Psychiatry. 2011; 2: 73
        • Moussa-Tooks A.B.
        • Kim D.J.
        • Bartolomeo L.A.
        • Purcell J.R.
        • Bolbecker A.R.
        • Newman S.D.
        • et al.
        Impaired effective connectivity during a cerebellar-mediated sensorimotor synchronization task in schizophrenia.
        Schizophr Bull. 2019; 45: 531-541
        • Lundin N.B.
        • Kim D.J.
        • Tullar R.L.
        • Moussa-Tooks A.B.
        • Kent J.S.
        • Newman S.D.
        • et al.
        Cerebellar activation deficits in schizophrenia during an eyeblink conditioning task.
        Schizophr Bull Open. 2021; 2sgab040
        • Bernard J.A.
        • Mittal V.A.
        Dysfunctional activation of the cerebellum in schizophrenia: A functional neuroimaging meta-analysis.
        Clin Psychol Sci. 2015; 3: 545-566
        • Pantelis C.
        • Yücel M.
        • Wood S.J.
        • Velakoulis D.
        • Sun D.
        • Berger G.
        • et al.
        Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia.
        Schizophr Bull. 2005; 31: 672-696
        • Arango C.
        • Moreno C.
        • Martínez S.
        • Parellada M.
        • Desco M.
        • Moreno D.
        • et al.
        Longitudinal brain changes in early-onset psychosis.
        Schizophr Bull. 2008; 34: 341-353
        • Laidi C.
        • d’Albis M.A.
        • Wessa M.
        • Linke J.
        • Phillips M.L.
        • Delavest M.
        • et al.
        Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features.
        Acta Psychiatr Scand. 2015; 131: 223-233
        • Mavroudis I.A.
        • Petrides F.
        • Manani M.
        • Chatzinikolaou F.
        • Ciobică A.S.
        • Pădurariu M.
        • et al.
        Purkinje cells pathology in schizophrenia. A morphometric approach.
        Rom J Morphol Embryol. 2017; 58: 419-424
        • Stoodley C.J.
        • MacMore J.P.
        • Makris N.
        • Sherman J.C.
        • Schmahmann J.D.
        Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke.
        Neuroimage Clin. 2016; 12: 765-775
        • Ding Y.
        • Ou Y.
        • Pan P.
        • Shan X.
        • Chen J.
        • Liu F.
        • et al.
        Cerebellar structural and functional abnormalities in first-episode and drug-naive patients with schizophrenia: A meta-analysis.
        Psychiatry Res Neuroimaging. 2019; 283: 24-33
        • Mittal V.A.
        • Walker E.F.
        Movement abnormalities: A putative biomarker of risk for psychosis.
        in: Ritsner M.S. The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Volume I: Neuropsychological Endophenotypes and Biomarkers. Springer, New York2009: 239-258
        • Ridler K.
        • Veijola J.M.
        • Tanskanen P.
        • Miettunen J.
        • Chitnis X.
        • Suckling J.
        • et al.
        Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia.
        Proc Natl Acad Sci U S A. 2006; 103: 15651-15656
        • Hirjak D.
        • Wolf R.C.
        • Kubera K.M.
        • Stieltjes B.
        • Maier-Hein K.H.
        • Thomann P.A.
        Neurological soft signs in recent-onset schizophrenia: Focus on the cerebellum.
        Prog Neuropsychopharmacol Biol Psychiatry. 2015; 60: 18-25
        • Repovs G.
        • Csernansky J.G.
        • Barch D.M.
        Brain network connectivity in individuals with schizophrenia and their siblings.
        Biol Psychiatry. 2011; 69: 967-973
        • Moberget T.
        • Alnæs D.
        • Kaufmann T.
        • Doan N.T.
        • Córdova-Palomera A.
        • Norbom L.B.
        • et al.
        Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence.
        Biol Psychiatry. 2019; 86: 65-75
        • Kim T.
        • Lee K.H.
        • Oh H.
        • Lee T.Y.
        • Cho K.I.K.
        • Lee J.
        • Kwon J.S.
        Cerebellar structural abnormalities associated with cognitive function in patients with first-episode psychosis.
        Front Psychiatry. 2018; 9: 286
        • Dean D.J.
        • Bernard J.A.
        • Orr J.M.
        • Pelletier-Baldelli A.
        • Gupta T.
        • Carol E.E.
        • Mittal V.A.
        Cerebellar morphology and procedural learning impairment in neuroleptic-naive youth at ultrahigh risk of psychosis.
        Clin Psychol Sci. 2014; 2: 152-164
        • Moberget T.
        • Doan N.T.
        • Alnæs D.
        • Kaufmann T.
        • Córdova-Palomera A.
        • Lagerberg T.V.
        • et al.
        Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: A multisite mega-analysis of 983 patients and 1349 healthy controls.
        Mol Psychiatry. 2018; 23: 1512-1520
        • Wolfers T.
        • Doan N.T.
        • Kaufmann T.
        • Alnæs D.
        • Moberget T.
        • Agartz I.
        • et al.
        Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models.
        JAMA Psychiatry. 2018; 75: 1146-1155
        • Watson D.R.
        • Anderson J.M.E.
        • Bai F.
        • Barrett S.L.
        • McGinnity T.M.
        • Mulholland C.C.
        • et al.
        A voxel based morphometry study investigating brain structural changes in first episode psychosis.
        Behav Brain Res. 2012; 227: 91-99
        • Borgwardt S.
        • McGuire P.
        • Fusar-Poli P.
        Gray matters!--mapping the transition to psychosis.
        Schizophr Res. 2011; 133: 63-67
        • Brady Jr., R.O.
        • Gonsalvez I.
        • Lee I.
        • Öngür D.
        • Seidman L.J.
        • Schmahmann J.D.
        • et al.
        Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia.
        Am J Psychiatry. 2019; 176: 512-520
        • Bernard J.A.
        • Mittal V.A.
        Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: The importance of regional cerebellar analysis approaches.
        Front Psychiatry. 2014; 5: 160
        • Woodward N.D.
        • Heckers S.
        Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder.
        Schizophr Bull. 2015; 41: 1349-1359
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P).
        Columbia University, New York2002
        • Birchwood M.
        • Todd P.
        • Jackson C.
        Early intervention in psychosis. The critical period hypothesis.
        Br J Psychiatry Suppl. 1998; 172: 53-59
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Young R.C.
        • Biggs J.T.
        • Ziegler V.E.
        • Meyer D.A.
        A rating scale for mania: Reliability, validity and sensitivity.
        Br J Psychiatry. 1978; 133: 429-435
        • Hamilton M.
        The Hamilton Depression Scale—Accelerator or break on antidepressant drug discovery.
        Psychiatry. 1960; 23: 56-62
        • Wechsler D.
        Wechsler Test of Adult Reading: WTAR.
        The Psychological Corporation, San Antonio, TX2001
        • Purdon S.E.
        The Screen for Cognitive Impairment in Psychiatry (SCIP): Administration manual and normative data.
        PNL Inc, Edmonton, Alberta, Canada2005
        • Huo Y.
        • Blaber J.
        • Damon S.M.
        • Boyd B.D.
        • Bao S.
        • Parvathaneni P.
        • et al.
        Towards portable large-scale image processing with high-performance computing.
        J Digit Imaging. 2018; 31: 304-314
        • Harrigan R.L.
        • Yvernault B.C.
        • Boyd B.D.
        • Damon S.M.
        • Gibney K.D.
        • Conrad B.N.
        • et al.
        Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.
        Neuroimage. 2016; 124: 1097-1101
        • Sochat V.V.
        • Prybol C.J.
        • Kurtzer G.M.
        Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.
        PLoS One. 2017; 12e0188511
        • Sheffield J.M.
        • Rogers B.P.
        • Blackford J.U.
        • Heckers S.
        • Woodward N.D.
        Insula functional connectivity in schizophrenia.
        Schizophr Res. 2020; 220: 69-77
        • Diedrichsen J.
        A spatially unbiased atlas template of the human cerebellum.
        Neuroimage. 2006; 33: 127-138
        • Diedrichsen J.
        • Zotow E.
        Surface-based display of volume-averaged cerebellar imaging data.
        PLoS One. 2015; 10e0133402
        • Diedrichsen J.
        • Balsters J.H.
        • Flavell J.
        • Cussans E.
        • Ramnani N.
        A probabilistic MR atlas of the human cerebellum.
        Neuroimage. 2009; 46: 39-46
        • Buckner R.L.
        • Krienen F.M.
        • Castellanos A.
        • Diaz J.C.
        • Yeo B.T.T.
        The organization of the human cerebellum estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 2322-2345
        • Weickert T.W.
        • Goldberg T.E.
        • Gold J.M.
        • Bigelow L.B.
        • Egan M.F.
        • Weinberger D.R.
        Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect [published correction appears in Arch Gen Psychiatry 2000; 57:1122].
        Arch Gen Psychiatry. 2000; 57: 907-913
        • Czepielewski L.S.
        • Wang L.
        • Gama C.S.
        • Barch D.M.
        The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia.
        Schizophr Bull. 2017; 43: 355-364
        • Mittal V.A.
        • Walker E.F.
        Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents.
        J Abnorm Psychol. 2007; 116: 796-803
        • Tiemeier H.
        • Lenroot R.K.
        • Greenstein D.K.
        • Tran L.
        • Pierson R.
        • Giedd J.N.
        Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study.
        Neuroimage. 2010; 49: 63-70
        • Wang V.Y.
        • Zoghbi H.Y.
        Genetic regulation of cerebellar development.
        Nat Rev Neurosci. 2001; 2: 484-491
        • Romero J.E.
        • Coupe P.
        • Lanuza E.
        • Catheline G.
        • Manjón J.V.
        Alzheimer’s Disease Neuroimaging Initiative (2021): Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis.
        Hum Brain Mapp. 2021; 42: 1287-1303
        • Moulton E.A.
        • Elman I.
        • Becerra L.R.
        • Goldstein R.Z.
        • Borsook D.
        The cerebellum and addiction: Insights gained from neuroimaging research.
        Addict Biol. 2014; 19: 317-331
        • Lisdahl K.M.
        • Thayer R.
        • Squeglia L.M.
        • McQueeny T.M.
        • Tapert S.F.
        Recent binge drinking predicts smaller cerebellar volumes in adolescents.
        Psychiatry Res. 2013; 211: 17-23
        • Medina K.L.
        • Nagel B.J.
        • Tapert S.F.
        Abnormal cerebellar morphometry in abstinent adolescent marijuana users.
        Psychiatry Res. 2010; 182: 152-159
        • Varnäs K.
        • Okugawa G.
        • Hammarberg A.
        • Nesvåg R.
        • Rimol L.M.
        • Franck J.
        • Agartz I.
        Cerebellar volumes in men with schizophrenia and alcohol dependence.
        Psychiatry Clin Neurosci. 2007; 61: 326-329
        • Quinn M.
        • McHugo M.
        • Armstrong K.
        • Woodward N.
        • Blackford J.
        • Heckers S.
        Impact of substance use disorder on gray matter volume in schizophrenia.
        Psychiatry Res Neuroimaging. 2018; 280: 9-14
        • Schmahmann J.D.
        • Guell X.
        • Stoodley C.J.
        • Halko M.A.
        The theory and neuroscience of cerebellar cognition.
        Annu Rev Neurosci. 2019; 42: 337-364
        • Moberget T.
        • Ivry R.B.
        Prediction, psychosis and the cerebellum.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 820-831
        • McAfee S.S.
        • Liu Y.
        • Sillitoe R.V.
        • Heck D.H.
        Cerebellar lobulus simplex and crus I differentially represent phase and phase difference of prefrontal cortical and hippocampal oscillations.
        Cell Rep. 2019; 27: 2328-2334.e3
        • Singh A.
        • Trapp N.T.
        • De Corte B.
        • Cao S.
        • Kingyon J.
        • Boes A.D.
        • Parker K.L.
        Cerebellar theta frequency transcranial pulsed stimulation increases frontal theta oscillations in patients with schizophrenia.
        Cerebellum. 2019; 18: 489-499
        • Zhu L.
        • Zhang W.
        • Zhu Y.
        • Mu X.
        • Zhang Q.
        • Wang Y.
        • et al.
        Cerebellar theta burst stimulation for the treatment of negative symptoms of schizophrenia: A multicenter, double-blind, randomized controlled trial.
        Psychiatry Res. 2021; 305: 114204
        • Assari S.
        • Boyce S.
        Race, socioeconomic status, and cerebellum cortex fractional anisotropy in pre-adolescents.
        Adolescents. 2021; 1: 70-94
        • Anglin D.M.
        • Ereshefsky S.
        • Klaunig M.J.
        • Bridgwater M.A.
        • Niendam T.A.
        • Ellman L.M.
        • et al.
        From womb to neighborhood: A racial analysis of social determinants of psychosis in the United States.
        Am J Psychiatry. 2021; 178: 599-610