Advertisement

Thalamocortical Development: A Neurodevelopmental Framework for Schizophrenia

  • Laura J. Benoit
    Affiliations
    Graduate Program in Neurobiology and Behavior, Columbia University Medical Center, New York, New York
    Search for articles by this author
  • Sarah Canetta
    Affiliations
    Department of Psychiatry, Columbia University Medical Center, New York, New York

    Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
    Search for articles by this author
  • Christoph Kellendonk
    Correspondence
    Address correspondence to Christoph Kellendonk, Ph.D.
    Affiliations
    Department of Psychiatry, Columbia University Medical Center, New York, New York

    Department of Pharmacology, Columbia University Medical Center, New York, New York

    Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
    Search for articles by this author

      Abstract

      Adolescence is a period of increased vulnerability for the development of psychiatric disorders, including schizophrenia. The prefrontal cortex (PFC) undergoes substantial maturation during this period, and PFC dysfunction is central to cognitive impairments in schizophrenia. As a result, impaired adolescent maturation of the PFC has been proposed as a mechanism in the etiology of the disorder and its cognitive symptoms. In adulthood, PFC function is tightly linked to its reciprocal connections with the thalamus, and acutely inhibiting thalamic inputs to the PFC produces impairments in PFC function and cognitive deficits. Here, we propose that thalamic activity is equally important during adolescence because it is required for proper PFC circuit development. Because thalamic abnormalities have been observed early in the progression of schizophrenia, we further postulate that adolescent thalamic dysfunction can have long-lasting consequences for PFC function and cognition in patients with schizophrenia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gogtay N.
        • Vyas N.S.
        • Testa R.
        • Wood S.J.
        • Pantelis C.
        Age of onset of schizophrenia: Perspectives from structural neuroimaging studies.
        Schizophr Bull. 2011; 37: 504-513
        • Häfner H.
        • Maurer K.
        • Löffler W.
        • Fätkenheuer B.
        • an der Heiden W.
        • Riecher-Rössler A.
        • et al.
        The epidemiology of early schizophrenia. Influence of age and gender on onset and early course.
        Br J Psychiatry. 1994; Suppl: 29-38
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Sakurai T.
        • Gamo N.J.
        Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders.
        Neurobiol Dis. 2019; 131: 104322
        • Paus T.
        • Keshavan M.
        • Giedd J.N.
        Why do many psychiatric disorders emerge during adolescence?.
        Nat Rev Neurosci. 2008; 9: 947-957
        • Welham J.
        • Isohanni M.
        • Jones P.
        • McGrath J.
        The antecedents of schizophrenia: A review of birth cohort studies.
        Schizophr Bull. 2009; 35: 603-623
        • Millan M.J.
        • Andrieux A.
        • Bartzokis G.
        • Cadenhead K.
        • Dazzan P.
        • Fusar-Poli P.
        • et al.
        Altering the course of schizophrenia: Progress and perspectives.
        Nat Rev Drug Discov. 2016; 15: 485-515
        • Brown A.S.
        • Derkits E.J.
        Prenatal infection and schizophrenia: A review of epidemiologic and translational studies.
        Am J Psychiatry. 2010; 167: 261-280
        • Gomes F.V.
        • Grace A.A.
        Adolescent stress as a driving factor for schizophrenia development-A basic science perspective.
        Schizophr Bull. 2017; 43: 486-489
        • Arseneault L.
        • Cannon M.
        • Poulton R.
        • Murray R.
        • Caspi A.
        • Moffitt T.E.
        Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study.
        BMJ. 2002; 325: 1212-1213
        • McEvoy J.P.
        The importance of early treatment of schizophrenia.
        Behav Healthc. 2007; 27: 40-43
        • Häfner H.
        • Maurer K.
        Early detection of schizophrenia: Current evidence and future perspectives.
        World Psychiatry. 2006; 5: 130-138
        • Green M.F.
        • Kern R.S.
        • Braff D.L.
        • Mintz J.
        Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”?.
        Schizophr Bull. 2000; 26: 119-136
        • Millan M.J.
        • Agid Y.
        • Brüne M.
        • Bullmore E.T.
        • Carter C.S.
        • Clayton N.S.
        • et al.
        Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy.
        Nat Rev Drug Discov. 2012; 11: 141-168
        • Bowie C.R.
        • Leung W.W.
        • Reichenberg A.
        • McClure M.M.
        • Patterson T.L.
        • Heaton R.K.
        • Harvey P.D.
        Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures.
        Biol Psychiatry. 2008; 63: 505-511
        • Konopaske G.T.
        • Balu D.T.
        • Presti K.T.
        • Chan G.
        • Benes F.M.
        • Coyle J.T.
        Dysbindin-1 contributes to prefrontal cortical dendritic arbor pathology in schizophrenia.
        Schizophr Res. 2018; 201: 270-277
        • Saykin A.J.
        • Shtasel D.L.
        • Gur R.E.
        • Kester D.B.
        • Mozley L.H.
        • Stafiniak P.
        • Gur R.C.
        Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia.
        Arch Gen Psychiatry. 1994; 51: 124-131
        • Breier A.
        • Schreiber J.L.
        • Dyer J.
        • Pickar D.
        National Institute of Mental Health longitudinal study of chronic schizophrenia. Prognosis and predictors of outcome [published correction appears in Arch Gen Psychiatry 1991; 48:642].
        Arch Gen Psychiatry. 1991; 48: 239-246
        • Heaton R.
        • Paulsen J.S.
        • McAdams L.A.
        • Kuck J.
        • Zisook S.
        • Braff D.
        • et al.
        Neuropsychological deficits in schizophrenics. Relationship to age, chronicity, and dementia.
        Arch Gen Psychiatry. 1994; 51: 469-476
        • Davidson M.
        • Reichenberg A.
        • Rabinowitz J.
        • Weiser M.
        • Kaplan Z.
        • Mark M.
        Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents.
        Am J Psychiatry. 1999; 156: 1328-1335
        • Hill S.K.
        • Bishop J.R.
        • Palumbo D.
        • Sweeney J.A.
        Effect of second-generation antipsychotics on cognition: Current issues and future challenges.
        Expert Rev Neurother. 2010; 10: 43-57
      1. Levin H.S. Eisenberg H.M. Benton A.L. Frontal Lobe Function and Dysfunction. Oxford University Press, New York1991
        • Müller N.G.
        • Machado L.
        • Knight R.T.
        Contributions of subregions of the prefrontal cortex to working memory: Evidence from brain lesions in humans.
        J Cogn Neurosci. 2002; 14: 673-686
        • Weinberger D.R.
        • Berman K.F.
        Prefrontal function in schizophrenia: Confounds and controversies.
        Philos Trans R Soc Lond B Biol Sci. 1996; 351: 1495-1503
        • Karlsgodt K.H.
        • Sanz J.
        • van Erp T.G.M.
        • Bearden C.E.
        • Nuechterlein K.H.
        • Cannon T.D.
        Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia.
        Schizophr Res. 2009; 108: 143-150
        • Thune J.J.
        • Uylings H.B.
        • Pakkenberg B.
        No deficit in total number of neurons in the prefrontal cortex in schizophrenics.
        J Psychiatr Res. 2001; 35: 15-21
        • Garey L.J.
        • Ong W.Y.
        • Patel T.S.
        • Kanani M.
        • Davis A.
        • Mortimer A.M.
        • et al.
        Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
        J Neurol Neurosurg Psychiatry. 1998; 65: 446-453
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Black J.E.
        • Kodish I.M.
        • Grossman A.W.
        • Klintsova A.Y.
        • Orlovskaya D.
        • Vostrikov V.
        • et al.
        Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia.
        Am J Psychiatry. 2004; 161: 742-744
        • Glantz L.A.
        • Lewis D.A.
        Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity [published correction appears in Arch Gen Psychiatry 1997; 54:660–669].
        Arch Gen Psychiatry. 1997; 54: 943-952
        • Mirnics K.
        • Middleton F.A.
        • Marquez A.
        • Lewis D.A.
        • Levitt P.
        Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.
        Neuron. 2000; 28: 53-67
        • Pierri J.N.
        • Volk C.L.
        • Auh S.
        • Sampson A.
        • Lewis D.A.
        Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 466-473
        • Rajkowska G.
        • Selemon L.D.
        • Goldman-Rakic P.S.
        Neuronal and glial somal size in the prefrontal cortex: A postmortem morphometric study of schizophrenia and Huntington disease.
        Arch Gen Psychiatry. 1998; 55: 215-224
        • Feinberg I.
        Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence?.
        J Psychiatr Res. 1982-1983; 17: 319-334
        • Rapoport J.L.
        • Giedd J.N.
        • Gogtay N.
        Neurodevelopmental model of schizophrenia: Update 2012.
        Mol Psychiatry. 2012; 17: 1228-1238
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Cannon T.D.
        • Chung Y.
        • He G.
        • Sun D.
        • Jacobson A.
        • van Erp T.G.M.
        • et al.
        Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk.
        Biol Psychiatry. 2015; 77: 147-157
        • Chung Y.
        • Haut K.M.
        • He G.
        • van Erp T.G.M.
        • McEwen S.
        • Addington J.
        • et al.
        Ventricular enlargement and progressive reduction of cortical gray matter are linked in prodromal youth who develop psychosis.
        Schizophr Res. 2017; 189: 169-174
        • Huttenlocher P.R.
        Synaptic density in human frontal cortex—Developmental changes and effects of aging.
        Brain Res. 1979; 163: 195-205
        • Petanjek Z.
        • Judaš M.
        • Šimic G.
        • Rasin M.R.
        • Uylings H.B.M.
        • Rakic P.
        • Kostovic I.
        Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
        Proc Natl Acad Sci U S A. 2011; 108: 13281-13286
        • Boksa P.
        Abnormal synaptic pruning in schizophrenia: Urban myth or reality?.
        J Psychiatry Neurosci. 2012; 37: 75-77
        • Sekar A.
        • Bialas A.R.
        • de Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4 [published correction appears in Nature 2022; 601:E4–E5].
        Nature. 2016; 530: 177-183
        • Sellgren C.M.
        • Gracias J.
        • Watmuff B.
        • Biag J.D.
        • Thanos J.M.
        • Whittredge P.B.
        • et al.
        Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning.
        Nat Neurosci. 2019; 22: 374-385
        • Yilmaz M.
        • Yalcin E.
        • Presumey J.
        • Aw E.
        • Ma M.
        • Whelan C.W.
        • et al.
        Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice.
        Nat Neurosci. 2021; 24: 214-224
        • Faust T.E.
        • Gunner G.
        • Schafer D.P.
        Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS.
        Nat Rev Neurosci. 2021; 22: 657-673
        • Anticevic A.
        • Haut K.
        • Murray J.D.
        • Repovs G.
        • Yang G.J.
        • Diehl C.
        • et al.
        Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk.
        JAMA Psychiatry. 2015; 72: 882-891
        • Cronenwett W.J.
        • Csernansky J.
        Thalamic pathology in schizophrenia.
        Curr Top Behav Neurosci. 2010; 4: 509-528
        • Pergola G.
        • Selvaggi P.
        • Trizio S.
        • Bertolino A.
        • Blasi G.
        The role of the thalamus in schizophrenia from a neuroimaging perspective.
        Neurosci Biobehav Rev. 2015; 54: 57-75
        • Giraldo-Chica M.
        • Woodward N.D.
        Review of thalamocortical resting-state fMRI studies in schizophrenia.
        Schizophr Res. 2017; 180: 58-63
        • Huang P.
        • Xi Y.
        • Lu Z.L.
        • Chen Y.
        • Li X.
        • Li W.
        • et al.
        Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: A volumetric MRI study.
        Sci Rep. 2015; 5: 14505
        • Huang X.
        • Pu W.
        • Li X.
        • Greenshaw A.J.
        • Dursun S.M.
        • Xue Z.
        • et al.
        Decreased left putamen and thalamus volume correlates with delusions in first-episode schizophrenia patients.
        Front Psychiatry. 2017; 8: 245
        • Rao N.P.
        • Kalmady S.
        • Arasappa R.
        • Venkatasubramanian G.
        Clinical correlates of thalamus volume deficits in anti-psychotic-naïve schizophrenia patients: A 3-Tesla MRI study.
        Indian J Psychiatry. 2010; 52: 229-235
        • Huang A.S.
        • Rogers B.P.
        • Sheffield J.M.
        • Jalbrzikowski M.E.
        • Anticevic A.
        • Blackford J.U.
        • et al.
        Thalamic nuclei volumes in psychotic disorders and in youths with psychosis spectrum symptoms.
        Am J Psychiatry. 2020; 177: 1159-1167
        • Kubota M.
        • Miyata J.
        • Sasamoto A.
        • Sugihara G.
        • Yoshida H.
        • Kawada R.
        • et al.
        Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia.
        JAMA Psychiatry. 2013; 70: 12-21
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Klingner C.M.
        • Langbein K.
        • Dietzek M.
        • Smesny S.
        • Witte O.W.
        • Sauer H.
        • Nenadic I.
        Thalamocortical connectivity during resting state in schizophrenia.
        Eur Arch Psychiatry Clin Neurosci. 2014; 264: 111-119
        • Woodward N.D.
        • Karbasforoushan H.
        • Heckers S.
        Thalamocortical dysconnectivity in schizophrenia.
        Am J Psychiatry. 2012; 169: 1092-1099
        • Cheng W.
        • Palaniyappan L.
        • Li M.
        • Kendrick K.M.
        • Zhang J.
        • Luo Q.
        • et al.
        Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry.
        NPJ Schizophr. 2015; 1: 15016
        • Li T.
        • Wang Q.
        • Zhang J.
        • Rolls E.T.
        • Yang W.
        • Palaniyappan L.
        • et al.
        Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia.
        Schizophr Bull. 2017; 43: 436-448
        • Marenco S.
        • Stein J.L.
        • Savostyanova A.A.
        • Sambataro F.
        • Tan H.Y.
        • Goldman A.L.
        • et al.
        Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia.
        Neuropsychopharmacology. 2012; 37: 499-507
        • Cho K.I.K.
        • Shenton M.E.
        • Kubicki M.
        • Jung W.H.
        • Lee T.Y.
        • Yun J.Y.
        • et al.
        Altered thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis.
        Schizophr Bull. 2016; 42: 723-731
        • Mitelman S.A.
        • Byne W.
        • Kemether E.M.
        • Hazlett E.A.
        • Buchsbaum M.S.
        Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann’s areas of the left hemisphere in schizophrenia.
        Am J Psychiatry. 2005; 162: 1733-1735
        • Giraldo-Chica M.
        • Rogers B.P.
        • Damon S.M.
        • Landman B.A.
        • Woodward N.D.
        Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia.
        Biol Psychiatry. 2018; 83: 509-517
        • Lunsford-Avery J.R.
        • Orr J.M.
        • Gupta T.
        • Pelletier-Baldelli A.
        • Dean D.J.
        • Smith Watts A.K.
        • et al.
        Sleep dysfunction and thalamic abnormalities in adolescents at ultra high-risk for psychosis.
        Schizophr Res. 2013; 151: 148-153
        • Harrisberger F.
        • Buechler R.
        • Smieskova R.
        • Lenz C.
        • Walter A.
        • Egloff L.
        • et al.
        Alterations in the hippocampus and thalamus in individuals at high risk for psychosis.
        NPJ Schizophr. 2016; 2: 16033
        • Zhang M.
        • Palaniyappan L.
        • Deng M.
        • Zhang W.
        • Pan Y.
        • Fan Z.
        • et al.
        Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia.
        J Am Acad Child Adolesc Psychiatry. 2021; 60: 479-489
        • Woodward N.D.
        • Heckers S.
        Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders.
        Biol Psychiatry. 2016; 79: 1016-1025
        • Huang A.S.
        • Rogers B.P.
        • Sheffield J.M.
        • Vandekar S.
        • Anticevic A.
        • Woodward N.D.
        Characterizing effects of age, sex and psychosis symptoms on thalamocortical functional connectivity in youth.
        Neuroimage. 2021; 243: 118562
        • Fryer S.L.
        • Ferri J.M.
        • Roach B.J.
        • Loewy R.L.
        • Stuart B.K.
        • Anticevic A.
        • et al.
        Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia [published online ahead of print Mar 15].
        Psychol Med. 2021;
        • Pergola G.
        • Trizio S.
        • Di Carlo P.
        • Taurisano P.
        • Mancini M.
        • Amoroso N.
        • et al.
        Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia.
        Schizophr Res. 2017; 180: 13-20
        • Antonucci L.A.
        • Taurisano P.
        • Fazio L.
        • Gelao B.
        • Romano R.
        • Quarto T.
        • et al.
        Association of familial risk for schizophrenia with thalamic and medial prefrontal functional connectivity during attentional control.
        Schizophr Res. 2016; 173: 23-29
        • Antonucci L.A.
        • Di Carlo P.
        • Passiatore R.
        • Papalino M.
        • Monda A.
        • Amoroso N.
        • et al.
        Thalamic connectivity measured with fMRI is associated with a polygenic index predicting thalamo-prefrontal gene co-expression.
        Brain Struct Funct. 2019; 224: 1331-1344
        • Moreau C.A.
        • Urchs S.G.W.
        • Kuldeep K.
        • Orban P.
        • Schramm C.
        • Dumas G.
        • et al.
        Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia.
        Nat Commun. 2020; 11: 5272
        • Jones E.G.
        The Thalamus.
        Springer Science and Business Media, New York1985
        • Sherman S.M.
        Thalamus plays a central role in ongoing cortical functioning.
        Nat Neurosci. 2016; 19: 533-541
        • Saalmann Y.B.
        Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition.
        Front Syst Neurosci. 2014; 8: 83
        • Parnaudeau S.
        • Bolkan S.S.
        • Kellendonk C.
        The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition.
        Biol Psychiatry. 2018; 83: 648-656
        • Ouhaz Z.
        • Fleming H.
        • Mitchell A.S.
        Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and mediodorsal thalamus.
        Front Neurosci. 2018; 12: 33
        • Rikhye R.V.
        • Wimmer R.D.
        • Halassa M.M.
        Toward an integrative theory of thalamic function.
        Annu Rev Neurosci. 2018; 41: 163-183
        • Bolkan S.S.
        • Stujenske J.M.
        • Parnaudeau S.
        • Spellman T.J.
        • Rauffenbart C.
        • Abbas A.I.
        • et al.
        Thalamic projections sustain prefrontal activity during working memory maintenance [published correction appears in Nat Neurosci 2018; 21:1138].
        Nat Neurosci. 2017; 20: 987-996
        • Rikhye R.V.
        • Gilra A.
        • Halassa M.M.
        Thalamic regulation of switching between cortical representations enables cognitive flexibility.
        Nat Neurosci. 2018; 21: 1753-1763
        • Schmitt L.I.
        • Wimmer R.D.
        • Nakajima M.
        • Happ M.
        • Mofakham S.
        • Halassa M.M.
        Thalamic amplification of cortical connectivity sustains attentional control.
        Nature. 2017; 545: 219-223
        • Hsiao K.
        • Noble C.
        • Pitman W.
        • Yadav N.
        • Kumar S.
        • Keele G.R.
        • et al.
        A thalamic orphan receptor drives variability in short-term memory.
        Cell. 2020; 183: 522-536.e19
        • Ferguson B.R.
        • Gao W.J.
        Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex.
        Biol Psychiatry. 2018; 83: 657-669
        • Marton T.F.
        • Seifikar H.
        • Luongo F.J.
        • Lee A.T.
        • Sohal V.S.
        Roles of prefrontal cortex and mediodorsal thalamus in task engagement and behavioral flexibility.
        J Neurosci. 2018; 38: 2569-2578
        • Tanibuchi I.
        • Goldman-Rakic P.S.
        Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus.
        J Neurophysiol. 2003; 89: 1067-1077
        • Watanabe Y.
        • Funahashi S.
        Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity.
        J Neurophysiol. 2004; 92: 1738-1755
        • Steward T.
        • Kung P.H.
        • Davey C.G.
        • Moffat B.A.
        • Glarin R.K.
        • Jamieson A.J.
        • et al.
        A thalamo-centric neural signature for restructuring negative self-beliefs.
        Mol Psychiatry. 2022; 27: 1611-1617
        • Alcauter S.
        • Lin W.
        • Smith J.K.
        • Short S.J.
        • Goldman B.D.
        • Reznick J.S.
        • et al.
        Development of thalamocortical connectivity during infancy and its cognitive correlations.
        J Neurosci. 2014; 34: 9067-9075
        • Fair D.A.
        • Bathula D.
        • Mills K.L.
        • Costa Dias T.G.
        • Blythe M.S.
        • Zhang D.
        • et al.
        Maturing thalamocortical functional connectivity across development.
        Front Syst Neurosci. 2010; 4: 10
        • Steiner L.
        • Federspiel A.
        • Slavova N.
        • Wiest R.
        • Grunt S.
        • Steinlin M.
        • Everts R.
        Functional topography of the thalamo-cortical system during development and its relation to cognition.
        Neuroimage. 2020; 223: 117361
        • Avery S.N.
        • Huang A.S.
        • Sheffield J.M.
        • Rogers B.P.
        • Vandekar S.
        • Anticevic A.
        • Woodward N.D.
        Development of thalamocortical structural connectivity in typically developing and psychosis spectrum youths.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 7: 782-792
        • Ferguson B.R.
        • Gao W.J.
        Development of thalamocortical connections between the mediodorsal thalamus and the prefrontal cortex and its implication in cognition.
        Front Hum Neurosci. 2015; 8: 1027
        • Van Eden C.G.
        Development of connections between the mediodorsal nucleus of the thalamus and the prefrontal cortex in the rat.
        J Comp Neurol. 1986; 244: 349-359
        • van Eden C.G.
        • Kros J.M.
        • Uylings H.B.
        The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas.
        Prog Brain Res. 1990; 85: 169-183
        • Shibata M.
        • Pattabiraman K.
        • Lorente-Galdos B.
        • Andrijevic D.
        • Kim S.K.
        • Kaur N.
        • et al.
        Regulation of prefrontal patterning and connectivity by retinoic acid.
        Nature. 2021; 598: 483-488
        • Rios O.
        • Villalobos J.
        Postnatal development of the afferent projections from the dorsomedial thalamic nucleus to the frontal cortex in mice.
        Brain Res Dev Brain Res. 2004; 150: 47-50
        • Makinodan M.
        • Rosen K.M.
        • Ito S.
        • Corfas G.
        A critical period for social experience-dependent oligodendrocyte maturation and myelination.
        Science. 2012; 337: 1357-1360
        • Marmolejo N.
        • Paez J.
        • Levitt J.B.
        • Jones L.B.
        Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex.
        Dev Neurosci. 2012; 34: 463-476
        • Pattwell S.S.
        • Liston C.
        • Jing D.
        • Ninan I.
        • Yang R.R.
        • Witztum J.
        • et al.
        Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories.
        Nat Commun. 2016; 7: 11475
        • Larsen B.
        • Luna B.
        Adolescence as a neurobiological critical period for the development of higher-order cognition.
        Neurosci Biobehav Rev. 2018; 94: 179-195
        • Canetta S.E.
        • Holt E.S.
        • Benoit L.J.
        • Teboul E.
        • Ogden R.T.
        • Harris A.Z.
        • Kellendonk C.
        Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period.
        bioRxiv. 2021; https://doi.org/10.1101/2021.2003.2004.433943
        • Takesian A.E.
        • Hensch T.K.
        Balancing plasticity/stability across brain development.
        Prog Brain Res. 2013; 207: 3-34
        • Hensch T.K.
        Critical period regulation.
        Annu Rev Neurosci. 2004; 27: 549-579
        • Wiesel T.N.
        • Hubel D.H.
        Single-cell responses in striate cortex of kittens deprived of vision in one eye.
        J Neurophysiol. 1963; 26: 1003-1017
        • Bitzenhofer S.H.
        • Pöpplau J.A.
        • Chini M.
        • Marquardt A.
        • Hanganu-Opatz I.L.
        A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice.
        Neuron. 2021; 109: 1350-1364.e6
        • Bicks L.K.
        • Yamamuro K.
        • Flanigan M.E.
        • Kim J.M.
        • Kato D.
        • Lucas E.K.
        • et al.
        Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior.
        Nat Commun. 2020; 11: 1003
        • Yamamuro K.
        • Bicks L.K.
        • Leventhal M.B.
        • Kato D.
        • Im S.
        • Flanigan M.E.
        • et al.
        A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice.
        Nat Neurosci. 2020; 23: 1240-1252
        • de Villers-Sidani E.
        • Chang E.F.
        • Bao S.
        • Merzenich M.M.
        Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat.
        J Neurosci. 2007; 27: 180-189
        • Caras M.L.
        • Sanes D.H.
        Sustained perceptual deficits from transient sensory deprivation.
        J Neurosci. 2015; 35: 10831-10842
        • van Eden C.G.
        • van Hest A.
        • van Haaren F.
        • Uylings H.B.
        Effects of neonatal mediodorsal thalamic lesions on structure and function of the rat prefrontal cortex.
        Brain Res Dev Brain Res. 1994; 80: 26-34
        • Ouhaz Z.
        • Ba-M’hamed S.
        • Mitchell A.S.
        • Elidrissi A.
        • Bennis M.
        Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus.
        Behav Brain Res. 2015; 292: 219-232
        • Ouhaz Z.
        • Ba-M’hamed S.
        • Bennis M.
        Morphological, structural, and functional alterations of the prefrontal cortex and the basolateral amygdala after early lesion of the rat mediodorsal thalamus.
        Brain Struct Funct. 2017; 222: 2527-2545
        • Benoit L.
        • Holt E.S.
        • Posani L.
        • Fusi S.
        • Harris A.Z.
        • Canetta S.
        • Kellendonk C.
        Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function.
        Nat Neurosci. 2022; 25: 714-725
        • Schneider M.
        Adolescence as a vulnerable period to alter rodent behavior.
        Cell Tissue Res. 2013; 354: 99-106
        • Piekarski D.J.
        • Johnson C.M.
        • Boivin J.R.
        • Thomas A.W.
        • Lin W.C.
        • Delevich K.
        • et al.
        Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?.
        Brain Res. 2017; 1654: 123-144
        • Spear L.P.
        The adolescent brain and age-related behavioral manifestations.
        Neurosci Biobehav Rev. 2000; 24: 417-463
        • Dutta S.
        • Sengupta P.
        Men and mice: Relating their ages.
        Life Sci. 2016; 152: 244-248
        • Chini M.
        • Hanganu-Opatz I.L.
        Prefrontal cortex development in health and disease: Lessons from rodents and humans.
        Trends Neurosci. 2021; 44: 227-240
        • Brust V.
        • Schindler P.M.
        • Lewejohann L.
        Lifetime development of behavioural phenotype in the house mouse (Mus musculus).
        Front Zool. 2015; 12: S17
        • Mukherjee A.
        • Carvalho F.
        • Eliez S.
        • Caroni P.
        Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model.
        Cell. 2019; 178: 1387-1402.e14
        • Anastasiades P.G.
        • Carter A.G.
        Circuit organization of the rodent medial prefrontal cortex.
        Trends Neurosci. 2021; 44: 550-563
        • Woo T.U.
        • Pucak M.L.
        • Kye C.H.
        • Matus C.V.
        • Lewis D.A.
        Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex.
        Neuroscience. 1997; 80: 1149-1158
        • Canetta S.
        • Teboul E.
        • Holt E.
        • Bolkan S.S.
        • Padilla-Coreano N.
        • Gordon J.A.
        • et al.
        Differential synaptic dynamics and circuit connectivity of hippocampal and thalamic inputs to the prefrontal cortex.
        Cereb Cortex Commun. 2020; 1tgaa084
        • Delevich K.
        • Tucciarone J.
        • Huang Z.J.
        • Li B.
        The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons.
        J Neurosci. 2015; 35: 5743-5753
        • Caballero A.
        • Granberg R.
        • Tseng K.Y.
        Mechanisms contributing to prefrontal cortex maturation during adolescence.
        Neurosci Biobehav Rev. 2016; 70: 4-12
        • Baho E.
        • Di Cristo G.
        Neural activity and neurotransmission regulate the maturation of the innervation field of cortical GABAergic interneurons in an age-dependent manner.
        J Neurosci. 2012; 32: 911-918
        • Chattopadhyaya B.
        • Di Cristo G.
        • Wu C.Z.
        • Knott G.
        • Kuhlman S.
        • Fu Y.
        • et al.
        GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.
        Neuron. 2007; 54: 889-903
        • Fu Y.
        • Wu X.
        • Lu J.
        • Huang Z.J.
        Presynaptic GABA(B) receptor regulates activity-dependent maturation and patterning of inhibitory synapses through dynamic allocation of synaptic vesicles.
        Front Cell Neurosci. 2012; 6: 57
        • Wu X.
        • Fu Y.
        • Knott G.
        • Lu J.
        • Di Cristo G.
        • Huang Z.J.
        GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons.
        J Neurosci. 2012; 32: 331-343
        • Miyamae T.
        • Chen K.
        • Lewis D.A.
        • Gonzalez-Burgos G.
        Distinct physiological maturation of parvalbumin-positive neuron subtypes in mouse prefrontal cortex.
        J Neurosci. 2017; 37: 4883-4902
        • Volk D.W.
        • Lewis D.A.
        Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: Implications for schizophrenia.
        Biol Psychiatry. 2003; 53: 385-389
        • Gao W.-J.
        • Yang S.-S.
        • Mack N.R.
        • Chamberlin L.A.
        Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-Contribution of NMDA receptor development and hypofunction.
        Mol Psychiatry. 2022; 27: 731-743
        • Flores-Barrera E.
        • Thomases D.R.
        • Heng L.J.
        • Cass D.K.
        • Caballero A.
        • Tseng K.Y.
        Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling.
        Biol Psychiatry. 2014; 75: 508-516
        • Wang M.
        • Yang Y.
        • Wang C.J.
        • Gamo N.J.
        • Jin L.E.
        • Mazer J.A.
        • et al.
        NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex.
        Neuron. 2013; 77: 736-749
        • Guirado R.
        • Umemori J.
        • Sipilä P.
        • Castrén E.
        Evidence for competition for target innervation in the medial prefrontal cortex.
        Cereb Cortex. 2016; 26: 1287-1294
        • Wolterink G.
        • Daenen L.E.
        • Dubbeldam S.
        • Gerrits M.A.
        • van Rijn R.
        • Kruse C.G.
        • et al.
        Early amygdala damage in the rat as a model for neurodevelopmental psychopathological disorders.
        Eur Neuropsychopharmacol. 2001; 11: 51-59
        • Pergola G.
        • Danet L.
        • Pitel A.L.
        • Carlesimo G.A.
        • Segobin S.
        • Pariente J.
        • et al.
        The regulatory role of the human mediodorsal thalamus.
        Trends Cogn Sci. 2018; 22: 1011-1025
        • Welch K.A.
        • Stanfield A.C.
        • McIntosh A.M.
        • Whalley H.C.
        • Job D.E.
        • Moorhead T.W.
        • et al.
        Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia.
        Br J Psychiatry. 2011; 199: 386-390
        • Mashhoon Y.
        • Sava S.
        • Sneider J.T.
        • Nickerson L.D.
        • Silveri M.M.
        Cortical thinness and volume differences associated with marijuana abuse in emerging adults.
        Drug Alcohol Depend. 2015; 155: 275-283
        • Maas D.A.
        • Vallès A.
        • Martens G.J.M.
        Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia.
        Transl Psychiatry. 2017; 7: e1171
        • Steullet P.
        • Cabungcal J.H.
        • Bukhari S.A.
        • Ardelt M.I.
        • Pantazopoulus H.
        • Hamati F.
        • et al.
        The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress.
        Mol Psychiatry. 2018; 23: 2057-2065
        • El Boukhari H.
        • Ouhaz Z.
        • Ba-M’hamed S.
        • Bennis M.
        Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex.
        Dev Neurobiol. 2019; 79: 913-933
        • Bowie C.R.
        • Grossman M.
        • Gupta M.
        • Oyewumi L.K.
        • Harvey P.D.
        Cognitive remediation in schizophrenia: Efficacy and effectiveness in patients with early versus long-term course of illness.
        Early Interv Psychiatry. 2014; 8: 32-38
        • Rauchensteiner S.
        • Kawohl W.
        • Ozgurdal S.
        • Littmann E.
        • Gudlowski Y.
        • Witthaus H.
        • et al.
        Test-performance after cognitive training in persons at risk mental state of schizophrenia and patients with schizophrenia.
        Psychiatry Res. 2011; 185: 334-339
        • Urben S.
        • Pihet S.
        • Jaugey L.
        • Halfon O.
        • Holzer L.
        Computer-assisted cognitive remediation in adolescents with psychosis or at risk for psychosis: A 6-month follow-up.
        Acta Neuropsychiatr. 2012; 24: 328-335
        • Cain J.A.
        • Spivak N.M.
        • Coetzee J.P.
        • Crone J.S.
        • Johnson M.A.
        • Lutkenhoff E.S.
        • et al.
        Ultrasonic thalamic stimulation in chronic disorders of consciousness.
        Brain Stimul. 2021; 14: 301-303
        • Nabel E.M.
        • Morishita H.
        Regulating critical period plasticity: Insight from the visual system to fear circuitry for therapeutic interventions.
        Front Psychiatry. 2013; 4: 146
        • Vetencourt J.F.M.
        • Sale A.
        • Viegi A.
        • Baroncelli L.
        • De Pasquale R.
        • O’Leary O.F.
        • et al.
        The antidepressant fluoxetine restores plasticity in the adult visual cortex.
        Science. 2008; 320: 385-388