Advertisement

Cognitive Dysfunction and Prefrontal Cortical Circuit Alterations in Schizophrenia: Developmental Trajectories

  • Samuel J. Dienel
    Affiliations
    Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

    Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania

    Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania

    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Kirsten E. Schoonover
    Affiliations
    Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
    Search for articles by this author
  • David A. Lewis
    Correspondence
    Address correspondence to David A. Lewis, M.D.
    Affiliations
    Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

    Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania

    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
    Search for articles by this author

      Abstract

      Individuals with schizophrenia (SZ) exhibit cognitive performance below expected levels based on familial cognitive aptitude. One such cognitive process, working memory (WM), is robustly impaired in SZ. These WM impairments, which emerge over development during the premorbid and prodromal stages of SZ, appear to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex. Within the dorsolateral prefrontal cortex, a microcircuit formed by reciprocal connections between excitatory layer 3 pyramidal neurons and inhibitory parvalbumin basket cells (PVBCs) appears to be a key neural substrate for WM. Postmortem human studies indicate that both layer 3 pyramidal neurons and PVBCs are altered in SZ, suggesting that levels of excitation and inhibition are lower in the microcircuit. Studies in monkeys indicate that features of both cell types exhibit distinctive postnatal developmental trajectories. Together, the results of these studies suggest a model in which 1) genetic and/or early environmental insults to excitatory signaling in layer 3 pyramidal neurons give rise to cognitive impairments during the prodromal phase of SZ and evoke compensatory changes in inhibition that alter the developmental trajectories of PVBCs, and 2) synaptic pruning during adolescence further lowers excitatory activity to a level that exceeds the compensatory capacity of PVBC inhibition, leading to a failure of the normal maturational improvements in WM during the prodromal and early clinical stages of SZ. Findings that support as well as challenge this model are discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kahn R.S.
        • Keefe R.S.E.
        Schizophrenia is a cognitive illness: Time for a change in focus.
        JAMA Psychiatry. 2013; 70: 1107-1112
        • Keefe R.S.E.
        • Kahn R.S.
        Cognitive decline and disrupted cognitive trajectory in schizophrenia.
        JAMA Psychiatry. 2017; 74: 535-536
        • Kendler K.S.
        • Ohlsson H.
        • Mezuk B.
        • Sundquist J.O.
        • Sundquist K.
        Observed cognitive performance and deviation from familial cognitive aptitude at age 16 years and ages 18 to 20 years and risk for schizophrenia and bipolar illness in a Swedish national sample.
        JAMA Psychiatry. 2016; 73: 465-471
        • Green M.F.
        What are the functional consequences of neurocognitive deficits in schizophrenia?.
        Am J Psychiatry. 1996; 153: 321-330
        • Baddeley A.
        Working memory.
        Science. 1992; 255: 556-559
        • Forbes N.F.
        • Carrick L.A.
        • McIntosh A.M.
        • Lawrie S.M.
        Working memory in schizophrenia: A meta-analysis.
        Psychol Med. 2009; 39: 889-905
        • Horan W.P.
        • Braff D.L.
        • Nuechterlein K.H.
        • Sugar C.A.
        • Cadenhead K.S.
        • Calkins M.E.
        • et al.
        Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: Findings from the Consortium on the Genetics of Schizophrenia.
        Schizophr Res. 2008; 103: 218-228
        • Park S.
        • Holzman P.S.
        • Goldman-Rakic P.S.
        Spatial working memory deficits in the relatives of schizophrenic patients.
        Arch Gen Psychiatry. 1995; 52: 821-828
        • Pirkola T.
        • Tuulio-Henriksson A.
        • Glahn D.
        • Kieseppä T.
        • Haukka J.
        • Kaprio J.
        • et al.
        Spatial working memory function in twins with schizophrenia and bipolar disorder.
        Biol Psychiatry. 2005; 58: 930-936
        • Seidman L.J.
        • Meyer E.C.
        • Giuliano A.J.
        • Breiter H.C.
        • Goldstein J.M.
        • Kremen W.S.
        • et al.
        Auditory working memory impairments in individuals at familial high risk for schizophrenia.
        Neuropsychology. 2012; 26: 288-303
        • Velthorst E.
        • Mollon J.
        • Murray R.M.
        • de Haan L.
        • Germeys I.M.
        • Glahn D.C.
        • et al.
        Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings.
        Mol Psychiatry. 2021; 26: 4529-4543
        • Silver H.
        • Feldman P.
        • Bilker W.
        • Gur R.C.
        Working memory deficit as a core neuropsychological dysfunction in schizophrenia.
        Am J Psychiatry. 2003; 160: 1809-1816
        • Mesholam-Gately R.I.
        • Giuliano A.J.
        • Goff K.P.
        • Faraone S.V.
        • Seidman L.J.
        Neurocognition in first-episode schizophrenia: A meta-analytic review.
        Neuropsychology. 2009; 23: 315-336
        • Bora E.
        • Murray R.M.
        Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis?.
        Schizophr Bull. 2014; 40: 744-755
        • Gur R.C.
        • Calkins M.E.
        • Satterthwaite T.D.
        • Ruparel K.
        • Bilker W.B.
        • Moore T.M.
        • et al.
        Neurocognitive growth charting in psychosis spectrum youths.
        JAMA Psychiatry. 2014; 71: 366-374
        • MacCabe J.H.
        • Wicks S.
        • Löfving S.
        • David A.S.
        • Berndtsson Å.
        • Gustafsson J.E.
        • et al.
        Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: A Swedish longitudinal cohort study in males.
        JAMA Psychiatry. 2013; 70: 261-270
        • Reichenberg A.
        • Caspi A.
        • Harrington H.
        • Houts R.
        • Keefe R.S.E.
        • Murray R.M.
        • et al.
        Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: A 30-year study.
        Am J Psychiatry. 2010; 167: 160-169
        • Mollon J.
        • David A.S.
        • Zammit S.
        • Lewis G.
        • Reichenberg A.
        Course of cognitive development from infancy to early adulthood in the psychosis spectrum.
        JAMA Psychiatry. 2018; 75: 270-279
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 167-202
        • Smucny J.
        • Dienel S.J.
        • Lewis D.A.
        • Carter C.S.
        Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia.
        Neuropsychopharmacology. 2022; 47: 292-308
        • Bastos A.M.
        • Loonis R.
        • Kornblith S.
        • Lundqvist M.
        • Miller E.K.
        Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.
        Proc Natl Acad Sci U S A. 2018; 115: 1117-1122
        • Scheeringa R.
        • Fries P.
        Cortical layers, rhythms and BOLD signals.
        Neuroimage. 2019; 197: 689-698
        • Howard M.W.
        • Rizzuto D.S.
        • Caplan J.B.
        • Madsen J.R.
        • Lisman J.
        • Aschenbrenner-Scheibe R.
        • et al.
        Gamma oscillations correlate with working memory load in humans.
        Cereb Cortex. 2003; 13: 1369-1374
        • Roux F.
        • Uhlhaas P.J.
        Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information?.
        Trends Cogn Sci. 2014; 18: 16-25
        • Zilles D.
        • Gruber E.
        • Falkai P.
        • Gruber O.
        Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks.
        Eur Arch Psychiatry Clin Neurosci. 2010; 260: 519-525
        • Minzenberg M.J.
        • Firl A.J.
        • Yoon J.H.
        • Gomes G.C.
        • Reinking C.
        • Carter C.S.
        Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia.
        Neuropsychopharmacology. 2010; 35: 2590-2599
        • Cho R.Y.
        • Konecky R.O.
        • Carter C.S.
        Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia.
        Proc Natl Acad Sci U S A. 2006; 103: 19878-19883
        • Kritzer M.F.
        • Goldman-Rakic P.S.
        Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey.
        J Comp Neurol. 1995; 359: 131-143
        • Melchitzky D.S.
        • González-Burgos G.
        • Barrionuevo G.
        • Lewis D.A.
        Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex.
        J Comp Neurol. 2001; 430: 209-221
        • Levitt J.B.
        • Lewis D.A.
        • Yoshioka T.
        • Lund J.S.
        Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46).
        J Comp Neurol. 1993; 338: 360-376
        • González-Burgos G.
        • Barrionuevo G.
        • Lewis D.A.
        Horizontal synaptic connections in monkey prefrontal cortex: An in vitro electrophysiological study.
        Cereb Cortex. 2000; 10: 82-92
        • Wang M.
        • Yang Y.
        • Wang C.J.
        • Gamo N.J.
        • Jin L.E.
        • Mazer J.A.
        • et al.
        NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex.
        Neuron. 2013; 77: 736-749
        • Compte A.
        • Brunel N.
        • Goldman-Rakic P.S.
        • Wang X.J.
        Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.
        Cereb Cortex. 2000; 10: 910-923
        • Camperi M.
        • Wang X.J.
        A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability.
        J Comput Neurosci. 1998; 5: 383-405
        • Sawaguchi T.
        • Matsumura M.
        • Kubota K.
        Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys.
        Exp Brain Res. 1989; 75: 457-469
        • Rao S.G.
        • Williams G.V.
        • Goldman-Rakic P.S.
        Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory.
        J Neurosci. 2000; 20: 485-494
        • Constantinidis C.
        • Williams G.V.
        • Goldman-Rakic P.S.
        A role for inhibition in shaping the temporal flow of information in prefrontal cortex.
        Nat Neurosci. 2002; 5: 175-180
        • Condé F.
        • Lund J.S.
        • Jacobowitz D.M.
        • Baimbridge K.G.
        • Lewis D.A.
        Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: Distribution and morphology.
        J Comp Neurol. 1994; 341: 95-116
        • Krimer L.S.
        • Zaitsev A.V.
        • Czanner G.
        • Kröner S.
        • González-Burgos G.
        • Povysheva N.V.
        • et al.
        Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex.
        J Neurophysiol. 2005; 94: 3009-3022
        • Williams S.M.
        • Goldman-Rakic P.S.
        • Leranth C.
        The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
        J Comp Neurol. 1992; 320: 353-369
        • Wang X.J.
        • Tegnér J.
        • Constantinidis C.
        • Goldman-Rakic P.S.
        Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.
        Proc Natl Acad Sci U S A. 2004; 101: 1368-1373
        • Buzsáki G.
        • Wang X.J.
        Mechanisms of gamma oscillations.
        Annu Rev Neurosci. 2012; 35: 203-225
        • Mody I.
        • Pearce R.A.
        Diversity of inhibitory neurotransmission through GABA(A) receptors.
        Trends Neurosci. 2004; 27: 569-575
        • Whittington M.A.
        • Cunningham M.O.
        • LeBeau F.E.N.
        • Racca C.
        • Traub R.D.
        Multiple origins of the cortical γ rhythm.
        Dev Neurobiol. 2011; 71: 92-106
        • Whittington M.A.
        • Traub R.D.
        • Kopell N.
        • Ermentrout B.
        • Buhl E.H.
        Inhibition-based rhythms: Experimental and mathematical observations on network dynamics.
        Int J Psychophysiol. 2000; 38: 315-336
        • Fuchs E.C.
        • Zivkovic A.R.
        • Cunningham M.O.
        • Middleton S.
        • Lebeau F.E.N.
        • Bannerman D.M.
        • et al.
        Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior.
        Neuron. 2007; 53: 591-604
        • Sohal V.S.
        • Zhang F.
        • Yizhar O.
        • Deisseroth K.
        Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.
        Nature. 2009; 459: 698-702
        • Cardin J.A.
        • Carlén M.
        • Meletis K.
        • Knoblich U.
        • Zhang F.
        • Deisseroth K.
        • et al.
        Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
        Nature. 2009; 459: 663-667
        • DeFelipe J.
        • Hendry S.H.
        • Jones E.G.
        • Schmechel D.
        Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex.
        J Comp Neurol. 1985; 231: 364-384
        • Szentágothai J.
        The ‘module-concept’ in cerebral cortex architecture.
        Brain Res. 1975; 95: 475-496
        • Dudok B.
        • Szoboszlay M.
        • Paul A.
        • Klein P.M.
        • Liao Z.
        • Hwaun E.
        • et al.
        Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior.
        Neuron. 2021; 109: 3838-3850.e8
        • Wang X.J.
        • Buzsáki G.
        Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.
        J Neurosci. 1996; 16: 6402-6413
        • Pierri J.N.
        • Volk C.L.
        • Auh S.
        • Sampson A.
        • Lewis D.A.
        Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 466-473
        • Rajkowska G.
        • Selemon L.D.
        • Goldman-Rakic P.S.
        Neuronal and glial somal size in the prefrontal cortex: A postmortem morphometric study of schizophrenia and Huntington disease.
        Arch Gen Psychiatry. 1998; 55: 215-224
        • Garey L.J.
        • Ong W.Y.
        • Patel T.S.
        • Kanani M.
        • Davis A.
        • Mortimer A.M.
        • et al.
        Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
        J Neurol Neurosurg Psychiatry. 1998; 65: 446-453
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Konopaske G.T.
        • Lange N.
        • Coyle J.T.
        • Benes F.M.
        Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder.
        JAMA Psychiatry. 2014; 71: 1323-1331
        • Yuste R.
        Dendritic spines and distributed circuits.
        Neuron. 2011; 71: 772-781
        • Kolluri N.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia.
        Am J Psychiatry. 2005; 162: 1200-1202
        • Datta D.
        • Arion D.
        • Corradi J.P.
        • Lewis D.A.
        Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia.
        Biol Psychiatry. 2015; 78: 775-785
        • Hotulainen P.
        • Hoogenraad C.C.
        Actin in dendritic spines: Connecting dynamics to function.
        J Cell Biol. 2010; 189: 619-629
        • Paskus J.D.
        • Herring B.E.
        • Roche K.W.
        Kalirin and Trio: RhoGEFs in synaptic transmission, plasticity, and complex brain disorders.
        Trends Neurosci. 2020; 43: 505-518
        • Cahill M.E.
        • Xie Z.
        • Day M.
        • Photowala H.
        • Barbolina M.V.
        • Miller C.A.
        • et al.
        Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes.
        Proc Natl Acad Sci U S A. 2009; 106 ([published correction appears in Proc Natl Acad Sci U S A 2009; 106:16890]): 13058-13063
        • Ide M.
        • Lewis D.A.
        Altered cortical CDC42 signaling pathways in schizophrenia: Implications for dendritic spine deficits.
        Biol Psychiatry. 2010; 68: 25-32
        • Hill J.J.
        • Hashimoto T.
        • Lewis D.A.
        Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2006; 11: 557-566
        • Anderson S.A.
        • Classey J.D.
        • Condé F.
        • Lund J.S.
        • Lewis D.A.
        Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex.
        Neuroscience. 1995; 67: 7-22
        • Petanjek Z.
        • Judaš M.
        • Šimic G.
        • Rasin M.R.
        • Uylings H.B.M.
        • Rakic P.
        • Kostovic I.
        Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
        Proc Natl Acad Sci U S A. 2011; 108: 13281-13286
        • Bourgeois J.P.
        • Goldman-Rakic P.S.
        • Rakic P.
        Synaptogenesis in the prefrontal cortex of rhesus monkeys.
        Cereb Cortex. 1994; 4: 78-96
        • Huttenlocher P.R.
        • Dabholkar A.S.
        Regional differences in synaptogenesis in human cerebral cortex.
        J Comp Neurol. 1997; 387: 167-178
        • Feinberg I.
        Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence?.
        J Psychiatr Res. 1982-1983; 17: 319-334
        • McGlashan T.H.
        • Hoffman R.E.
        Schizophrenia as a disorder of developmentally reduced synaptic connectivity.
        Arch Gen Psychiatry. 2000; 57: 637-648
        • Marenco S.
        • Weinberger D.R.
        The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave.
        Dev Psychopathol. 2000; 12: 501-527
        • Müller N.
        Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations.
        Schizophr Bull. 2018; 44: 973-982
        • Dienel S.J.
        • Bazmi H.H.
        • Lewis D.A.
        Development of transcripts regulating dendritic spines in layer 3 pyramidal cells of the monkey prefrontal cortex: Implications for the pathogenesis of schizophrenia.
        Neurobiol Dis. 2017; 105: 132-141
        • Vlasova R.M.
        • Iosif A.M.
        • Ryan A.M.
        • Funk L.H.
        • Murai T.
        • Chen S.
        • et al.
        Maternal immune activation during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring.
        J Neurosci. 2021; 41: 9971-9987
        • Fillman S.G.
        • Cloonan N.
        • Catts V.S.
        • Miller L.C.
        • Wong J.
        • McCrossin T.
        • et al.
        Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia.
        Mol Psychiatry. 2013; 18: 206-214
        • Volk D.W.
        • Chitrapu A.
        • Edelson J.R.
        • Lewis D.A.
        Chemokine receptors and cortical interneuron dysfunction in schizophrenia.
        Schizophr Res. 2015; 167: 12-17
        • Volk D.W.
        • Lewis D.A.
        Prenatal ontogeny as a susceptibility period for cortical GABA neuron disturbances in schizophrenia.
        Neuroscience. 2013; 248: 154-164
        • Giovanoli S.
        • Engler H.
        • Engler A.
        • Richetto J.
        • Voget M.
        • Willi R.
        • et al.
        Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice.
        Science. 2013; 339 ([published correction appears in Science 2014; 343:1077] [published correction appears in Science 2014; 344:151]): 1095-1099
        • Hering H.
        • Sheng M.
        Dendritic spines: Structure, dynamics and regulation.
        Nat Rev Neurosci. 2001; 2: 880-888
        • Mokhtari R.
        • Lachman H.M.
        The major histocompatibility complex (MHC) in schizophrenia: A review.
        J Clin Cell Immunol. 2016; 7: 479
        • Sekar A.
        • Bialas A.R.
        • de Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4.
        Nature. 2016; 530 ([published correction appears in Nature 2022; 601:E4–E5]): 177-183
        • Prasad K.M.
        • Chowdari K.V.
        • D’Aiuto L.A.
        • Iyengar S.
        • Stanley J.A.
        • Nimgaonkar V.L.
        Neuropil contraction in relation to complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients - A pilot study.
        Transl Psychiatry. 2018; 8: 134
        • Yilmaz M.
        • Yalcin E.
        • Presumey J.
        • Aw E.
        • Ma M.
        • Whelan C.W.
        • et al.
        Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice.
        Nat Neurosci. 2021; 24: 214-224
        • Kalinowski A.
        • Liliental J.
        • Anker L.A.
        • Linkovski O.
        • Culbertson C.
        • Hall J.N.
        • et al.
        Increased activation product of complement 4 protein in plasma of individuals with schizophrenia.
        Transl Psychiatry. 2021; 11: 486
        • Kim M.
        • Haney J.R.
        • Zhang P.
        • Hernandez L.M.
        • Wang L.K.
        • Perez-Cano L.
        • et al.
        Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia.
        Nat Neurosci. 2021; 24: 799-809
        • Arnsten A.F.T.
        • Datta D.
        • Wang M.
        The genie in the bottle - Magnified calcium signaling in dorsolateral prefrontal cortex.
        Mol Psychiatry. 2021; 26: 3684-3700
        • Gonzalez-Burgos G.
        • Kroener S.
        • Zaitsev A.V.
        • Povysheva N.V.
        • Krimer L.S.
        • Barrionuevo G.
        • Lewis D.A.
        Functional maturation of excitatory synapses in layer 3 pyramidal neurons during postnatal development of the primate prefrontal cortex.
        Cereb Cortex. 2008; 18: 626-637
        • Datta D.
        • Arion D.
        • Lewis D.A.
        Developmental expression patterns of GABAA receptor subunits in layer 3 and 5 pyramidal cells of monkey prefrontal cortex.
        Cereb Cortex. 2015; 25: 2295-2305
        • Woo T.U.
        • Pucak M.L.
        • Kye C.H.
        • Matus C.V.
        • Lewis D.A.
        Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex.
        Neuroscience. 1997; 80: 1149-1158
        • Fung S.J.
        • Webster M.J.
        • Sivagnanasundaram S.
        • Duncan C.
        • Elashoff M.
        • Weickert C.S.
        Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia.
        Am J Psychiatry. 2010; 167: 1479-1488
        • Hashimoto T.
        • Volk D.W.
        • Eggan S.M.
        • Mirnics K.
        • Pierri J.N.
        • Sun Z.
        • et al.
        Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2003; 23: 6315-6326
        • Volk D.W.
        • Sampson A.R.
        • Zhang Y.
        • Edelson J.R.
        • Lewis D.A.
        Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.
        Psychol Med. 2016; 46: 2501-2512
        • Chung D.W.
        • Chung Y.
        • Bazmi H.H.
        • Lewis D.A.
        Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders.
        Neuropsychopharmacology. 2018; 43: 2478-2486
        • Enwright J.F.
        • Sanapala S.
        • Foglio A.
        • Berry R.
        • Fish K.N.
        • Lewis D.A.
        Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2016; 41: 2206-2214
        • Chung D.W.
        • Fish K.N.
        • Lewis D.A.
        Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia.
        Am J Psychiatry. 2016; 173: 1131-1139
        • Glausier J.R.
        • Fish K.N.
        • Lewis D.A.
        Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects.
        Mol Psychiatry. 2014; 19 ([published correction appears in Mol Psychiatry 2014; 19:140]): 30-36
        • Fish K.N.
        • Rocco B.R.
        • DeDionisio A.M.
        • Dienel S.J.
        • Sweet R.A.
        • Lewis D.A.
        Altered parvalbumin basket cell terminals in the cortical visuospatial working memory network in schizophrenia.
        Biol Psychiatry. 2021; 90: 47-57
        • Woo T.U.
        • Miller J.L.
        • Lewis D.A.
        Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons.
        Am J Psychiatry. 1997; 154: 1013-1015
        • Tooney P.A.
        • Chahl L.A.
        Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28: 273-278
        • Volk D.W.
        • Austin M.C.
        • Pierri J.N.
        • Sampson A.R.
        • Lewis D.A.
        Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 237-245
        • Akbarian S.
        • Kim J.J.
        • Potkin S.G.
        • Hagman J.O.
        • Tafazzoli A.
        • Bunney Jr., W.E.
        • Jones E.G.
        Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1995; 52: 258-266
        • Hyde T.M.
        • Lipska B.K.
        • Ali T.
        • Mathew S.V.
        • Law A.J.
        • Metitiri O.E.
        • et al.
        Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.
        J Neurosci. 2011; 31: 11088-11095
        • Curley A.A.
        • Arion D.
        • Volk D.W.
        • Asafu-Adjei J.K.
        • Sampson A.R.
        • Fish K.N.
        • Lewis D.A.
        Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: Clinical, protein, and cell type-specific features.
        Am J Psychiatry. 2011; 168: 921-929
        • Duncan C.E.
        • Webster M.J.
        • Rothmond D.A.
        • Bahn S.
        • Elashoff M.
        • Weickert C.S.
        Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia.
        J Psychiatr Res. 2010; 44: 673-681
        • Rocco B.R.
        • Lewis D.A.
        • Fish K.N.
        Markedly lower glutamic acid decarboxylase 67 protein levels in a subset of boutons in schizophrenia.
        Biol Psychiatry. 2016; 79: 1006-1015
        • Condé F.
        • Lund J.S.
        • Lewis D.A.
        The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons.
        Brain Res Dev Brain Res. 1996; 96: 261-276
        • Erickson S.L.
        • Lewis D.A.
        Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex.
        J Comp Neurol. 2002; 448: 186-202
        • Fish K.N.
        • Hoftman G.D.
        • Sheikh W.
        • Kitchens M.
        • Lewis D.A.
        Parvalbumin-containing chandelier and basket cell boutons have distinctive modes of maturation in monkey prefrontal cortex.
        J Neurosci. 2013; 33: 8352-8358
        • Gonzalez-Burgos G.
        • Miyamae T.
        • Pafundo D.E.
        • Yoshino H.
        • Rotaru D.C.
        • Hoftman G.
        • et al.
        Functional maturation of GABA synapses during postnatal development of the monkey dorsolateral prefrontal cortex.
        Cereb Cortex. 2015; 25: 4076-4093
        • Lund J.S.
        • Lewis D.A.
        Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics.
        J Comp Neurol. 1993; 328: 282-312
        • Chung D.W.
        • Wills Z.P.
        • Fish K.N.
        • Lewis D.A.
        Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex.
        Proc Natl Acad Sci U S A. 2017; 114: E629-E637
        • Hashimoto T.
        • Bergen S.E.
        • Nguyen Q.L.
        • Xu B.
        • Monteggia L.M.
        • Pierri J.N.
        • et al.
        Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia.
        J Neurosci. 2005; 25: 372-383
        • Kimoto S.
        • Zaki M.M.
        • Bazmi H.H.
        • Lewis D.A.
        Altered markers of cortical γ-aminobutyric acid neuronal activity in schizophrenia: Role of the NARP gene.
        JAMA Psychiatry. 2015; 72: 747-756
        • Arion D.
        • Corradi J.P.
        • Tang S.
        • Datta D.
        • Boothe F.
        • He A.
        • et al.
        Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder.
        Mol Psychiatry. 2015; 20: 1397-1405
        • Arion D.
        • Huo Z.
        • Enwright J.F.
        • Corradi J.P.
        • Tseng G.
        • Lewis D.A.
        Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders.
        Biol Psychiatry. 2017; 82: 594-600
        • Glausier J.R.
        • Enwright 3rd, J.F.
        • Lewis D.A.
        Diagnosis- and cell type-specific mitochondrial functional pathway signatures in schizophrenia and bipolar disorder.
        Am J Psychiatry. 2020; 177: 1140-1150
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Marshall C.R.
        • Howrigan D.P.
        • Merico D.
        • Thiruvahindrapuram B.
        • Wu W.
        • Greer D.S.
        • et al.
        Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.
        Nat Genet. 2017; 49 ([published correction appears in Nat Genet 2017; 49:651] [published correction appears in Nat Genet 2017; 49:651]): 27-35
        • Enwright III, J.F.
        • Huo Z.
        • Arion D.
        • Corradi J.P.
        • Tseng G.
        • Lewis D.A.
        Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia.
        Mol Psychiatry. 2018; 23: 1606-1613
        • Kann O.
        • Papageorgiou I.E.
        • Draguhn A.
        Highly energized inhibitory interneurons are a central element for information processing in cortical networks.
        J Cereb Blood Flow Metab. 2014; 34: 1270-1282
        • Gulyás A.I.
        • Buzsáki G.
        • Freund T.F.
        • Hirase H.
        Populations of hippocampal inhibitory neurons express different levels of cytochrome c.
        Eur J Neurosci. 2006; 23: 2581-2594
        • Nie F.
        • Wong-Riley M.T.
        Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: Quantitative EM analysis.
        J Comp Neurol. 1995; 356: 115-131
        • Glausier J.R.
        • Roberts R.C.
        • Lewis D.A.
        Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex.
        J Comp Neurol. 2017; 525: 2075-2089
        • Fitzgerald M.L.
        • Chan J.
        • Mackie K.
        • Lupica C.R.
        • Pickel V.M.
        Altered dendritic distribution of dopamine D2 receptors and reduction in mitochondrial number in parvalbumin-containing interneurons in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout mice.
        J Comp Neurol. 2012; 520: 4013-4031
        • Inan M.
        • Zhao M.
        • Manuszak M.
        • Karakaya C.
        • Rajadhyaksha A.M.
        • Pickel V.M.
        • et al.
        Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability.
        Neurobiol Dis. 2016; 93: 35-46
        • Gonzalez-Burgos G.
        • Cho R.Y.
        • Lewis D.A.
        Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia.
        Biol Psychiatry. 2015; 77: 1031-1040
        • Melchitzky D.S.
        • Lewis D.A.
        Pyramidal neuron local axon terminals in monkey prefrontal cortex: Differential targeting of subclasses of GABA neurons.
        Cereb Cortex. 2003; 13: 452-460
        • Hoftman G.D.
        • Bazmi H.H.
        • Ciesielski A.J.
        • Dinka L.A.
        • Chen K.
        • Lewis D.A.
        Postnatal development of glutamate and GABA transcript expression in monkey visual, parietal, and prefrontal cortices.
        Cereb Cortex. 2021; 31: 2026-2037
        • Patz S.
        • Grabert J.
        • Gorba T.
        • Wirth M.J.
        • Wahle P.
        Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development.
        Cereb Cortex. 2004; 14: 342-351
        • Lau C.G.
        • Murthy V.N.
        Activity-dependent regulation of inhibition via GAD67.
        J Neurosci. 2012; 32: 8521-8531
        • Straub R.E.
        • Lipska B.K.
        • Egan M.F.
        • Goldberg T.E.
        • Callicott J.H.
        • Mayhew M.B.
        • et al.
        Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.
        Mol Psychiatry. 2007; 12: 854-869
        • Huang H.S.
        • Matevossian A.
        • Whittle C.
        • Kim S.Y.
        • Schumacher A.
        • Baker S.P.
        • Akbarian S.
        Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters.
        J Neurosci. 2007; 27: 11254-11262
        • Veikkolainen V.
        • Vaparanta K.
        • Halkilahti K.
        • Iljin K.
        • Sundvall M.
        • Elenius K.
        Function of ERBB4 is determined by alternative splicing.
        Cell Cycle. 2011; 10: 2647-2657
        • Gandal M.J.
        • Haney J.R.
        • Parikshak N.N.
        • Leppa V.
        • Ramaswami G.
        • Hartl C.
        • et al.
        Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
        Science. 2018; 359: 693-697
        • Barry G.
        • Briggs J.A.
        • Vanichkina D.P.
        • Poth E.M.
        • Beveridge N.J.
        • Ratnu V.S.
        • et al.
        The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing.
        Mol Psychiatry. 2014; 19: 486-494
        • Chung D.W.
        • Volk D.W.
        • Arion D.
        • Zhang Y.
        • Sampson A.R.
        • Lewis D.A.
        Dysregulated ErbB4 splicing in schizophrenia: Selective effects on parvalbumin expression.
        Am J Psychiatry. 2016; 173: 60-68
        • Del Pino I.
        • García-Frigola C.
        • Dehorter N.
        • Brotons-Mas J.R.
        • Alvarez-Salvado E.
        • Martínez de Lagrán M.
        • et al.
        Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes.
        Neuron. 2013; 79: 1152-1168
        • Georgiev D.
        • Yoshihara T.
        • Kawabata R.
        • Matsubara T.
        • Tsubomoto M.
        • Minabe Y.
        • et al.
        Cortical gene expression after a conditional knockout of 67 kDa glutamic acid decarboxylase in parvalbumin neurons.
        Schizophr Bull. 2016; 42: 992-1002
        • Fagiolini M.
        • Fritschy J.M.
        • Löw K.
        • Möhler H.
        • Rudolph U.
        • Hensch T.K.
        Specific GABAA circuits for visual cortical plasticity.
        Science. 2004; 303: 1681-1683
        • Glausier J.R.
        • Lewis D.A.
        Selective pyramidal cell reduction of GABA(A) receptor α1 subunit messenger RNA expression in schizophrenia.
        Neuropsychopharmacology. 2011; 36: 2103-2110
        • Xue M.
        • Atallah B.V.
        • Scanziani M.
        Equalizing excitation-inhibition ratios across visual cortical neurons.
        Nature. 2014; 511: 596-600
        • Adams R.A.
        • Pinotsis D.
        • Tsirlis K.
        • Unruh L.
        • Mahajan A.
        • Horas A.M.
        • et al.
        Computational modeling of electroencephalography and functional magnetic resonance imaging paradigms indicates a consistent loss of pyramidal cell synaptic gain in schizophrenia.
        Biol Psychiatry. 2022; 91: 202-215
        • Lewis D.A.
        • Lieberman J.A.
        Catching up on schizophrenia: Natural history and neurobiology.
        Neuron. 2000; 28: 325-334
        • Mallien A.S.
        • Pfeiffer N.
        • Vogt M.A.
        • Chourbaji S.
        • Sprengel R.
        • Gass P.
        • Inta D.
        Cre-activation in ErbB4-positive neurons of floxed Grin1/NMDA receptor mice is not associated with major behavioral impairment.
        Front Psychiatry. 2021; 12750106
        • Wen W.
        • Turrigiano G.G.
        Developmental regulation of homeostatic plasticity in mouse primary visual cortex.
        J Neurosci. 2021; 41: 9891-9905