Advertisement

Development of “Hunger Neurons” and the Unanticipated Relationship Between Energy Metabolism and Mother-Infant Interactions

  • Author Footnotes
    1 OI and MRZ contributed equally to this work.
    Onur Iyilikci
    Footnotes
    1 OI and MRZ contributed equally to this work.
    Affiliations
    Laboratory of Physiology of Behavior, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
    Search for articles by this author
  • Author Footnotes
    1 OI and MRZ contributed equally to this work.
    Marcelo R. Zimmer
    Footnotes
    1 OI and MRZ contributed equally to this work.
    Affiliations
    Laboratory of Physiology of Behavior, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
    Search for articles by this author
  • Marcelo O. Dietrich
    Correspondence
    Address correspondence to Marcelo O. Dietrich, M.D., Ph.D.
    Affiliations
    Laboratory of Physiology of Behavior, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut

    Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut

    Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, Connecticut
    Search for articles by this author
  • Author Footnotes
    1 OI and MRZ contributed equally to this work.

      Abstract

      Over the course of a lifetime, the perinatal period plays an outsized role in the function of physiological systems. Here, we discuss how neurons that regulate energy metabolism contribute to the infant’s relationship with the mother. We focus our discussion on Agrp neurons, which are located in the arcuate nucleus of the hypothalamus. These neurons heavily regulate energy metabolism. Because offspring transition from a period of dependence on the caregiver to independence, we discuss the importance of the caregiver-offspring relationship for the function of Agrp neurons. We present evidence that in the adult, Agrp neurons motivate the animal to eat, while in the neonate, they motivate the offspring to seek the proximity of the caregiver. We specifically highlight the peculiarities in the development of Agrp neurons and how they relate to the regulation of metabolism and behavior over the course of a lifetime. In sum, this review considers the unique insights that ontogenetic studies can offer toward our understanding of complex biological systems, such as the regulation of energy metabolism and mother-infant attachment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cone R.D.
        Anatomy and regulation of the central melanocortin system.
        Nat Neurosci. 2005; 8: 571-578
        • Cone R.D.
        Studies on the physiological functions of the melanocortin system.
        Endocr Rev. 2006; 27: 736-749
        • Grove K.L.
        • Chen P.
        • Koegler F.H.
        • Schiffmaker A.
        • Smith M.S.
        • Cameron J.L.
        Fasting activates neuropeptide Y neurons in the arcuate nucleus and the paraventricular nucleus in the rhesus macaque.
        Brain Res Mol Brain Res. 2003; 113: 133-138
        • Hahn T.M.
        • Breininger J.F.
        • Baskin D.G.
        • Schwartz M.W.
        Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons.
        Nat Neurosci. 1998; 1: 271-272
        • Chen Y.
        • Lin Y.C.
        • Kuo T.W.
        • Knight Z.A.
        Sensory detection of food rapidly modulates arcuate feeding circuits.
        Cell. 2015; 160: 829-841
        • Betley J.N.
        • Xu S.
        • Cao Z.F.H.
        • Gong R.
        • Magnus C.J.
        • Yu Y.
        • Sternson S.M.
        Neurons for hunger and thirst transmit a negative-valence teaching signal.
        Nature. 2015; 521: 180-185
        • Mandelblat-Cerf Y.
        • Ramesh R.N.
        • Burgess C.R.
        • Patella P.
        • Yang Z.
        • Lowell B.B.
        • Andermann M.L.
        Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales.
        Elife. 2015; 4: e07122
        • Su Z.
        • Alhadeff A.L.
        • Betley J.N.
        Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity.
        Cell Rep. 2017; 21: 2724-2736
        • Beutler L.R.
        • Chen Y.
        • Ahn J.S.
        • Lin Y.C.
        • Essner R.A.
        • Knight Z.A.
        Dynamics of gut-brain communication underlying hunger.
        Neuron. 2017; 96: 461-475.e5
        • Krashes M.J.
        • Koda S.
        • Ye C.
        • Rogan S.C.
        • Adams A.C.
        • Cusher D.S.
        • et al.
        Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.
        J Clin Invest. 2011; 121: 1424-1428
        • Aponte Y.
        • Atasoy D.
        • Sternson S.M.
        AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
        Nat Neurosci. 2011; 14: 351-355
        • Dietrich M.O.
        • Zimmer M.R.
        • Bober J.
        • Horvath T.L.
        Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding [published correction appears in Cell 2017; 169:559].
        Cell. 2015; 160: 1222-1232
        • Zhu C.
        • Jiang Z.
        • Xu Y.
        • Cai Z.L.
        • Jiang Q.
        • Xu Y.
        • et al.
        Profound and redundant functions of arcuate neurons in obesity development.
        Nat Metab. 2020; 2: 763-774
        • Ewbank S.N.
        • Campos C.A.
        • Chen J.Y.
        • Bowen A.J.
        • Padilla S.L.
        • Dempsey J.L.
        • et al.
        Chronic Gq signaling in AgRP neurons does not cause obesity.
        Proc Natl Acad Sci U S A. 2020; 117: 20874-20880
        • Cavalcanti-de-Albuquerque J.P.
        • Bober J.
        • Zimmer M.R.
        • Dietrich M.O.
        Regulation of substrate utilization and adiposity by Agrp neurons.
        Nat Commun. 2019; 10: 311
        • Goldstein N.
        • McKnight A.D.
        • Carty J.R.E.
        • Arnold M.
        • Betley J.N.
        • Alhadeff A.L.
        Hypothalamic detection of macronutrients via multiple gut-brain pathways.
        Cell Metab. 2021; 33: 676-687.e5
        • Zimmer M.R.
        • Fonseca A.H.O.
        • Iyilikci O.
        • Pra R.D.
        • Dietrich M.O.
        Functional ontogeny of hypothalamic Agrp neurons in neonatal mouse behaviors.
        Cell. 2019; 178: 44-59.e7
        • Kowalski T.J.
        • Houpt T.A.
        • Jahng J.
        • Okada N.
        • Chua Jr., S.C.
        • Smith G.P.
        Ontogeny of neuropeptide Y expression in response to deprivation in lean Zucker rat pups.
        Am J Physiol. 1998; 275: R466-R470
        • Grove K.L.
        • Brogan R.S.
        • Smith M.S.
        Novel expression of neuropeptide Y (NPY) mRNA in hypothalamic regions during development: Region-specific effects of maternal deprivation on NPY and Agouti-related protein mRNA.
        Endocrinology. 2001; 142: 4771-4776
        • Blass E.M.
        • Beardsley W.
        • Hall W.G.
        Age-dependent inhibition of suckling by cholecystokinin.
        Am J Physiol. 1979; 236: E567-E570
        • Hall W.G.
        • Rosenblatt J.S.
        Suckling behavior and intake control in the developing rat pup.
        J Comp Physiol Psychol. 1977; 91: 1232-1247
        • Kenny J.T.
        • Stoloff M.L.
        • Bruno J.P.
        • Blass E.M.
        Ontogeny of preference for nutritive over nonnutritive suckling in albino rats.
        J Comp Physiol Psychol. 1979; 93: 752-759
        • Cramer C.P.
        • Blass E.M.
        Nutritive and nonnutritive determinants of milk intake of suckling rats.
        Behav Neurosci. 1985; 99: 578-582
        • Lincoln D.W.
        Physiological mechanisms governing the transfer of milk from mother to young.
        in: Rosenblum L. Symbiosis in Parent-Offspring Interactions. Springer, New York1983: 77-112
        • Lincoln D.W.
        • Hill A.
        • Wakerley J.B.
        The milk-ejection reflex of the rat: An intermittent function not abolished by surgical levels of anaesthesia.
        J Endocrinol. 1973; 57: 459-476
        • Grota L.J.
        • Ader R.
        Continuous recording of maternal behaviour in Rattus norvegicus.
        Anim Behav. 1969; 17: 722-729
        • Luquet S.
        • Perez F.A.
        • Hnasko T.S.
        • Palmiter R.D.
        NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates.
        Science. 2005; 310: 683-685
        • Gropp E.
        • Shanabrough M.
        • Borok E.
        • Xu A.W.
        • Janoschek R.
        • Buch T.
        • et al.
        Agouti-related peptide-expressing neurons are mandatory for feeding.
        Nat Neurosci. 2005; 8: 1289-1291
        • Bewick G.A.
        • Gardiner J.V.
        • Dhillo W.S.
        • Kent A.S.
        • White N.E.
        • Webster Z.
        • et al.
        Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype.
        FASEB J. 2005; 19: 1680-1682
        • Cramer C.P.
        • Blass E.M.
        • Hall W.G.
        The ontogeny of nipple-shifting behavior in albino rats: Mechanisms of control and possible significance.
        Dev Psychobiol. 1980; 13: 165-180
        • Noirot E.
        Ultrasounds and maternal behavior in small rodents.
        Dev Psychobiol. 1972; 5: 371-387
        • Bouret S.G.
        • Draper S.J.
        • Simerly R.B.
        Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice.
        J Neurosci. 2004; 24: 2797-2805
        • Rinaman L.
        Ontogeny of hypothalamic-hindbrain feeding control circuits.
        Dev Psychobiol. 2006; 48: 389-396
        • Hall W.G.
        • Cramer C.P.
        • Blass E.M.
        Ontogeny of suckling in rats: Transitions toward adult ingestion.
        J Comp Physiol Psychol. 1977; 91: 1141-1155
        • Baquero A.F.
        • de Solis A.J.
        • Lindsley S.R.
        • Kirigiti M.A.
        • Smith M.S.
        • Cowley M.A.
        • et al.
        Developmental switch of leptin signaling in arcuate nucleus neurons.
        J Neurosci. 2014; 34: 9982-9994
        • Collden G.
        • Balland E.
        • Parkash J.
        • Caron E.
        • Langlet F.
        • Prevot V.
        • Bouret S.G.
        Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin.
        Mol Metab. 2014; 4: 15-24
        • Bouret S.G.
        • Draper S.J.
        • Simerly R.B.
        Trophic action of leptin on hypothalamic neurons that regulate feeding.
        Science. 2004; 304: 108-110
        • Steculorum S.M.
        • Collden G.
        • Coupe B.
        • Croizier S.
        • Lockie S.
        • Andrews Z.B.
        • et al.
        Neonatal ghrelin programs development of hypothalamic feeding circuits.
        J Clin Invest. 2015; 125: 846-858
        • Kamitakahara A.
        • Bouyer K.
        • Wang C.H.
        • Simerly R.
        A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus.
        J Comp Neurol. 2018; 526: 133-145
        • Ahima R.S.
        • Prabakaran D.
        • Flier J.S.
        Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function.
        J Clin Invest. 1998; 101: 1020-1027
        • Stehling O.
        • Döring H.
        • Ertl J.
        • Preibisch G.
        • Schmidt I.
        Leptin reduces juvenile fat stores by altering the circadian cycle of energy expenditure.
        Am J Physiol. 1996; 271: R1770-R1774
        • Mistry A.M.
        • Swick A.
        • Romsos D.R.
        Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice.
        Am J Physiol. 1999; 277: R742-R747
        • Proulx K.
        • Richard D.
        • Walker C.D.
        Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake.
        Endocrinology. 2002; 143: 4683-4692
        • Pinto S.
        • Roseberry A.G.
        • Liu H.
        • Diano S.
        • Shanabrough M.
        • Cai X.
        • et al.
        Rapid rewiring of arcuate nucleus feeding circuits by leptin.
        Science. 2004; 304: 110-115
        • Wang P.
        • Loh K.H.
        • Wu M.
        • Morgan D.A.
        • Schneeberger M.
        • Yu X.
        • et al.
        A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue.
        Nature. 2020; 583: 839-844
        • Toran-Allerand C.D.
        Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: Implications for sexual differentiation.
        Brain Res. 1976; 106: 407-412
        • Gao Q.
        • Mezei G.
        • Nie Y.
        • Rao Y.
        • Choi C.S.
        • Bechmann I.
        • et al.
        Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals.
        Nat Med. 2007; 13: 89-94
        • Huisman C.
        • Cho H.
        • Brock O.
        • Lim S.J.
        • Youn S.M.
        • Park Y.
        • et al.
        Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators [published correction appears in Nat Commun 2020; 11:1359].
        Nat Commun. 2019; 10: 3696
        • Chen X.
        • Wyler S.C.
        • Li L.
        • Arnold A.G.
        • Wan R.
        • Jia L.
        • et al.
        Comparative transcriptomic analyses of developing melanocortin neurons reveal new regulators for the anorexigenic neuron identity.
        J Neurosci. 2020; 40: 3165-3177
        • Bedont J.L.
        • Newman E.A.
        • Blackshaw S.
        Patterning, specification, and differentiation in the developing hypothalamus.
        Wiley Interdiscip Rev Dev Biol. 2015; 4: 445-468
        • Padilla S.L.
        • Carmody J.S.
        • Zeltser L.M.
        Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits.
        Nat Med. 2010; 16: 403-405
        • van der Klaauw A.A.
        • Croizier S.
        • Mendes de Oliveira E.
        • Stadler L.K.J.
        • Park S.
        • Kong Y.
        • et al.
        Human semaphorin 3 variants link melanocortin circuit development and energy balance.
        Cell. 2019; 176: 729-742.e18
        • Dietrich M.O.
        • Bober J.
        • Ferreira J.G.
        • Tellez L.A.
        • Mineur Y.S.
        • Souza D.O.
        • et al.
        AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors.
        Nat Neurosci. 2012; 15: 1108-1110
        • Wang D.
        • He X.
        • Zhao Z.
        • Feng Q.
        • Lin R.
        • Sun Y.
        • et al.
        Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons.
        Front Neuroanat. 2015; 9: 40
        • Joly-Amado A.
        • Denis R.G.P.
        • Castel J.
        • Lacombe A.
        • Cansell C.
        • Rouch C.
        • et al.
        Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning.
        EMBO J. 2012; 31: 4276-4288
        • Denis R.G.P.
        • Joly-Amado A.
        • Webber E.
        • Langlet F.
        • Schaeffer M.
        • Padilla S.L.
        • et al.
        Palatability can drive feeding independent of AgRP neurons [published correction appears in Cell Metab 2017; 25:975].
        Cell Metab. 2015; 22: 646-657
        • King C.M.
        • Hentges S.T.
        Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites.
        PLoS One. 2011; 6: e25864
        • Vogt M.C.
        • Paeger L.
        • Hess S.
        • Steculorum S.M.
        • Awazawa M.
        • Hampel B.
        • et al.
        Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding.
        Cell. 2014; 156: 495-509
        • Yang Y.
        • Atasoy D.
        • Su H.H.
        • Sternson S.M.
        Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop.
        Cell. 2011; 146: 992-1003
        • Sternson S.M.
        • Shepherd G.M.G.
        • Friedman J.M.
        Topographic mapping of VMH--> arcuate nucleus microcircuits and their reorganization by fasting.
        Nat Neurosci. 2005; 8: 1356-1363
        • Horvath T.L.
        • Sarman B.
        • García-Cáceres C.
        • Enriori P.J.
        • Sotonyi P.
        • Shanabrough M.
        • et al.
        Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.
        Proc Natl Acad Sci U S A. 2010; 107: 14875-14880
        • Krashes M.J.
        • Shah B.P.
        • Madara J.C.
        • Olson D.P.
        • Strochlic D.E.
        • Garfield A.S.
        • et al.
        An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.
        Nature. 2014; 507: 238-242
        • Liu T.
        • Kong D.
        • Shah B.P.
        • Ye C.
        • Koda S.
        • Saunders A.
        • et al.
        Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone.
        Neuron. 2012; 73: 511-522
        • Garfield A.S.
        • Shah B.P.
        • Burgess C.R.
        • Li M.M.
        • Li C.
        • Steger J.S.
        • et al.
        Dynamic GABAergic afferent modulation of AgRP neurons.
        Nat Neurosci. 2016; 19: 1628-1635
        • Berrios J.
        • Li C.
        • Madara J.C.
        • Garfield A.S.
        • Steger J.S.
        • Krashes M.J.
        • Lowell B.B.
        Food cue regulation of AGRP hunger neurons guides learning.
        Nature. 2021; 595: 695-700
        • Baquero A.F.
        • Kirigiti M.A.
        • Baquero K.C.
        • Lee S.J.
        • Smith M.S.
        • Grove K.L.
        Developmental changes in synaptic distribution in arcuate nucleus neurons.
        J Neurosci. 2015; 35: 8558-8569
        • Juan De Solis A.
        • Baquero A.F.
        • Bennett C.M.
        • Grove K.L.
        • Zeltser L.M.
        Postnatal undernutrition delays a key step in the maturation of hypothalamic feeding circuits.
        Mol Metab. 2016; 5: 198-209
        • Tinbergen N.
        On aims and methods of ethology.
        Z Tierpsychol. 1963; 20: 410-433
        • Harlow H.F.
        • Suomi S.J.
        Nature of love—Simplified.
        Am Psychol. 1970; 25: 161-168
        • Harlow H.F.
        • Harlow M.
        Learning to love.
        Am Sci. 1966; 54: 244-272
        • Harlow H.F.
        • Zimmermann R.R.
        Affectional responses in the infant monkey; orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers.
        Science. 1959; 130: 421-432
        • Harlow H.F.
        The nature of love.
        Am Psychol. 1958; 13: 673-685
        • Van Wagenen G.
        The monkeys.
        in: Farris E.J. The Care and Breeding of Laboratory Animals. John Wiley, New York1950: 1-42