Advertisement

Neural Correlates of the Risk for Schizophrenia and Bipolar Disorder: A Meta-analysis of Structural and Functional Neuroimaging Studies

      Abstract

      Background

      Clinical features and genetics overlap in schizophrenia (SCZ) and bipolar disorder (BD). Identifying brain alterations associated with genetic vulnerability for SCZ and BD could help to discover intermediate phenotypes, quantifiable biological traits with greater prevalence in unaffected relatives (RELs), and early recognition biomarkers in ultrahigh risk populations. However, a comprehensive meta-analysis of structural and functional magnetic resonance imaging (MRI) studies examining relatives of patients with SCZ and BD has not been performed yet.

      Methods

      We systematically searched PubMed, Scopus, and Web of Science for structural and functional MRI studies investigating relatives and healthy control subjects. A total of 230 eligible neuroimaging studies (6274 SCZ-RELs, 1900 BD-RELs, 10,789 healthy control subjects) were identified. We conducted coordinate-based activation likelihood estimation meta-analyses on 26 structural MRI and 81 functional MRI investigations, including stratification by task type. We also meta-analyzed regional and global volumetric changes. Finally, we performed a meta-analysis of all MRI studies combined.

      Results

      Reduced thalamic volume was present in both SCZ and BD RELs. Moreover, SCZ-RELs showed alterations in corticostriatal-thalamic networks, spanning the dorsolateral prefrontal cortex and temporal regions, while BD-RELs showed altered thalamocortical and limbic regions, including the ventrolateral prefrontal, superior parietal, and medial temporal cortices, with frontoparietal alterations in RELs of BD type I.

      Conclusions

      Familiarity for SCZ and BD is associated with alterations in the thalamocortical circuits, which may be the expression of the shared genetic mechanism underlying both disorders. Furthermore, the involvement of different prefrontocortical and temporal nodes may be associated with a differential symptom expression in the two disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mueser K.T.
        • McGurk S.R.
        Schizophrenia.
        Lancet. 2004; 363: 2063-2072
        • Grande I.
        • Berk M.
        • Birmaher B.
        • Vieta E.
        Bipolar disorder.
        Lancet. 2016; 387: 1561-1572
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Stahl E.A.
        • Breen G.
        • Forstner A.J.
        • McQuillin A.
        • Ripke S.
        • Trubetskoy V.
        • et al.
        Genome-wide association study identifies 30 loci associated with bipolar disorder.
        Nat Genet. 2019; 51: 793-803
        • Prata D.P.
        • Costa-Neves B.
        • Cosme G.
        • Vassos E.
        Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review.
        J Psychiatr Res. 2019; 114: 178-207
        • Gandal M.J.
        • Zhang P.
        • Hadjimichael E.
        • Walker R.L.
        • Chen C.
        • Liu S.
        • et al.
        Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
        Science. 2018; 362eaat8127
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis [published correction appears in Lancet 2013; 381:1360].
        Lancet. 2013; 381: 1371-1379
        • Preston G.A.
        • Weinberger D.R.
        Intermediate phenotypes in schizophrenia: A selective review.
        Dialogues Clin Neurosci. 2005; 7: 165-179
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        Intermediate phenotypes and genetic mechanisms of psychiatric disorders.
        Nat Rev Neurosci. 2006; 7: 818-827
        • Tost H.
        • Alam T.
        • Meyer-Lindenberg A.
        Dopamine and psychosis: Theory, pathomechanisms and intermediate phenotypes.
        Neurosci Biobehav Rev. 2010; 34: 689-700
        • Rasetti R.
        • Weinberger D.R.
        Intermediate phenotypes in psychiatric disorders.
        Curr Opin Genet Dev. 2011; 21: 340-348
        • Cattarinussi G.
        • Di Giorgio A.
        • Wolf R.C.
        • Balestrieri M.
        • Sambataro F.
        Neural signatures of the risk for bipolar disorder: A meta-analysis of structural and functional neuroimaging studies.
        Bipolar Disord. 2019; 21: 215-227
        • Scognamiglio C.
        • Houenou J.
        A meta-analysis of fMRI studies in healthy relatives of patients with schizophrenia.
        Aust N Z J Psychiatry. 2014; 48: 907-916
        • Saarinen A.I.L.
        • Huhtaniska S.
        • Pudas J.
        • Björnholm L.
        • Jukuri T.
        • Tohka J.
        • et al.
        Structural and functional alterations in the brain gray matter among first-degree relatives of schizophrenia patients: A multimodal meta-analysis of fMRI and VBM studies.
        Schizophr Res. 2020; 216: 14-23
        • Zhang W.
        • Sweeney J.A.
        • Yao L.
        • Li S.
        • Zeng J.
        • Xu M.
        • et al.
        Brain structural correlates of familial risk for mental illness: A meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders.
        Neuropsychopharmacology. 2020; 45: 1369-1379
        • Cao H.
        • Bertolino A.
        • Walter H.
        • Schneider M.
        • Schäfer A.
        • Taurisano P.
        • et al.
        Altered functional subnetwork during emotional face processing: A potential intermediate phenotype for schizophrenia.
        JAMA Psychiatry. 2016; 73: 598-605
        • Rasetti R.
        • Sambataro F.
        • Chen Q.
        • Callicott J.H.
        • Mattay V.S.
        • Weinberger D.R.
        Altered cortical network dynamics: A potential intermediate phenotype for schizophrenia and association with ZNF804A.
        Arch Gen Psychiatry. 2011; 68: 1207-1217
        • Ivleva E.I.
        • Bidesi A.S.
        • Keshavan M.S.
        • Pearlson G.D.
        • Meda S.A.
        • Dodig D.
        • et al.
        Gray matter volume as an intermediate phenotype for psychosis: Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP).
        Am J Psychiatry. 2013; 170: 1285-1296
        • de Zwarte S.M.C.
        • Brouwer R.M.
        • Agartz I.
        • Alda M.
        • Aleman A.
        • Alpert K.I.
        • et al.
        The association between familial risk and brain abnormalities is disease specific: An ENIGMA-relatives study of schizophrenia and bipolar disorder.
        Biol Psychiatry. 2019; 86: 545-556
        • Thompson P.M.
        • Jahanshad N.
        • Ching C.R.K.
        • Salminen L.E.
        • Thomopoulos S.I.
        • Bright J.
        • et al.
        ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
        Transl Psychiatry. 2020; 10: 100
        • Zugman A.
        • Harrewijn A.
        • Cardinale E.M.
        • Zwiebel H.
        • Freitag G.F.
        • Werwath K.E.
        • et al.
        Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group.
        Hum Brain Mapp. 2022; 43: 255-277
        • Stroup D.F.
        • Berlin J.A.
        • Morton S.C.
        • Olkin I.
        • Williamson G.D.
        • Rennie D.
        • et al.
        Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.
        JAMA. 2000; 283: 2008-2012
        • Strakowski S.M.
        • DelBello M.P.
        • Adler C.
        • Cecil D.M.
        • Sax K.W.
        Neuroimaging in bipolar disorder.
        Bipolar Disord. 2000; 2: 148-164
        • Gray J.P.
        • Müller V.I.
        • Eickhoff S.B.
        • Fox P.T.
        Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies.
        Am J Psychiatry. 2020; 177: 422-434
        • Eickhoff S.B.
        • Laird A.R.
        • Grefkes C.
        • Wang L.E.
        • Zilles K.
        • Fox P.T.
        Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty.
        Hum Brain Mapp. 2009; 30: 2907-2926
        • Turkeltaub P.E.
        • Eickhoff S.B.
        • Laird A.R.
        • Fox M.
        • Wiener M.
        • Fox P.
        Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses.
        Hum Brain Mapp. 2012; 33: 1-13
        • Lancaster J.L.
        • Tordesillas-Gutiérrez D.
        • Martinez M.
        • Salinas F.
        • Evans A.
        • Zilles K.
        • et al.
        Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template.
        Hum Brain Mapp. 2007; 28: 1194-1205
        • Müller V.I.
        • Cieslik E.C.
        • Laird A.R.
        • Fox P.T.
        • Radua J.
        • Mataix-Cols D.
        • et al.
        Ten simple rules for neuroimaging meta-analysis.
        Neurosci Biobehav Rev. 2018; 84: 151-161
        • Eickhoff S.B.
        • Nichols T.E.
        • Laird A.R.
        • Hoffstaedter F.
        • Amunts K.
        • Fox P.T.
        • et al.
        Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation.
        Neuroimage. 2016; 137: 70-85
        • Acar F.
        • Seurinck R.
        • Eickhoff S.B.
        • Moerkerke B.
        Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI.
        PLoS One. 2018; 13e0208177
        • Blasi G.
        • Goldberg T.E.
        • Weickert T.
        • Das S.
        • Kohn P.
        • Zoltick B.
        • et al.
        Brain regions underlying response inhibition and interference monitoring and suppression.
        Eur J Neurosci. 2006; 23: 1658-1664
        • Smucny J.
        • Dienel S.J.
        • Lewis D.A.
        • Carter C.S.
        Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia.
        Neuropsychopharmacology. 2022; 47: 292-308
        • Conklin H.M.
        • Curtis C.E.
        • Katsanis J.
        • Iacono W.G.
        Verbal working memory impairment in schizophrenia patients and their first-degree relatives: Evidence from the digit span task.
        Am J Psychiatry. 2000; 157: 275-277
        • Zhang R.
        • Picchioni M.
        • Allen P.
        • Toulopoulou T.
        Working memory in unaffected relatives of patients with schizophrenia: A meta-analysis of functional magnetic resonance imaging studies.
        Schizophr Bull. 2016; 42: 1068-1077
        • Becker T.M.
        • Kerns J.G.
        • MacDonald 3rd, A.W.
        • Carter C.S.
        Prefrontal dysfunction in first-degree relatives of schizophrenia patients during a Stroop task.
        Neuropsychopharmacology. 2008; 33: 2619-2625
        • Walton E.
        • Geisler D.
        • Lee P.H.
        • Hass J.
        • Turner J.A.
        • Liu J.
        • et al.
        Prefrontal inefficiency is associated with polygenic risk for schizophrenia.
        Schizophr Bull. 2014; 40: 1263-1271
        • Hill K.
        • Mann L.
        • Laws K.R.
        • Stephenson C.M.E.
        • Nimmo-Smith I.
        • McKenna P.J.
        Hypofrontality in schizophrenia: A meta-analysis of functional imaging studies.
        Acta Psychiatr Scand. 2004; 110: 243-256
        • Glahn D.C.
        • Ragland J.D.
        • Abramoff A.
        • Barrett J.
        • Laird A.R.
        • Bearden C.E.
        • Velligan D.I.
        Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia.
        Hum Brain Mapp. 2005; 25: 60-69
        • Li X.
        • Yi Z.H.
        • Lv Q.Y.
        • Chu M.Y.
        • Hu X.H.
        • Wang J.H.
        • et al.
        Clinical utility of the dual n-back task in schizophrenia: A functional imaging approach.
        Psychiatry Res Neuroimaging. 2019; 284: 37-44
        • Callicott J.H.
        • Mattay V.S.
        • Verchinski B.A.
        • Marenco S.
        • Egan M.F.
        • Weinberger D.R.
        Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down.
        Am J Psychiatry. 2003; 160: 2209-2215
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • Carter C.S.
        • Glahn D.C.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • Salgado-Pineda P.
        • Fakra E.
        • Delaveau P.
        • McKenna P.J.
        • Pomarol-Clotet E.
        • Blin O.
        Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients.
        Schizophr Res. 2011; 125: 101-109
        • Schneider F.C.
        • Royer A.
        • Grosselin A.
        • Pellet J.
        • Barral F.G.
        • Laurent B.
        • et al.
        Modulation of the default mode network is task-dependant in chronic schizophrenia patients.
        Schizophr Res. 2011; 125: 110-117
        • Tan H.Y.
        • Choo W.C.
        • Fones C.S.L.
        • Chee M.W.L.
        fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia.
        Am J Psychiatry. 2005; 162: 1849-1858
        • Molina V.
        • Sanz J.
        • Reig S.
        • Martínez R.
        • Sarramea F.
        • Luque R.
        • et al.
        Hypofrontality in men with first-episode psychosis.
        Br J Psychiatry. 2005; 186: 203-208
        • Seidman L.J.
        • Thermenos H.W.
        • Poldrack R.A.
        • Peace N.K.
        • Koch J.K.
        • Faraone S.V.
        • Tsuang M.T.
        Altered brain activation in dorsolateral prefrontal cortex in adolescents and young adults at genetic risk for schizophrenia: An fMRI study of working memory.
        Schizophr Res. 2006; 85: 58-72
        • Lesh T.A.
        • Tanase C.
        • Geib B.R.
        • Niendam T.A.
        • Yoon J.H.
        • Minzenberg M.J.
        • et al.
        A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia.
        JAMA Psychiatry. 2015; 72: 226-234
        • Schlagenhauf F.
        • Wüstenberg T.
        • Schmack K.
        • Dinges M.
        • Wrase J.
        • Koslowski M.
        • et al.
        Switching schizophrenia patients from typical neuroleptics to olanzapine: Effects on BOLD response during attention and working memory.
        Eur Neuropsychopharmacol. 2008; 18: 589-599
        • Kani A.S.
        • Shinn A.K.
        • Lewandowski K.E.
        • Öngür D.
        Converging effects of diverse treatment modalities on frontal cortex in schizophrenia: A review of longitudinal functional magnetic resonance imaging studies.
        J Psychiatr Res. 2017; 84: 256-276
        • Dugré J.R.
        • Radua J.
        • Carignan-Allard M.
        • Dumais A.
        • Rubia K.
        • Potvin S.
        Neurofunctional abnormalities in antisocial spectrum: A meta-analysis of fMRI studies on five distinct neurocognitive research domains.
        Neurosci Biobehav Rev. 2020; 119: 168-183
        • Gupta C.N.
        • Calhoun V.D.
        • Rachakonda S.
        • Chen J.
        • Patel V.
        • Liu J.
        • et al.
        Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis.
        Schizophr Bull. 2015; 41: 1133-1142
        • van Erp T.G.M.
        • Walton E.
        • Hibar D.P.
        • Schmaal L.
        • Jiang W.
        • Glahn D.C.
        • et al.
        Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) consortium.
        Biol Psychiatry. 2018; 84: 644-654
        • Walton E.
        • Hibar D.P.
        • van Erp T.G.M.
        • Potkin S.G.
        • Roiz-Santiañez R.
        • Crespo-Facorro B.
        • et al.
        Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium.
        Acta Psychiatr Scand. 2017; 135: 439-447
        • Konick L.C.
        • Friedman L.
        Meta-analysis of thalamic size in schizophrenia.
        Biol Psychiatry. 2001; 49: 28-38
        • Nelson M.D.
        • Saykin A.J.
        • Flashman L.A.
        • Riordan H.J.
        Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: A meta-analytic study.
        Arch Gen Psychiatry. 1998; 55: 433-440
        • Haijma S.V.
        • Van Haren N.
        • Cahn W.
        • Koolschijn P.C.M.P.
        • Hulshoff Pol H.E.
        • Kahn R.S.
        Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects.
        Schizophr Bull. 2013; 39: 1129-1138
        • Gurholt T.P.
        • Lonning V.
        • Nerland S.
        • Jørgensen K.N.
        • Haukvik U.K.
        • Alloza C.
        • et al.
        Intracranial and subcortical volumes in adolescents with early-onset psychosis: A multisite mega-analysis from the ENIGMA consortium.
        Hum Brain Mapp. 2022; 43: 373-384
        • Honea R.A.
        • Meyer-Lindenberg A.
        • Hobbs K.B.
        • Pezawas L.
        • Mattay V.S.
        • Egan M.F.
        • et al.
        Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings.
        Biol Psychiatry. 2008; 63: 465-474
        • Smeland O.B.
        • Wang Y.
        • Frei O.
        • Li W.
        • Hibar D.P.
        • Franke B.
        • et al.
        Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms.
        Schizophr Bull. 2018; 44: 854-864
        • Wang Z.
        • Chen W.
        • Cao Y.
        • Dou Y.
        • Fu Y.
        • Zhang Y.
        • et al.
        An independent, replicable, functional and significant risk variant block at intron 3 of CACNA1C for schizophrenia.
        Aust N Z J Psychiatry. 2022; 56: 385-397
        • Ji Y.
        • Zhang X.
        • Wang Z.
        • Qin W.
        • Liu H.
        • Xue K.
        • et al.
        Genes associated with gray matter volume alterations in schizophrenia.
        Neuroimage. 2021; 225: 117526
        • Chen C.H.
        • Suckling J.
        • Lennox B.R.
        • Ooi C.
        • Bullmore E.T.
        A quantitative meta-analysis of fMRI studies in bipolar disorder.
        Bipolar Disord. 2011; 13: 1-15
        • Townsend J.
        • Altshuler L.L.
        Emotion processing and regulation in bipolar disorder: A review.
        Bipolar Disord. 2012; 14: 326-339
        • Van Rheenen T.E.
        • Miskowiak K.
        • Karantonis J.
        • Furlong L.S.
        • Murray G.
        • Rossell S.L.
        Understanding familial liability for emotion regulation difficulties in bipolar disorder [published online ahead of print Dec 17].
        Psychol Med. 2020;
        • Adler C.M.
        • Levine A.D.
        • DelBello M.P.
        • Strakowski S.M.
        Changes in gray matter volume in patients with bipolar disorder.
        Biol Psychiatry. 2005; 58: 151-157
        • Townsend J.
        • Bookheimer S.Y.
        • Foland-Ross L.C.
        • Sugar C.A.
        • Altshuler L.L.
        fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects.
        Psychiatry Res. 2010; 182: 22-29
        • Thomas L.A.
        • Brotman M.A.
        • Muhrer E.J.
        • Rosen B.H.
        • Bones B.L.
        • Reynolds R.C.
        • et al.
        Parametric modulation of neural activity by emotion in youth with bipolar disorder, youth with severe mood dysregulation, and healthy volunteers.
        Arch Gen Psychiatry. 2012; 69: 1257-1266
        • Behrmann M.
        • Geng J.J.
        • Shomstein S.
        Parietal cortex and attention.
        Curr Opin Neurobiol. 2004; 14: 212-217
        • Igelström K.M.
        • Graziano M.S.A.
        The inferior parietal lobule and temporoparietal junction: A network perspective.
        Neuropsychologia. 2017; 105: 70-83
        • Bora E.
        • Özerdem A.
        Social cognition in first-degree relatives of patients with bipolar disorder: A meta-analysis.
        Eur Neuropsychopharmacol. 2017; 27: 293-300
        • Calafiore D.
        • Rossell S.L.
        • Van Rheenen T.E.
        Cognitive abilities in first-degree relatives of individuals with bipolar disorder.
        J Affect Disord. 2018; 225: 147-152
        • Kjærstad H.L.
        • Mistarz N.
        • Coello K.
        • Stanislaus S.
        • Melbye S.A.
        • Harmer C.J.
        • et al.
        Aberrant cognition in newly diagnosed patients with bipolar disorder and their unaffected relatives.
        Psychol Med. 2020; 50: 1808-1819
        • Hibar D.P.
        • Westlye L.T.
        • van Erp T.G.M.
        • Rasmussen J.
        • Leonardo C.D.
        • Faskowitz J.
        • et al.
        Subcortical volumetric abnormalities in bipolar disorder.
        Mol Psychiatry. 2016; 21: 1710-1716
        • Mikolas P.
        • Bröckel K.
        • Vogelbacher C.
        • Müller D.K.
        • Marxen M.
        • Berndt C.
        • et al.
        Individuals at increased risk for development of bipolar disorder display structural alterations similar to people with manifest disease.
        Transl Psychiatry. 2021; 11: 485
        • Lee D.K.
        • Lee H.
        • Park K.
        • Joh E.
        • Kim C.E.
        • Ryu S.
        Common gray and white matter abnormalities in schizophrenia and bipolar disorder.
        PLoS One. 2020; 15e0232826
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Skåtun K.C.
        • Kaufmann T.
        • Brandt C.L.
        • Doan N.T.
        • Alnæs D.
        • Tønnesen S.
        • et al.
        Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder.
        Brain Imaging Behav. 2018; 12: 640-652
        • Peters S.K.
        • Dunlop K.
        • Downar J.
        Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment.
        Front Syst Neurosci. 2016; 10: 104
        • Fettes P.
        • Schulze L.
        • Downar J.
        Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: Promising therapeutic targets in psychiatric illness.
        Front Syst Neurosci. 2017; 11: 25
        • Hirjak D.
        • Meyer-Lindenberg A.
        • Sambataro F.
        • Fritze S.
        • Kukovic J.
        • Kubera K.M.
        • Wolf R.C.
        Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions..
        Prog Neuropsychopharmacol Biol Psychiatry. 2021; 111: 110370
        • Kuo S.S.
        • Pogue-Geile M.F.
        Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies.
        Neurosci Biobehav Rev. 2019; 98: 85-94
        • De Rossi P.
        • Dacquino C.
        • Piras F.
        • Caltagirone C.
        • Spalletta G.
        Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.
        Psychiatry Res Neuroimaging. 2016; 254: 48-55
        • Forns-Nadal M.
        • Bergé D.
        • Sem F.
        • Mané A.
        • Igual L.
        • Guinart D.
        • Vilarroya O.
        Increased nucleus accumbens volume in first-episode psychosis.
        Psychiatry Res Neuroimaging. 2017; 263: 57-60
        • Okada N.
        • Fukunaga M.
        • Yamashita F.
        • Koshiyama D.
        • Yamamori H.
        • Ohi K.
        • et al.
        Abnormal asymmetries in subcortical brain volume in schizophrenia.
        Mol Psychiatry. 2016; 21: 1460-1466
        • Sui J.
        • Pearlson G.D.
        • Du Y.
        • Yu Q.
        • Jones T.R.
        • Chen J.
        • et al.
        In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia.
        Biol Psychiatry. 2015; 78: 794-804
        • Andersen E.H.
        • Campbell A.M.
        • Schipul S.E.
        • Bellion C.M.
        • Donkers F.C.L.
        • Evans A.M.
        • Belger A.
        Electrophysiological correlates of aberrant motivated attention and salience processing in unaffected relatives of schizophrenia patients.
        Clin EEG Neurosci. 2016; 47: 11-23
        • Lichtenstein P.
        • Yip B.H.
        • Björk C.
        • Pawitan Y.
        • Cannon T.D.
        • Sullivan P.F.
        • Hultman C.M.
        Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study.
        Lancet. 2009; 373: 234-239
        • Lewis D.A.
        • Levitt P.
        Schizophrenia as a disorder of neurodevelopment.
        Annu Rev Neurosci. 2002; 25: 409-432
        • Rapoport J.L.
        • Addington A.M.
        • Frangou S.
        • Psych M.R.C.
        The neurodevelopmental model of schizophrenia: Update 2005.
        Mol Psychiatry. 2005; 10: 434-449
        • Kloiber S.
        • Rosenblat J.D.
        • Husain M.I.
        • Ortiz A.
        • Berk M.
        • Quevedo J.
        • et al.
        Neurodevelopmental pathways in bipolar disorder.
        Neurosci Biobehav Rev. 2020; 112: 213-226
        • Trevisan N.
        • Miola A.
        • Cattarinussi G.
        • Kubera K.M.
        • Hirjak D.
        • Wolf R.C.
        • Sambataro F.
        Cortical folding complexity is distinctively altered in schizophrenia and bipolar disorder.
        Schizophr Res. 2022; 241: 92-93
        • Maggioni E.
        • Bellani M.
        • Altamura A.C.
        • Brambilla P.
        Neuroanatomical voxel-based profile of schizophrenia and bipolar disorder.
        Epidemiol Psychiatr Sci. 2016; 25: 312-316
        • Watson D.R.
        • Bai F.
        • Barrett S.L.
        • Turkington A.
        • Rushe T.M.
        • Mulholland C.C.
        • Cooper S.J.
        Structural changes in the hippocampus and amygdala at first episode of psychosis.
        Brain Imaging Behav. 2012; 6: 49-60

      Linked Article

      • Unpacking the Biases That Shape the Apparent Foci in the Meta-analysis of Voxel-Based Neuroimaging Studies
        Biological PsychiatryVol. 92Issue 5
        • Preview
          Although the latest diagnostic classification system continues to categorize schizophrenia (SCZ) and bipolar disorder (BD) as distinct disease entities, the dichotomic conceptualization of these illnesses has progressively weakened over the years. Converging evidence from family to molecular studies shows that the genetic etiology between these two disorders substantially overlaps (1). This has prompted clinical neuroimaging researchers to include both SCZ and BD in the study sample to elucidate transdiagnostic clinical features that are linked to the underlying biological systems (2).
        • Full-Text
        • PDF