Advertisement

Arc-Mediated Plasticity in the Paraventricular Thalamic Nucleus Promotes Habituation to Stress

Published:February 21, 2022DOI:https://doi.org/10.1016/j.biopsych.2022.02.012

      Abstract

      Background

      Habituation is defined as a progressive decline in response to repeated exposure to a familiar and predictable stimulus and is highly conserved across species. Disrupted habituation is a signature of posttraumatic stress disorder. In rodents, habituation is observed in neural, neuroendocrine, and behavioral responses to repeated exposure to predictable and moderately intense stress or restraint. We previously demonstrated that lesioning the posterior paraventricular thalamic nucleus (pPVT) impairs habituation. However, the underlying molecular mechanisms and specific neural connections among the pPVT and other brain regions that underlie habituation are unknown.

      Methods

      Behavioral and neuroendocrine habituation was assessed in adult male Sprague Dawley rats using the repeated restraint paradigm. Pan-neuronal and Cre-dependent DREADDs (designer receptors exclusively activated by designer drugs) were used to chemogenetically inhibit the pPVT and the subpopulation of pPVT neurons that project to the medial prefrontal cortex (mPFC), respectively. Activity-regulated cytoskeleton-associated protein (Arc) expression was knocked down in the pPVT using small interfering RNA. Structural plasticity of pPVT neurons was assessed using Golgi staining. Local field potential recordings were used to assess coherent neural activity between the pPVT and mPFC. The attentional set shifting task was used to assess mPFC-dependent behavior.

      Results

      Here, we show that Arc promotes habituation by increasing stress-induced spinogenesis in the pPVT, increasing coherent neural activity with the mPFC, and improving mPFC-mediated cognitive flexibility.

      Conclusions

      Our results demonstrate that Arc induction in the pPVT regulates habituation and mPFC function. Therapies that improve synaptic plasticity during posttraumatic stress disorder therapy may enhance habituation and the efficacy of posttraumatic stress disorder treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gerra G.
        • Zaimovic A.
        • Mascetti G.G.
        • Gardini S.
        • Zambelli U.
        • Timpano M.
        • et al.
        Neuroendocrine responses to experimentally-induced psychological stress in healthy humans.
        Psychoneuroendocrinology. 2001; 26: 91-107
        • Grissom N.
        • Bhatnagar S.
        Habituation to repeated stress: Get used to it.
        Neurobiol Learn Mem. 2009; 92: 215-224
        • Rankin C.H.
        • Abrams T.
        • Barry R.J.
        • Bhatnagar S.
        • Clayton D.F.
        • Colombo J.
        • et al.
        Habituation revisited: An updated and revised description of the behavioral characteristics of habituation.
        Neurobiol Learn Mem. 2009; 92: 135-138
        • Grissom N.
        • Kerr W.
        • Bhatnagar S.
        Struggling behavior during restraint is regulated by stress experience.
        Behav Brain Res. 2008; 191: 219-226
        • Herman J.P.
        Neural control of chronic stress adaptation.
        Front Behav Neurosci. 2013; 7: 61
        • Wüst S.
        • Federenko I.S.
        • van Rossum E.F.C.
        • Koper J.W.
        • Hellhammer D.H.
        Habituation of cortisol responses to repeated psychosocial stress-further characterization and impact of genetic factors.
        Psychoneuroendocrinology. 2005; 30: 199-211
        • Lissek S.
        • van Meurs B.
        Learning models of PTSD: Theoretical accounts and psychobiological evidence.
        Int J Psychophysiol. 2015; 98: 594-605
        • van Minnen A.
        • Foa E.B.
        The effect of imaginal exposure length on outcome of treatment for PTSD.
        J Trauma Stress. 2006; 19: 427-438
        • Yehuda R.
        • Levengood R.A.
        • Schmeidler J.
        • Wilson S.
        • Guo L.S.
        • Gerber D.
        Increased pituitary activation following metyrapone administration in post-traumatic stress disorder.
        Psychoneuroendocrinology. 1996; 21: 1-16
        • Yehuda R.
        • Teicher M.H.
        • Trestman R.L.
        • Levengood R.A.
        • Siever L.J.
        Cortisol regulation in posttraumatic stress disorder and major depression: A chronobiological analysis.
        Biol Psychiatry. 1996; 40: 79-88
        • van Minnen A.
        • Hagenaars M.
        Fear activation and habituation patterns as early process predictors of response to prolonged exposure treatment in PTSD.
        J Trauma Stress. 2002; 15: 359-367
        • Nacasch N.
        • Huppert J.D.
        • Su Y.J.
        • Kivity Y.
        • Dinshtein Y.
        • Yeh R.
        • Foa E.B.
        Are 60-minute prolonged exposure sessions with 20-minute imaginal exposure to traumatic memories sufficient to successfully treat PTSD? A randomized noninferiority clinical trial.
        Behav Ther. 2015; 46: 328-341
        • Peters A.
        • McEwen B.S.
        • Friston K.
        Uncertainty and stress: Why it causes diseases and how it is mastered by the brain.
        Prog Neurobiol. 2017; 156: 164-188
        • Bhatnagar S.
        • Huber R.
        • Nowak N.
        • Trotter P.
        Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint.
        J Neuroendocrinol. 2002; 14: 403-410
        • Phillipson O.T.
        • Bohn M.C.
        C1-3 adrenergic medullary neurones project to the paraventricular thalamic nucleus in the rat [published correction appears in Neurosci Lett 1994; 177:187.
        Neurosci Lett. 1994; 176: 67-70
        • Peng Z.C.
        • Bentivoglio M.
        The thalamic paraventricular nucleus relays information from the suprachiasmatic nucleus to the amygdala: A combined anterograde and retrograde tracing study in the rat at the light and electron microscopic levels.
        J Neurocytol. 2004; 33: 101-116
        • Penzo M.A.
        • Robert V.
        • Tucciarone J.
        • De Bundel D.
        • Wang M.
        • Van Aelst L.
        • et al.
        The paraventricular thalamus controls a central amygdala fear circuit.
        Nature. 2015; 519: 455-459
        • Su H.S.
        • Bentivoglio M.
        Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat.
        J Comp Neurol. 1990; 297: 582-593
        • Freedman L.J.
        • Cassell M.D.
        Relationship of thalamic basal forebrain projection neurons to the peptidergic innervation of the midline thalamus.
        J Comp Neurol. 1994; 348: 321-342
        • Hsu D.T.
        • Kirouac G.J.
        • Zubieta J.K.
        • Bhatnagar S.
        Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood.
        Front Behav Neurosci. 2014; 8: 73
        • Berendse H.W.
        • Voorn P.
        • te Kortschot A.
        • Groenewegen H.J.
        Nuclear origin of thalamic afferents of the ventral striatum determines their relation to patch/matrix configurations in enkephalin-immunoreactivity in the rat.
        J Chem Neuroanat. 1988; 1: 3-10
        • Ferguson A.V.
        • Day T.A.
        • Renaud L.P.
        Connections of hypothalamic paraventricular neurons with the dorsal medial thalamus and neurohypophysis: An electrophysiological study in the rat.
        Brain Res. 1984; 299: 376-379
        • Van der Werf Y.D.
        • Witter M.P.
        • Groenewegen H.J.
        The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness.
        Brain Res Brain Res Rev. 2002; 39: 107-140
        • Otake K.
        • Ruggiero D.A.
        • Nakamura Y.
        Adrenergic innervation of forebrain neurons that project to the paraventricular thalamic nucleus in the rat.
        Brain Res. 1995; 697: 17-26
        • Fulwiler C.E.
        • Saper C.B.
        Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat.
        Brain Res. 1984; 319: 229-259
        • Berendse H.W.
        • Groenewegen H.J.
        Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat.
        Neuroscience. 1991; 42: 73-102
        • Do-Monte F.H.
        • Minier-Toribio A.
        • Quiñones-Laracuente K.
        • Medina-Colón E.M.
        • Quirk G.J.
        Thalamic regulation of sucrose seeking during unexpected reward omission.
        Neuron. 2017; 94: 388-400.e4
        • Bramham C.R.
        • Alme M.N.
        • Bittins M.
        • Kuipers S.D.
        • Nair R.R.
        • Pai B.
        • et al.
        The Arc of synaptic memory.
        Exp Brain Res. 2010; 200 (published correction appears in Exp Brain Res 2011; 209:317): 125-140
        • Nikolaienko O.
        • Patil S.
        • Eriksen M.S.
        • Bramham C.R.
        Arc protein: A flexible hub for synaptic plasticity and cognition.
        Semin Cell Dev Biol. 2018; 77: 33-42
        • Plath N.
        • Ohana O.
        • Dammermann B.
        • Errington M.L.
        • Schmitz D.
        • Gross C.
        • et al.
        Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories.
        Neuron. 2006; 52: 437-444
        • Lonergan M.E.
        • Gafford G.M.
        • Jarome T.J.
        • Helmstetter F.J.
        Time-dependent expression of Arc and zif268 after acquisition of fear conditioning.
        Neural Plast 2010. 2010; 139891
        • Messaoudi E.
        • Kanhema T.
        • Soulé J.
        • Tiron A.
        • Dagyte G.
        • da Silva B.
        • Bramham C.R.
        Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo.
        J Neurosci. 2007; 27: 10445-10455
        • Guzowski J.F.
        • Lyford G.L.
        • Stevenson G.D.
        • Houston F.P.
        • McGaugh J.L.
        • Worley P.F.
        • Barnes C.A.
        Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory.
        J Neurosci. 2000; 20: 3993-4001
        • Zhang W.
        • Wu J.
        • Ward M.D.
        • Yang S.
        • Chuang Y.A.
        • Xiao M.
        • et al.
        Structural basis of arc binding to synaptic proteins: Implications for cognitive disease.
        Neuron. 2015; 86: 490-500
        • Nair R.R.
        • Patil S.
        • Tiron A.
        • Kanhema T.
        • Panja D.
        • Schiro L.
        • et al.
        Dynamic arc SUMOylation and selective interaction with F-actin-binding protein drebrin A in LTP consolidation in vivo.
        Front Synaptic Neurosci. 2017; 9: 8
        • Korb E.
        • Finkbeiner S.
        Arc in synaptic plasticity: From gene to behavior.
        Trends Neurosci. 2011; 34: 591-598
        • Peebles C.L.
        • Yoo J.
        • Thwin M.T.
        • Palop J.J.
        • Noebels J.L.
        • Finkbeiner S.
        Arc regulates spine morphology and maintains network stability in vivo.
        Proc Natl Acad Sci U S A. 2010; 107: 18173-18178
        • Corbett B.F.
        • Luz S.
        • Arner J.
        • Pearson-Leary J.
        • Sengupta A.
        • Taylor D.
        • et al.
        Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes.
        Nat Commun. 2019; 10: 3146
        • Grafe L.A.
        • Geng E.
        • Corbett B.
        • Urban K.
        • Bhatnagar S.
        Sex- and stress-dependent effects on dendritic morphology and spine densities in putative orexin neurons.
        Neuroscience. 2019; 418: 266-278
        • Grafe L.A.
        • Cornfeld A.
        • Luz S.
        • Valentino R.
        • Bhatnagar S.
        Orexins mediate sex differences in the stress response and in cognitive flexibility.
        Biol Psychiatry. 2017; 81: 683-692
        • Blume T.
        • Filser S.
        • Jaworska A.
        • Blain J.F.
        • Koenig G.
        • Moschke K.
        • et al.
        BACE1 inhibitor MK-8931 alters formation but not stability of dendritic spines.
        Front Aging Neurosci. 2018; 10: 229
        • Fujiwara I.
        • Zweifel M.E.
        • Courtemanche N.
        • Pollard T.D.
        Latrunculin A accelerates actin filament depolymerization in addition to sequestering actin monomers.
        Curr Biol. 2018; 28: 3183-3192.e2
        • Liu Y.
        • Zhou Q.X.
        • Hou Y.Y.
        • Lu B.
        • Yu C.
        • Chen J.
        • et al.
        Actin polymerization-dependent increase in synaptic Arc/Arg3.1 expression in the amygdala is crucial for the expression of aversive memory associated with drug withdrawal.
        J Neurosci. 2012; 32: 12005-12017
        • López de Heredia M.
        • Jansen R.P.
        mRNA localization and the cytoskeleton.
        Curr Opin Cell Biol. 2004; 16: 80-85
        • Spencer S.J.
        • Buller K.M.
        • Day T.A.
        Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: Possible role of the bed nucleus of the stria terminalis.
        J Comp Neurol. 2005; 481: 363-376
        • Diorio D.
        • Viau V.
        • Meaney M.J.
        The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.
        J Neurosci. 1993; 13: 3839-3847
        • Bubser M.
        • Deutch A.Y.
        Thalamic paraventricular nucleus neurons collateralize to innervate the prefrontal cortex and nucleus accumbens.
        Brain Res. 1998; 787: 304-310
        • Condé F.
        • Audinat E.
        • Maire-Lepoivre E.
        • Crépel F.
        Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents.
        Brain Res Bull. 1990; 24: 341-354
        • Li S.
        • Kirouac G.J.
        Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala [published correction appears in J Comp Neurol 2008; 509:136–140].
        J Comp Neurol. 2008; 506: 263-287
        • Crochet S.
        • Petersen C.C.H.
        Correlating whisker behavior with membrane potential in barrel cortex of awake mice.
        Nat Neurosci. 2006; 9: 608-610
        • Petersen C.C.H.
        • Hahn T.T.G.
        • Mehta M.
        • Grinvald A.
        • Sakmann B.
        Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex.
        Proc Natl Acad Sci U S A. 2003; 100: 13638-13643
        • Zagha E.
        • Casale A.E.
        • Sachdev R.N.S.
        • McGinley M.J.
        • McCormick D.A.
        Motor cortex feedback influences sensory processing by modulating network state.
        Neuron. 2013; 79: 567-578
        • Foxe J.J.
        • Snyder A.C.
        The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention.
        Front Psychol. 2011; 2: 154
        • Griffiths B.J.
        • Mayhew S.D.
        • Mullinger K.J.
        • Jorge J.
        • Charest I.
        • Wimber M.
        • Hanslmayr S.
        Alpha/beta power decreases track the fidelity of stimulus-specific information.
        Elife. 2019; 8e49562
        • Jing W.
        • Wang Y.
        • Fang G.
        • Chen M.
        • Xue M.
        • Guo D.
        • et al.
        EEG bands of wakeful rest, slow-wave and rapid-eye-movement sleep at different brain areas in rats.
        Front Comput Neurosci. 2016; 10: 79
        • Corsi-Cabrera M.
        • Pérez-Garci E.
        • Del Rio-Portilla Y.
        • Ugalde E.
        • Guevara M.A.
        EEG bands during wakefulness, slow-wave, and paradoxical sleep as a result of principal component analysis in the rat.
        Sleep. 2001; 24: 374-380
        • Vyazovskiy V.V.
        • Olcese U.
        • Hanlon E.C.
        • Nir Y.
        • Cirelli C.
        • Tononi G.
        Local sleep in awake rats.
        Nature. 2011; 472: 443-447
        • Bissonette G.B.
        • Martins G.J.
        • Franz T.M.
        • Harper E.S.
        • Schoenbaum G.
        • Powell E.M.
        Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice.
        J Neurosci. 2008; 28: 11124-11130
        • Shepherd J.D.
        • Bear M.F.
        New views of Arc, a master regulator of synaptic plasticity.
        Nat Neurosci. 2011; 14: 279-284
        • Zhang H.
        • Bramham C.R.
        Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues.
        Eur J Neurosci. 2021; 54: 6696-6712
        • McEwen B.S.
        • Nasca C.
        • Gray J.D.
        Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex.
        Neuropsychopharmacology. 2016; 41: 3-23
        • Leuner B.
        • Shors T.J.
        Stress, anxiety, and dendritic spines: What are the connections?.
        Neuroscience. 2013; 251: 108-119
        • Heydendael W.
        • Sharma K.
        • Iyer V.
        • Luz S.
        • Piel D.
        • Beck S.
        • Bhatnagar S.
        Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress.
        Endocrinology. 2011; 152: 4738-4752
        • Workman J.L.
        • Brummelte S.
        • Galea L.A.M.
        Postpartum corticosterone administration reduces dendritic complexity and increases the density of mushroom spines of hippocampal CA3 arbours in dams.
        J Neuroendocrinol. 2013; 25: 119-130
        • Christian K.M.
        • Miracle A.D.
        • Wellman C.L.
        • Nakazawa K.
        Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors.
        Neuroscience. 2011; 174: 26-36
        • Quirk G.J.
        • Likhtik E.
        • Pelletier J.G.
        • Paré D.
        Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons.
        J Neurosci. 2003; 23: 8800-8807
        • Likhtik E.
        • Pelletier J.G.
        • Paz R.
        • Paré D.
        Prefrontal control of the amygdala.
        J Neurosci. 2005; 25: 7429-7437
        • Beas B.S.
        • Wright B.J.
        • Skirzewski M.
        • Leng Y.
        • Hyun J.H.
        • Koita O.
        • et al.
        The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism.
        Nat Neurosci. 2018; 21: 963-973
        • Chandler D.J.
        • Waterhouse B.D.
        • Gao W.J.
        New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons.
        Front Neural Circuits. 2014; 8: 53