Advertisement

A Novel Insular/Orbital-Prelimbic Circuit That Prevents Persistent Avoidance in a Rodent Model of Compulsive Behavior

Published:February 18, 2022DOI:https://doi.org/10.1016/j.biopsych.2022.02.008

      Abstract

      Background

      A common symptom of obsessive-compulsive disorder is the persistent avoidance of cues incorrectly associated with negative outcomes. This maladaptation becomes increasingly evident as subjects fail to respond to extinction-based treatments such as exposure-with-response prevention therapy. While previous studies have highlighted the role of the insular-orbital cortex in fine-tuning avoidance-based decisions, little is known about the projections from this area that might modulate compulsive-like avoidance.

      Methods

      Here, we used anatomical tract-tracing, single-unit recording, and optogenetics to characterize the projections from the insular-orbital cortex. To model exposure-with-response prevention and persistent avoidance in rats, we used the platform-mediated avoidance task followed by extinction-with-response prevention training.

      Results

      Using tract-tracing and unit recording, we found that projections from the agranular insular/lateral orbital (AI/LO) cortex to the prefrontal cortex predominantly target the rostral portion of the prelimbic (rPL) cortex and excite rPL neurons. Photoinhibiting this projection induced persistent avoidance after extinction-with-response prevention training, an effect that was still present 1 week later. Consistent with this, photoexcitation of this projection prevented persistent avoidance in overtrained rats. This projection to rPL appears to be key for AI/LO’s effects, considering that there was no effect of photoinhibiting AI/LO projections to the ventral striatum or basolateral amygdala.

      Conclusions

      Our findings suggest that projections from the AI/LO to the rPL decreases the likelihood of avoidance behavior following extinction. In humans, this connectivity may share some homology of projections from lateral prefrontal cortices (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, and insula) to other prefrontal areas and the anterior cingulate cortex, suggesting that reduced activity in these pathways may contribute to obsessive-compulsive disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gillan C.M.
        • Morein-Zamir S.
        • Urcelay G.P.
        • Sule A.
        • Voon V.
        • Apergis-Schoute A.M.
        • et al.
        Enhanced avoidance habits in obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 75: 631-638
        • Veale D.
        Psychopathology of obsessive–compulsive disorder.
        Psychiatry. 2004; 3: 65-68
        • Apergis-Schoute A.M.
        • Gillan C.M.
        • Fineberg N.A.
        • Fernandez-Egea E.
        • Sahakian B.J.
        • Robbins T.W.
        Neural basis of impaired safety signaling in obsessive compulsive disorder.
        Proc Natl Acad Sci U S A. 2017; 114: 3216-3221
        • Sacks D.
        • Baxter B.
        • Campbell B.C.V.
        • Carpenter J.S.
        • Cognard C.
        • et al.
        • From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO)
        Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke.
        Int J Stroke. 2018; 13: 612-632
        • Hauser T.U.
        • Eldar E.
        • Dolan R.J.
        Neural mechanisms of harm-avoidance learning: A model for obsessive-compulsive disorder?.
        JAMA Psychiatry. 2016; 73: 1196-1197
        • Milad M.R.
        • Furtak S.C.
        • Greenberg J.L.
        • Keshaviah A.
        • Im J.J.
        • Falkenstein M.J.
        • et al.
        Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit.
        JAMA Psychiatry. 2013; 70 (quiz 554): 608-618
        • Hamatani S.
        • Tsuchiyagaito A.
        • Nihei M.
        • Hayashi Y.
        • Yoshida T.
        • Takahashi J.
        • et al.
        Predictors of response to exposure and response prevention-based cognitive behavioral therapy for obsessive-compulsive disorder.
        BMC Psychiatry. 2020; 20: 433
        • Kyrios M.
        • Hordern C.
        • Fassnacht D.B.
        Predictors of response to cognitive behaviour therapy for obsessive-compulsive disorder.
        Int J Clin Health Psychol. 2015; 15: 181-190
        • Nestadt G.
        • Kamath V.
        • Maher B.S.
        • Krasnow J.
        • Nestadt P.
        • Wang Y.
        • et al.
        Doubt and the decision-making process in obsessive-compulsive disorder.
        Med Hypotheses. 2016; 96: 1-4
        • Arch J.J.
        • Abramowitz J.S.
        Exposure therapy for obsessive–compulsive disorder: An optimizing inhibitory learning approach.
        J Obsessive Compulsive Relat Disord. 2015; 6: 174-182
        • Treanor M.
        • Barry T.J.
        Treatment of avoidance behavior as an adjunct to exposure therapy: Insights from modern learning theory.
        Behav Res Ther. 2017; 96: 30-36
        • Rodriguez-Romaguera J.
        • Greenberg B.D.
        • Rasmussen S.A.
        • Quirk G.J.
        An avoidance-based rodent model of exposure with response prevention therapy for obsessive-compulsive disorder.
        Biol Psychiatry. 2016; 80: 534-540
        • Daniel M.L.
        • Cocker P.J.
        • Lacoste J.
        • Mar A.C.
        • Houeto J.L.
        • Belin-Rauscent A.
        • Belin D.
        The anterior insula bidirectionally modulates cost-benefit decision-making on a rodent gambling task.
        Eur J Neurosci. 2017; 46: 2620-2628
        • Jean-Richard-Dit-Bressel P.
        • McNally G.P.
        Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning.
        Learn Mem. 2016; 23: 607-617
        • Saga Y.
        • Ruff C.C.
        • Tremblay L.
        Disturbance of approach-avoidance behaviors in non-human primates by stimulation of the limbic territories of basal ganglia and anterior insula.
        Eur J Neurosci. 2019; 49: 687-700
        • Gogolla N.
        The insular cortex.
        Curr Biol. 2017; 27: R580-R586
        • Aupperle R.L.
        • Paulus M.P.
        Neural systems underlying approach and avoidance in anxiety disorders.
        Dialogues Clin Neurosci. 2010; 12: 517-531
        • Palminteri S.
        • Justo D.
        • Jauffret C.
        • Pavlicek B.
        • Dauta A.
        • Delmaire C.
        • et al.
        Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning.
        Neuron. 2012; 76: 998-1009
        • Norbury A.
        • Robbins T.W.
        • Seymour B.
        Value generalization in human avoidance learning.
        Elife. 2018; 7e34779
        • Chase H.W.
        • Graur S.
        • Versace A.
        • Greenberg T.
        • Bonar L.
        • Hudak R.
        • et al.
        Neural mechanisms of persistent avoidance in OCD: A novel avoidance devaluation study.
        Neuroimage Clin. 2020; 28102404
        • Bravo-Rivera C.
        • Roman-Ortiz C.
        • Brignoni-Perez E.
        • Sotres-Bayon F.
        • Quirk G.J.
        Neural structures mediating expression and extinction of platform-mediated avoidance.
        J Neurosci. 2014; 34: 9736-9742
        • Martínez-Rivera F.J.
        • Sánchez-Navarro M.J.
        • Huertas-Pérez C.I.
        • Greenberg B.D.
        • Rasmussen S.A.
        • Quirk G.J.
        Prolonged avoidance training exacerbates OCD-like behaviors in a rodent model.
        Transl Psychiatry. 2020; 10: 212
        • Diehl M.M.
        • Bravo-Rivera C.
        • Rodriguez-Romaguera J.
        • Pagan-Rivera P.A.
        • Burgos-Robles A.
        • Roman-Ortiz C.
        • Quirk G.J.
        Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex.
        Elife. 2018; 7e34657
        • Hoover W.B.
        • Vertes R.P.
        Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
        Brain Struct Funct. 2007; 212: 149-179
        • Gehrlach D.A.
        • Weiand C.
        • Gaitanos T.N.
        • Cho E.
        • Klein A.S.
        • Hennrich A.A.
        • et al.
        A whole-brain connectivity map of mouse insular cortex.
        Elife. 2020; 9e55585
        • Medford N.
        • Critchley H.D.
        Conjoint activity of anterior insular and anterior cingulate cortex: Awareness and response.
        Brain Struct Funct. 2010; 214: 535-549
        • Seeley W.W.
        The salience network: A neural system for perceiving and responding to homeostatic demands.
        J Neurosci. 2019; 39: 9878-9882
        • Menon V.
        • Uddin L.Q.
        Saliency, switching, attention and control: A network model of insula function.
        Brain Struct Funct. 2010; 214: 655-667
        • Tsai P.J.
        • Keeley R.J.
        • Carmack S.A.
        • Vendruscolo J.C.M.
        • Lu H.
        • Gu H.
        • et al.
        Converging structural and functional evidence for a rat salience network.
        Biol Psychiatry. 2020; 88: 867-878
        • Tang W.
        • Jbabdi S.
        • Zhu Z.
        • Cottaar M.
        • Grisot G.
        • Lehman J.F.
        • et al.
        A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control.
        Elife. 2019; 8e43761
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        6th ed. Academic Press, New York2007
        • Liu X.B.
        • Jones E.G.
        Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex.
        Proc Natl Acad Sci U S A. 1996; 93: 7332-7336
        • Warthen D.M.
        • Lambeth P.S.
        • Ottolini M.
        • Shi Y.
        • Barker B.S.
        • Gaykema R.P.
        • et al.
        Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food-seeking behavior while reducing impulsivity in the absence of an effect on food intake.
        Front Behav Neurosci. 2016; 10: 63
        • Van den Oever M.C.
        • Rotaru D.C.
        • Heinsbroek J.A.
        • Gouwenberg Y.
        • Deisseroth K.
        • Stuber G.D.
        • et al.
        Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.
        J Neurosci. 2013; 33: 18225-18233
        • Aschauer D.F.
        • Kreuz S.
        • Rumpel S.
        Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain.
        PLoS One. 2013; 8e76310
        • Conte W.L.
        • Kamishina H.
        • Reep R.L.
        Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats.
        Nat Protoc. 2009; 4: 1157-1166
        • Mahn M.
        • Prigge M.
        • Ron S.
        • Levy R.
        • Yizhar O.
        Biophysical constraints of optogenetic inhibition at presynaptic terminals.
        Nat Neurosci. 2016; 19: 554-556
        • Wiegert J.S.
        • Oertner T.G.
        How (not) to silence long-range projections with light.
        Nat Neurosci. 2016; 19: 527-528
        • Do-Monte F.H.
        • Manzano-Nieves G.
        • Quiñones-Laracuente K.
        • Ramos-Medina L.
        • Quirk G.J.
        Revisiting the role of infralimbic cortex in fear extinction with optogenetics.
        J Neurosci. 2015; 35: 3607-3615
        • Burguière E.
        • Monteiro P.
        • Feng G.
        • Graybiel A.M.
        Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.
        Science. 2013; 340: 1243-1246
        • Ahmari S.E.
        • Spellman T.
        • Douglass N.L.
        • Kheirbek M.A.
        • Simpson H.B.
        • Deisseroth K.
        • et al.
        Repeated cortico-striatal stimulation generates persistent OCD-like behavior.
        Science. 2013; 340: 1234-1239
        • Lee A.T.
        • Vogt D.
        • Rubenstein J.L.
        • Sohal V.S.
        A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior.
        J Neurosci. 2014; 34: 11519-11525
        • Ramirez F.
        • Moscarello J.M.
        • LeDoux J.E.
        • Sears R.M.
        Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit.
        J Neurosci. 2015; 35: 3470-3477
        • Martinez R.C.R.
        • Gupta N.
        • Lázaro-Muñoz G.
        • Sears R.M.
        • Kim S.
        • Moscarello J.M.
        • et al.
        Active vs. reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex.
        Learn Mem. 2013; 20: 446-452
        • LeDoux J.E.
        • Moscarello J.
        • Sears R.
        • Campese V.
        The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm.
        Mol Psychiatry. 2017; 22: 24-36
        • Cain C.K.
        Avoidance problems reconsidered.
        Curr Opin Behav Sci. 2019; 26: 9-17
        • Moscarello J.M.
        • Maren S.
        Flexibility in the face of fear: Hippocampal-prefrontal regulation of fear and avoidance.
        Curr Opin Behav Sci. 2018; 19: 44-49
        • Groman S.M.
        • Keistler C.
        • Keip A.J.
        • Hammarlund E.
        • DiLeone R.J.
        • Pittenger C.
        • et al.
        Orbitofrontal circuits control multiple reinforcement-learning processes.
        Neuron. 2019; 103: 734-746.e3
        • Chikama M.
        • McFarland N.R.
        • Amaral D.G.
        • Haber S.N.
        Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate.
        J Neurosci. 1997; 17: 9686-9705
        • Barreiros I.V.
        • Panayi M.C.
        • Walton M.E.
        Organization of afferents along the anterior-posterior and medial-lateral axes of the rat orbitofrontal cortex.
        Neuroscience. 2021; 460: 53-68
        • Vertes R.P.
        Differential projections of the infralimbic and prelimbic cortex in the rat.
        Synapse. 2004; 51: 32-58
        • Gabbott P.L.A.
        • Warner T.A.
        • Jays P.R.L.
        • Salway P.
        • Busby S.J.
        Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers.
        J Comp Neurol. 2005; 492: 145-177
        • Murphy M.J.M.
        • Deutch A.Y.
        Organization of afferents to the orbitofrontal cortex in the rat.
        J Comp Neurol. 2018; 526: 1498-1526
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat Rev Neurosci. 2015; 16: 55-61
        • Parkes S.L.
        • Ravassard P.M.
        • Cerpa J.C.
        • Wolff M.
        • Ferreira G.
        • Coutureau E.
        Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents.
        Cereb Cortex. 2018; 28: 2313-2325
        • Bravo-Rivera H.
        • Rubio Arzola P.
        • Caban-Murillo A.
        • Vélez-Avilés A.N.
        • Ayala-Rosario S.N.
        • Quirk G.J.
        Characterizing different strategies for resolving approach-avoidance conflict.
        Front Neurosci. 2021; 15608922
        • Diehl M.M.
        • Iravedra-Garcia J.M.
        • Morán-Sierra J.
        • Rojas-Bowe G.
        • Gonzalez-Diaz F.N.
        • Valentín-Valentín V.P.
        • Quirk G.J.
        Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance.
        Elife. 2020; 9e59281
        • Haber S.N.
        Neurocircuitry underlying OCD: Neural networks underlying reward and action selection.
        in: Pittenger C. Obsessive-Compulsive Disorder: Phenomenology, Pathophysiology, and Treatment. Oxford University Press, Oxford2017: 201-212
        • Nakao T.
        • Okada K.
        • Kanba S.
        Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings.
        Psychiatry Clin Neurosci. 2014; 68: 587-605
        • Fitzgerald K.D.
        • Welsh R.C.
        • Gehring W.J.
        • Abelson J.L.
        • Himle J.A.
        • Liberzon I.
        • Taylor S.F.
        Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder.
        Biol Psychiatry. 2005; 57: 287-294
        • Medvedeva N.S.
        • Masharipov R.S.
        • Korotkov A.D.
        • Kireev M.V.
        • Medvedev S.V.
        Dynamics of activity in the anterior cingulate cortex on development of obsessive-compulsive disorder: A combined PET and fMRI study.
        Neurosci Behav Physiol. 2020; 50: 298-305
        • Luigjes J.
        • Figee M.
        • Tobler P.N.
        • van den Brink W.
        • de Kwaasteniet B.
        • van Wingen G.
        • Denys D.
        Doubt in the insula: Risk processing in obsessive-compulsive disorder.
        Front Hum Neurosci. 2016; 10: 283
        • Chen Y.
        • Meng X.
        • Hu Q.
        • Cui H.
        • Ding Y.
        • Kang L.
        • et al.
        Altered resting-state functional organization within the central executive network in obsessive-compulsive disorder.
        Psychiatry Clin Neurosci. 2016; 70: 448-456
        • Robbins T.W.
        • Vaghi M.M.
        • Banca P.
        Obsessive-compulsive disorder: Puzzles and prospects.
        Neuron. 2019; 102: 27-47
        • Vaghi M.M.
        • Vértes P.E.
        • Kitzbichler M.G.
        • Apergis-Schoute A.M.
        • van der Flier F.E.
        • Fineberg N.A.
        • et al.
        Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: Evidence from resting-state functional connectivity.
        Biol Psychiatry. 2017; 81: 708-717
        • Anticevic A.
        • Hu S.
        • Zhang S.
        • Savic A.
        • Billingslea E.
        • Wasylink S.
        • et al.
        Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 75: 595-605
        • Gillan C.M.
        • Apergis-Schoute A.M.
        • Morein-Zamir S.
        • Urcelay G.P.
        • Sule A.
        • Fineberg N.A.
        • et al.
        Functional neuroimaging of avoidance habits in obsessive-compulsive disorder.
        Am J Psychiatry. 2015; 172: 284-293
        • Carlén M.
        What constitutes the prefrontal cortex?.
        Science. 2017; 358: 478-482
        • Preuss T.M.
        • Wise S.P.
        Evolution of prefrontal cortex.
        Neuropsychopharmacology. 2022; 47: 3-19
        • Wallis J.D.
        Cross-species studies of orbitofrontal cortex and value-based decision-making.
        Nat Neurosci. 2011; 15: 13-19
        • Heilbronner S.R.
        • Rodriguez-Romaguera J.
        • Quirk G.J.
        • Groenewegen H.J.
        • Haber S.N.
        Circuit-based corticostriatal homologies between rat and primate.
        Biol Psychiatry. 2016; 80: 509-521
        • Vogt B.A.
        • Paxinos G.
        Cytoarchitecture of mouse and rat cingulate cortex with human homologies.
        Brain Struct Funct. 2014; 219: 185-192
        • Bauernfeind A.L.
        • de Sousa A.A.
        • Avasthi T.
        • Dobson S.D.
        • Raghanti M.A.
        • Lewandowski A.H.
        • et al.
        A volumetric comparison of the insular cortex and its subregions in primates.
        J Hum Evol. 2013; 64: 263-279
        • Monosov I.E.
        • Rushworth M.F.S.
        Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change.
        Neuropsychopharmacology. 2022; 47: 196-210
        • Janes A.C.
        • Farmer S.
        • Peechatka A.L.
        • de B Frederick B.
        • Lukas S.E.
        Insula-dorsal anterior cingulate cortex coupling is associated with enhanced brain reactivity to smoking cues.
        Neuropsychopharmacology. 2015; 40: 1561-1568
        • Foa E.B.
        • Liebowitz M.R.
        • Kozak M.J.
        • Davies S.
        • Campeas R.
        • Franklin M.E.
        • et al.
        Randomized, placebo-controlled trial of exposure and ritual prevention, clomipramine, and their combination in the treatment of obsessive-compulsive disorder.
        Am J Psychiatry. 2005; 162: 151-161
        • Simpson H.B.
        • Foa E.B.
        • Liebowitz M.R.
        • Ledley D.R.
        • Huppert J.D.
        • Cahill S.
        • et al.
        A randomized, controlled trial of cognitive-behavioral therapy for augmenting pharmacotherapy in obsessive-compulsive disorder.
        Am J Psychiatry. 2008; 165: 621-630
        • Hezel D.M.
        • Simpson H.B.
        Exposure and response prevention for obsessive-compulsive disorder: A review and new directions.
        Indian J Psychiatry. 2019; 61: S85-S92
        • Seo H.J.
        • Jung Y.E.
        • Lim H.K.
        • Um Y.H.
        • Lee C.U.
        • Chae J.H.
        Adjunctive low-frequency repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex in patients with treatment-resistant obsessive-compulsive disorder: A randomized controlled trial.
        Clin Psychopharmacol Neurosci. 2016; 14: 153-160
        • Nauczyciel C.
        • Le Jeune F.
        • Naudet F.
        • Douabin S.
        • Esquevin A.
        • Vérin M.
        • et al.
        Repetitive transcranial magnetic stimulation over the orbitofrontal cortex for obsessive-compulsive disorder: A double-blind, crossover study.
        Transl Psychiatry. 2014; 4: e436
        • Brunelin J.
        • Mondino M.
        • Bation R.
        • Palm U.
        • Saoud M.
        • Poulet E.
        Transcranial direct current stimulation for obsessive-compulsive disorder: A systematic review.
        Brain Sci. 2018; 8: 37
        • Dinn W.M.
        • Aycicegi-Dinn A.
        • Göral F.
        • Karamursel S.
        • Yildirim E.A.
        • Hacioglu-Yildirim M.
        • et al.
        Treatment-resistant obsessive-compulsive disorder: Insights from an open trial of transcranial direct current stimulation (tDCS) to design a RCT.
        Neurol Psychiatry Brain Res. 2016; 22: 146-154
        • Palm U.
        • Leitner B.
        • Kirsch B.
        • Behler N.
        • Kumpf U.
        • Wulf L.
        • et al.
        Prefrontal tDCS and sertraline in obsessive compulsive disorder: A case report and review of the literature.
        Neurocase. 2017; 23: 173-177