Advertisement

Spatiotemporal Dynamics of Stress-Induced Network Reconfigurations Reflect Negative Affectivity

      Abstract

      Background

      Maladaptive stress responses are important risk factors in the etiology of mood and anxiety disorders, but exact pathomechanisms remain to be understood. Mapping individual differences of acute stress-induced neurophysiological changes, especially on the level of neural activation and functional connectivity (FC), could provide important insights in how variation in the individual stress response is linked to disease risk.

      Methods

      Using an established psychosocial stress task flanked by two resting states, we measured subjective, physiological, and brain responses to acute stress and recovery in 217 participants with and without mood and anxiety disorders. To estimate blockwise changes in stress-induced activation and FC, we used hierarchical mixed-effects models based on denoised time series within predefined stress-related regions. We predicted inter- and intraindividual differences in stress phases (anticipation vs. stress vs. recovery) and transdiagnostic dimensions of stress reactivity using elastic net and support vector machines.

      Results

      We identified four subnetworks showing distinct changes in FC over time. FC but not activation trajectories predicted the stress phase (accuracy = 70%, pperm < .001) and increases in heart rate (R2 = 0.075, pperm < .001). Critically, individual spatiotemporal trajectories of changes across networks also predicted negative affectivity (ΔR2 = 0.075, pperm = .030) but not the presence or absence of a mood and anxiety disorder.

      Conclusions

      Spatiotemporal dynamics of brain network reconfiguration induced by stress reflect individual differences in the psychopathology dimension of negative affectivity. These results support the idea that vulnerability for mood and anxiety disorders can be conceptualized best at the level of network dynamics, which may pave the way for improved prediction of individual risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McEwen B.S.
        Mood disorders and allostatic load.
        Biol Psychiatry. 2003; 54: 200-207
        • Aldao A.
        • Nolen-Hoeksema S.
        • Schweizer S.
        Emotion-regulation strategies across psychopathology: A meta-analytic review.
        Clin Psychol Rev. 2010; 30: 217-237
        • Compas B.E.
        • Jaser S.S.
        • Bettis A.H.
        • Watson K.H.
        • Gruhn M.A.
        • Dunbar J.P.
        • et al.
        Coping, emotion regulation and psychopathology in childhood and adolescence: A meta-analysis and narrative review.
        Psychol Bull. 2017; 143: 939-991
        • McEwen B.S.
        Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders.
        Ann N Y Acad Sci. 2004; 1032: 1-7
        • Nolen-Hoeksema S.
        • Wisco B.E.
        • Lyubomirsky S.
        Rethinking rumination.
        Perspect Psychol Sci. 2008; 3: 400-424
        • de Kloet C.S.
        • Vermetten E.
        • Geuze E.
        • Kavelaars A.
        • Heijnen C.J.
        • Westenberg H.G.M.
        Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review.
        J Psychiatr Res. 2006; 40: 550-567
        • Horowitz M.A.
        • Zunszain P.A.
        Neuroimmune and neuroendocrine abnormalities in depression: Two sides of the same coin.
        Ann N Y Acad Sci. 2015; 1351: 68-79
        • Mehta D.
        • Binder E.B.
        Gene × environment vulnerability factors for PTSD: The HPA-axis.
        Neuropharmacology. 2012; 62: 654-662
        • Zorn J.V.
        • Schür R.R.
        • Boks M.P.
        • Kahn R.S.
        • Joëls M.
        • Vinkers C.H.
        Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis.
        Psychoneuroendocrinology. 2017; 77: 25-36
        • Schiweck C.
        • Piette D.
        • Berckmans D.
        • Claes S.
        • Vrieze E.
        Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review.
        Psychol Med. 2019; 49: 200-211
        • Gaab J.
        • Rohleder N.
        • Nater U.M.
        • Ehlert U.
        Psychological determinants of the cortisol stress response: The role of anticipatory cognitive appraisal.
        Psychoneuroendocrinology. 2005; 30: 599-610
        • Pulopulos M.M.
        • Baeken C.
        • De Raedt R.
        Cortisol response to stress: The role of expectancy and anticipatory stress regulation.
        Horm Behav. 2020; 117: 104587
        • Selye H.
        Stress without distress.
        in: Serban G. Psychopathology of Human Adaptation. Springer, New York1976: 137-146
        • de Kloet E.R.
        • Joëls M.
        Mineralocorticoid receptors and glucocorticoid receptors in HPA stress responses during coping and adaptation.
        in: de Kloet E.R. Joëls M. Oxford Research Encyclopedia of Neuroscience. Oxford University Press, Oxford2020 (Available at:)
        • Brosschot J.F.
        • Gerin W.
        • Thayer J.F.
        The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health.
        J Psychosom Res. 2006; 60: 113-124
        • Gold S.M.
        • Zakowski S.G.
        • Valdimarsdottir H.B.
        • Bovbjerg D.H.
        Higher Beck depression scores predict delayed epinephrine recovery after acute psychological stress independent of baseline levels of stress and mood.
        Biol Psychol. 2004; 67: 261-273
        • Lü W.
        • Wang Z.
        • You X.
        Physiological responses to repeated stress in individuals with high and low trait resilience.
        Biol Psychol. 2016; 120: 46-52
        • Morris M.C.
        • Kouros C.D.
        • Mielock A.S.
        • Rao U.
        Depressive symptom composites associated with cortisol stress reactivity in adolescents.
        J Affect Disord. 2017; 210: 181-188
        • Morris M.C.
        • Rao U.
        • Garber J.
        Cortisol responses to psychosocial stress predict depression trajectories: Social-evaluative threat and prior depressive episodes as moderators.
        J Affect Disord. 2012; 143: 223-230
        • Rudolph K.D.
        • Troop-Gordon W.
        • Granger D.A.
        Individual differences in biological stress responses moderate the contribution of early peer victimization to subsequent depressive symptoms.
        Psychopharmacology (Berl). 2011; 214: 209-219
        • Fiksdal A.
        • Hanlin L.
        • Kuras Y.
        • Gianferante D.
        • Chen X.
        • Thoma M.V.
        • Rohleder N.
        Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress.
        Psychoneuroendocrinology. 2019; 102: 44-52
        • Balsamo M.
        • Romanelli R.
        • Innamorati M.
        • Ciccarese G.
        • Carlucci L.
        • Saggino A.
        The State-Trait Anxiety Inventory: Shadows and lights on its construct validity.
        J Psychopathol Behav Assess. 2013; 35: 475-486
        • Knowles K.A.
        • Olatunji B.O.
        Specificity of trait anxiety in anxiety and depression: Meta-analysis of the State-Trait Anxiety Inventory.
        Clin Psychol Rev. 2020; 82: 101928
        • Thorp J.G.
        • Campos A.I.
        • Grotzinger A.D.
        • Gerring Z.F.
        • An J.
        • Ong J.S.
        • et al.
        Symptom-level modelling unravels the shared genetic architecture of anxiety and depression.
        Nat Hum Behav. 2021; 5: 1432-1442
        • Gecaite J.
        • Burkauskas J.
        • Brozaitiene J.
        • Mickuviene N.
        Cardiovascular reactivity to acute mental stress: The importance of Type D personality, trait anxiety, and depression symptoms in patients after acute coronary syndromes.
        J Cardiopulm Rehabil Prev. 2019; 39: E12-E18
        • Quirin M.
        • Kazén M.
        • Rohrmann S.
        • Kuhl J.
        Implicit but not explicit affectivity predicts circadian and reactive cortisol: Using the implicit positive and negative affect test.
        J Pers. 2009; 77: 401-425
        • Zellars K.L.
        • Meurs J.A.
        • Perrewé P.L.
        • Kacmar C.J.
        • Rossi A.M.
        Reacting to and recovering from a stressful situation: The negative affectivity-physiological arousal relationship.
        J Occup Health Psychol. 2009; 14: 11-22
        • Eaton R.J.
        • Bradley G.
        The role of gender and negative affectivity in stressor appraisal and coping selection.
        Int J Stress Manag. 2008; 15: 94-115
        • Jacobs N.
        • Kenis G.
        • Peeters F.
        • Derom C.
        • Vlietinck R.
        • van Os J.
        Stress-related negative affectivity and genetically altered serotonin transporter function: Evidence of synergism in shaping risk of depression.
        Arch Gen Psychiatry. 2006; 63: 989-996
        • LeMoult J.
        From stress to depression: Bringing together cognitive and biological science.
        Curr Dir Psychol Sci. 2020; 29: 592-598
        • Schlotz W.
        • Yim I.S.
        • Zoccola P.M.
        • Jansen L.
        • Schulz P.
        The Perceived Stress Reactivity Scale: Measurement invariance, stability, and validity in three countries.
        Psychol Assess. 2011; 23: 80-94
        • LeMoult J.
        • Arditte K.A.
        • D’Avanzato C.
        • Joormann J.
        State rumination: Associations with emotional stress reactivity and attention biases.
        J Exp Psychopathol. 2013; 4: 471-484
        • Ottaviani C.
        • Thayer J.F.
        • Verkuil B.
        • Lonigro A.
        • Medea B.
        • Couyoumdjian A.
        • Brosschot J.F.
        Physiological concomitants of perseverative cognition: A systematic review and meta-analysis.
        Psychol Bull. 2016; 142: 231-259
        • Quinn M.E.
        • Grant K.E.
        • Adam E.K.
        Negative cognitive style and cortisol recovery accentuate the relationship between life stress and depressive symptoms.
        Stress. 2018; 21: 119-127
        • Stewart J.G.
        • Mazurka R.
        • Bond L.
        • Wynne-Edwards K.E.
        • Harkness K.L.
        Rumination and impaired cortisol recovery following a social stressor in adolescent depression.
        J Abnorm Child Psychol. 2013; 41: 1015-1026
        • Janson J.
        • Rohleder N.
        Distraction coping predicts better cortisol recovery after acute psychosocial stress.
        Biol Psychol. 2017; 128: 117-124
        • Salzmann S.
        • Euteneuer F.
        • Strahler J.
        • Laferton J.A.C.
        • Nater U.M.
        • Rief W.
        Optimizing expectations and distraction leads to lower cortisol levels after acute stress.
        Psychoneuroendocrinology. 2018; 88: 144-152
        • Raymond C.
        • Marin M.F.
        • Juster R.P.
        • Lupien S.J.
        Should we suppress or reappraise our stress?: The moderating role of reappraisal on cortisol reactivity and recovery in healthy adults.
        Anxiety Stress Coping. 2019; 32: 286-297
        • Meuwly N.
        • Bodenmann G.
        • Germann J.
        • Bradbury T.N.
        • Ditzen B.
        • Heinrichs M.
        Dyadic coping, insecure attachment, and cortisol stress recovery following experimentally induced stress.
        J Fam Psychol. 2012; 26: 937-947
        • Cheetham-Blake T.J.
        • Turner-Cobb J.M.
        • Family H.E.
        • Turner J.E.
        Resilience characteristics and prior life stress determine anticipatory response to acute social stress in children aged 7–11 years.
        Br J Health Psychol. 2019; 24: 282-297
        • Mikolajczak M.
        • Roy E.
        • Luminet O.
        • de Timary P.
        Resilience and hypothalamic-pituitary-adrenal axis reactivity under acute stress in young men.
        Stress. 2008; 11: 477-482
        • Hermans E.J.
        • Henckens M.J.A.G.
        • Joëls M.
        • Fernández G.
        Dynamic adaptation of large-scale brain networks in response to acute stressors.
        Trends Neurosci. 2014; 37: 304-314
        • van Oort J.
        • Tendolkar I.
        • Hermans E.J.
        • Mulders P.C.
        • Beckmann C.F.
        • Schene A.H.
        • et al.
        How the brain connects in response to acute stress: A review at the human brain systems level.
        Neurosci Biobehav Rev. 2017; 83: 281-297
        • Vaisvaser S.
        • Lin T.
        • Admon R.
        • Podlipsky I.
        • Greenman Y.
        • Stern N.
        • et al.
        Neural traces of stress: Cortisol related sustained enhancement of amygdala-hippocampal functional connectivity.
        Front Hum Neurosci. 2013; 7: 313
        • Zhang W.
        • Llera A.
        • Hashemi M.M.
        • Kaldewaij R.
        • Koch S.B.J.
        • Beckmann C.F.
        • et al.
        Discriminating stress from rest based on resting-state connectivity of the human brain: A supervised machine learning study.
        Hum Brain Mapp. 2020; 41: 3089-3099
        • McTeague L.M.
        • Rosenberg B.M.
        • Lopez J.W.
        • Carreon D.M.
        • Huemer J.
        • Jiang Y.
        • et al.
        Identification of common neural circuit disruptions in emotional processing across psychiatric disorders.
        Am J Psychiatry. 2020; 177: 411-421
        • Corr R.
        • Pelletier-Baldelli A.
        • Glier S.
        • Bizzell J.
        • Campbell A.
        • Belger A.
        Neural mechanisms of acute stress and trait anxiety in adolescents.
        Neuroimage Clin. 2021; 29: 102543
        • Wheelock M.D.
        • Harnett N.G.
        • Wood K.H.
        • Orem T.R.
        • Granger D.A.
        • Mrug S.
        • Knight D.C.
        Prefrontal cortex activity is associated with biobehavioral components of the stress response.
        Front Hum Neurosci. 2016; 10: 583
        • Braun U.
        • Schäfer A.
        • Bassett D.S.
        • Rausch F.
        • Schweiger J.I.
        • Bilek E.
        • et al.
        Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.
        Proc Natl Acad Sci U S A. 2016; 113: 12568-12573
        • Braun U.
        • Schaefer A.
        • Betzel R.F.
        • Tost H.
        • Meyer-Lindenberg A.
        • Bassett D.S.
        From maps to multi-dimensional network mechanisms of mental disorders.
        Neuron. 2018; 97: 14-31
        • Finn E.S.
        • Constable R.T.
        Individual variation in functional brain connectivity: Implications for personalized approaches to psychiatric disease.
        Dialogues Clin Neurosci. 2016; 18: 277-287
        • Greene A.S.
        • Gao S.
        • Noble S.
        • Scheinost D.
        • Constable R.T.
        How tasks change whole-brain functional organization to reveal brain-phenotype relationships.
        Cell Rep. 2020; 32: 108066
        • Figee M.
        • Mayberg H.
        The future of personalized brain stimulation.
        Nat Med. 2021; 27: 196-197
        • Brückl T.M.
        • Spoormaker V.I.
        • Sämann P.G.
        • Brem A.K.
        • Henco L.
        • Czamara D.
        • et al.
        The biological classification of mental disorders (BeCOME) study: A protocol for an observational deep-phenotyping study for the identification of biological subtypes.
        BMC Psychiatry. 2020; 20: 213
        • Wittchen H.
        • Beloch E.
        • Garczynski E.
        • Holly A.
        • Lachner G.
        • Perkonigg A.
        • et al.
        Münchener Composite International Diagnostic Interview (M-CIDI).
        Max-Planck-Institut für Psychiatrie, Klinisches Institut, München, Germany1995
        • Muehlhan M.
        • Lueken U.
        • Wittchen H.U.
        • Kirschbaum C.
        The scanner as a stressor: Evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session.
        Int J Psychophysiol. 2011; 79: 118-126
        • Janke W.
        Befindlichkeitsskalierung durch Kategorien und Eigenschaftswörter: BSKE (EWL) nach Janke, Debus, Erdmann und Hüppe: Test und Handanweisung. Unveröffentlichter Institutsbericht, Lehrstuhl für Biologische und Klinische Psychologie der Universität Würzburg [Sensitivity scaling through categories and adjectives: BSKE (EWL) according to Janke, Debus, Erdmann and Hüppe: test and hand instruction.
        Unpublished institute report, Chair for Biological and Clinical Psychology at the University of Würzburg]. 1994;
        • Pruessner J.C.
        • Dedovic K.
        • Khalili-Mahani N.
        • Engert V.
        • Pruessner M.
        • Buss C.
        • et al.
        Deactivation of the limbic system during acute psychosocial stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies.
        Biol Psychiatry. 2008; 63: 234-240
        • Elbau I.G.
        • Brücklmeier B.
        • Uhr M.
        • Arloth J.
        • Czamara D.
        • Spoormaker V.I.
        • et al.
        The brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers.
        Proc Natl Acad Sci U S A. 2018; 115: E10206-E10215
        • Kühnel A.
        • Kroemer N.B.
        • Elbau I.G.
        • Czisch M.
        • Sämann P.G.
        • Walter M.
        • et al.
        Psychosocial stress reactivity habituates following acute physiological stress.
        Hum Brain Mapp. 2020; 41: 4010-4023
        • Noack H.
        • Nolte L.
        • Nieratschker V.
        • Habel U.
        • Derntl B.
        Imaging stress: An overview of stress induction methods in the MR scanner.
        J Neural Transm (Vienna). 2019; 126: 1187-1202
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II.
        Psychological Corporation, San Antonio, TX1996
        • Spielberger C.D.
        • Gorsuch R.L.
        • Lushene R.
        • Vagg P.R.
        • Jacobs G.A.
        Manual for the State-Trait Anxiety Inventory (Form Y).
        Mind Garden, Palo Alto, CA1983
        • Gerlach A.L.
        • Andor T.
        • Patzelt J.
        Die Bedeutung von Unsicherheitsintoleranz für die Generalisierte Angststörung Modellüberlegungen und Entwicklung einer deutschen Version der Unsicherheitsintoleranz-Skala. (The significance of intolerance of uncertainty in generalized anxiety disorder: Possible models and development of a German version of the intolerance of uncertainty scale.).
        Z Klin Psychol Psychother. 2008; 37: 190-199
        • Ising M.
        • Weyers P.
        • Janke W.
        • Erdmann G.
        Die Gütekriterien des SVF78 von Janke und Erdmann, einer Kurzform des SVF120 [The psychometric properties of the SVF78 by Janke and Erdmann, a short version of the SVF120].
        Z Differentielle Diagnostische Psychol. 2001; 22: 279-289
        • Wagnild G.M.
        • Young H.M.
        Development and psychometric evaluation of the Resilience Scale.
        J Nurs Meas. 1993; 1: 165-178
        • Ashburner J.
        A fast diffeomorphic image registration algorithm.
        Neuroimage. 2007; 38: 95-113
        • Lee D.D.
        • Seung H.S.
        Learning the parts of objects by non-negative matrix factorization.
        Nature. 1999; 401: 788-791
        • Cattell R.B.
        The scree test for the number of factors.
        Multivariate Behav Res. 1966; 1: 245-276
        • Wüst S.
        • Wolf J.
        • Hellhammer D.H.
        • Federenko I.
        • Schommer N.
        • Kirschbaum C.
        The cortisol awakening response—Normal values and confounds.
        Noise Health. 2000; 2: 79-88
        • van Oort J.
        • Kohn N.
        • Vrijsen J.N.
        • Collard R.
        • Duyser F.A.
        • Brolsma S.C.A.
        • et al.
        Absence of default mode downregulation in response to a mild psychological stressor marks stress-vulnerability across diverse psychiatric disorders.
        Neuroimage Clin. 2020; 25: 102176
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • Shen X.
        • Tokoglu F.
        • Papademetris X.
        • Constable R.T.
        Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.
        Neuroimage. 2013; 82: 403-415
        • Behzadi Y.
        • Restom K.
        • Liau J.
        • Liu T.T.
        A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
        Neuroimage. 2007; 37: 90-101
        • McLaren D.G.
        • Ries M.L.
        • Xu G.
        • Johnson S.C.
        A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches.
        Neuroimage. 2012; 61: 1277-1286
        • Kroemer N.B.
        • Sun X.
        • Veldhuizen M.G.
        • Babbs A.E.
        • de Araujo I.E.
        • Small D.M.
        Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior.
        Neuroimage. 2016; 128: 273-283
        • Kroemer N.B.
        • Guevara A.
        • Ciocanea Teodorescu I.
        • Wuttig F.
        • Kobiella A.
        • Smolka M.N.
        Balancing reward and work: Anticipatory brain activation in NAcc and VTA predict effort differentially.
        Neuroimage. 2014; 102: 510-519
        • Mejia A.F.
        • Nebel M.B.
        • Barber A.D.
        • Choe A.S.
        • Pekar J.J.
        • Caffo B.S.
        • Lindquist M.A.
        Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.
        Neuroimage. 2018; 172: 478-491
        • Narayan M.
        • Allen G.I.
        Mixed effects models for resampled network statistics improves statistical power to find differences in multi-subject functional connectivity.
        Front Neurosci. 2016; 10: 108
        • Pervaiz U.
        • Vidaurre D.
        • Woolrich M.W.
        • Smith S.M.
        Optimising network modelling methods for fMRI.
        Neuroimage. 2020; 211: 116604
        • Charrad M.
        • Ghazzali N.
        • Boiteau V.
        • Niknafs A.
        Nbclust: An R package for determining the relevant number of clusters in a data set.
        J Stat Softw. 2014; 61: 1-36
        • Pedregosa F.
        • Varoquaux G.
        • Gramfort A.
        • Michel V.
        • Thirion B.
        • Grisel O.
        • et al.
        Scikit-learn: Machine learning in Python.
        J Mach Learn Res. 2011; 12: 2825-2830
        • Wager T.D.
        • Atlas L.Y.
        • Lindquist M.A.
        • Roy M.
        • Woo C.W.
        • Kross E.
        An fMRI-based neurologic signature of physical pain.
        N Engl J Med. 2013; 368: 1388-1397
        • Jollans L.
        • Boyle R.
        • Artiges E.
        • Banaschewski T.
        • Desrivières S.
        • Grigis A.
        • et al.
        Quantifying performance of machine learning methods for neuroimaging data.
        Neuroimage. 2019; 199: 351-365
        • R Core Team
        R: A language and environment for statistical computing.
        (Available at:)
        https://www.R-project.org/
        Date: 2018
        Date accessed: April 18, 2019
        • Kuznetsova A.
        • Brockhoff P.B.
        • Christensen R.H.B.
        lmerTest package: Tests in linear mixed effects models.
        J Stat Soft. 2017; 82: 1-26
        • Seeley W.W.
        The salience network: A neural system for perceiving and responding to homeostatic demands.
        J Neurosci. 2019; 39: 9878-9882
        • Klein A.S.
        • Dolensek N.
        • Weiand C.
        • Gogolla N.
        Fear balance is maintained by bodily feedback to the insular cortex in mice.
        Science. 2021; 374: 1010-1015
        • Fehlner P.
        • Bilek E.
        • Harneit A.
        • Böhringer A.
        • Moessnang C.
        • Meyer-Lindenberg A.
        • Tost H.
        Neural responses to social evaluative threat in the absence of negative investigator feedback and provoked performance failures.
        Hum Brain Mapp. 2020; 41: 2092-2103
        • McKlveen J.M.
        • Myers B.
        • Herman J.P.
        The medial prefrontal cortex: Coordinator of autonomic, neuroendocrine and behavioural responses to stress.
        J Neuroendocrinol. 2015; 27: 446-456
        • Böhnke J.R.
        • Lutz W.
        • Delgadillo J.
        Negative affectivity as a transdiagnostic factor in patients with common mental disorders.
        J Affect Disord. 2014; 166: 270-278
        • Hur J.
        • Stockbridge M.D.
        • Fox A.S.
        • Shackman A.J.
        Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework.
        in: Srinivasan N. Progress in Brain Research, vol. 247: Emotion and Cognition. Academic Press, Cambridge, MA2019: 375-406
        • Goldfarb E.V.
        • Rosenberg M.D.
        • Seo D.
        • Constable R.T.
        • Sinha R.
        Hippocampal seed connectome-based modeling predicts the feeling of stress.
        Nat Commun. 2020; 11: 2650
        • Wheelock M.D.
        • Rangaprakash D.
        • Harnett N.G.
        • Wood K.H.
        • Orem T.R.
        • Mrug S.
        • et al.
        Psychosocial stress reactivity is associated with decreased whole-brain network efficiency and increased amygdala centrality.
        Behav Neurosci. 2018; 132: 561-572
        • Zhang W.
        • Hashemi M.M.
        • Kaldewaij R.
        • Koch S.B.J.
        • Beckmann C.
        • Klumpers F.
        • Roelofs K.
        Acute stress alters the ‘default’ brain processing.
        Neuroimage. 2019; 189: 870-877
        • van Marle H.J.F.
        • Hermans E.J.
        • Qin S.
        • Fernández G.
        Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress.
        Neuroimage. 2010; 53: 348-354
        • Veer I.M.
        • Oei N.Y.L.
        • Spinhoven P.
        • van Buchem M.A.
        • Elzinga B.M.
        • Rombouts S.A.R.B.
        Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures.
        Neuroimage. 2011; 57: 1534-1541
        • Kuehn E.
        • Mueller K.
        • Lohmann G.
        • Schuetz-Bosbach S.
        Interoceptive awareness changes the posterior insula functional connectivity profile.
        Brain Struct Funct. 2016; 221: 1555-1571
        • Craig A.D.B.
        How do you feel — now? The anterior insula and human awareness.
        Nat Rev Neurosci. 2009; 10: 59-70
        • Beissner F.
        • Meissner K.
        • Bär K.J.
        • Napadow V.
        The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function.
        J Neurosci. 2013; 33: 10503-10511
        • Benarroch E.E.
        Central autonomic control.
        in: Robertson D. Biaggioni I. Burnstock G. Low P.A. Paton J.F.R. Primer on the Autonomic Nervous System. 3rd ed. Academic Press, San Diego2012 (9–12)
        • Ginty A.T.
        • Kraynak T.E.
        • Fisher J.P.
        • Gianaros P.J.
        Cardiovascular and autonomic reactivity to psychological stress: Neurophysiological substrates and links to cardiovascular disease.
        Auton Neurosci. 2017; 207: 2-9
        • de la Cruz F.
        • Schumann A.
        • Köhler S.
        • Reichenbach J.R.
        • Wagner G.
        • Bär K.J.
        The relationship between heart rate and functional connectivity of brain regions involved in autonomic control.
        Neuroimage. 2019; 196: 318-328
        • Gulley L.D.
        • Hankin B.L.
        • Young J.F.
        Risk for depression and anxiety in youth: The interaction between negative affectivity, effortful control, and stressors.
        J Abnorm Child Psychol. 2016; 44: 207-218
        • Hur J.
        • Kuhn M.
        • Grogans S.E.
        • Anderson A.S.
        • Islam S.
        • Kim H.C.
        • et al.
        Anxiety-related frontocortical activity is associated with dampened stressor reactivity in the real world [published online ahead of print Jun 3].
        Psychol Sci. 2022;
        • Stegen K.
        • van Diest I.
        • van de Woestijne K.P.
        • Van den Bergh O.
        Negative affectivity and bodily sensations induced by 5.5% CO2 enriched air inhalation: Is there a bias to interpret bodily sensations negatively in persons with negative affect?.
        Psychol Health. 2000; 15: 513-525
        • Sikora M.
        • Heffernan J.
        • Avery E.T.
        • Mickey B.J.
        • Zubieta J.K.
        • Peciña M.
        Salience network functional connectivity predicts placebo effects in major depression.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 68-76
        • Sripada R.K.
        • King A.P.
        • Welsh R.C.
        • Garfinkel S.N.
        • Wang X.
        • Sripada C.S.
        • Liberzon I.
        Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks.
        Psychosom Med. 2012; 74: 904-911
        • Whitton A.E.
        • Webb C.A.
        • Dillon D.G.
        • Kayser J.
        • Rutherford A.
        • Goer F.
        • et al.
        Pretreatment rostral anterior cingulate cortex connectivity with salience network predicts depression recovery: Findings from the EMBARC randomized clinical trial.
        Biol Psychiatry. 2019; 85: 872-880
        • Philip N.S.
        • Barredo J.
        • van ’t Wout-Frank M.
        • Tyrka A.R.
        • Price L.H.
        • Carpenter L.L.
        Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder.
        Biol Psychiatry. 2018; 83: 263-272
        • Abdallah C.G.
        • Averill C.L.
        • Ramage A.E.
        • Averill L.A.
        • Alkin E.
        • Nemati S.
        • et al.
        Reduced salience and enhanced central executive connectivity following PTSD treatment.
        Chronic Stress (Thousand Oaks). 2019; 3 (2470547019838971)
        • Hultman R.
        • Mague S.D.
        • Li Q.
        • Katz B.M.
        • Michel N.
        • Lin L.
        • et al.
        Dysregulation of prefrontal cortex-mediated slow-evolving limbic dynamics drives stress-induced emotional pathology.
        Neuron. 2016; 91: 439-452
        • Hultman R.
        • Ulrich K.
        • Sachs B.D.
        • Blount C.
        • Carlson D.E.
        • Ndubuizu N.
        • et al.
        Brain-wide electrical spatiotemporal dynamics encode depression vulnerability.
        Cell. 2018; 173: 166-180.e14
        • Flores Á.
        • Fullana M.À.
        • Soriano-Mas C.
        • Andero R.
        Lost in translation: How to upgrade fear memory research.
        Mol Psychiatry. 2018; 23: 2122-2132
        • Notaras M.
        • van den Buuse M.
        Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders.
        Mol Psychiatry. 2020; 25: 2251-2274
        • Dedovic K.
        • D’Aguiar C.
        • Pruessner J.C.
        What stress does to your brain: A review of neuroimaging studies.
        Can J Psychiatry. 2009; 54: 6-15
        • Lederbogen F.
        • Ulshöfer E.
        • Peifer A.
        • Fehlner P.
        • Bilek E.
        • Streit F.
        • et al.
        No association between cardiometabolic risk and neural reactivity to acute psychosocial stress.
        Neuroimage Clin. 2018; 20: 1115-1122
        • Admon R.
        • Holsen L.M.
        • Aizley H.
        • Remington A.
        • Whitfield-Gabrieli S.
        • Goldstein J.M.
        • Pizzagalli D.A.
        Striatal hypersensitivity during stress in remitted individuals with recurrent depression.
        Biol Psychiatry. 2015; 78: 67-76
        • Villarreal M.F.
        • Wainsztein A.E.
        • Mercè R.Á.
        • Goldberg X.
        • Castro M.N.
        • Brusco L.I.
        • et al.
        Distinct neural processing of acute stress in major depression and borderline personality disorder.
        J Affect Disord. 2021; 286: 123-133
        • Waugh C.E.
        • Hamilton J.P.
        • Chen M.C.
        • Joormann J.
        • Gotlib I.H.
        Neural temporal dynamics of stress in comorbid major depressive disorder and social anxiety disorder.
        Biol Mood Anxiety Disord. 2012; 2: 11
        • Kogler L.
        • Müller V.I.
        • Chang A.
        • Eickhoff S.B.
        • Fox P.T.
        • Gur R.C.
        • Derntl B.
        Psychosocial versus physiological stress—Meta-analyses on deactivations and activations of the neural correlates of stress reactions.
        Neuroimage. 2015; 119: 235-251
        • Adolf J.K.
        • Fried E.I.
        Ergodicity is sufficient but not necessary for group-to-individual generalizability.
        Proc Natl Acad Sci U S A. 2019; 116: 6540-6541
        • Fisher A.J.
        • Medaglia J.D.
        • Jeronimus B.F.
        Lack of group-to-individual generalizability is a threat to human subjects research.
        Proc Natl Acad Sci U S A. 2018; 115: E6106-E6115
        • Finn E.S.
        • Scheinost D.
        • Finn D.M.
        • Shen X.
        • Papademetris X.
        • Constable R.T.
        Can brain state be manipulated to emphasize individual differences in functional connectivity?.
        Neuroimage. 2017; 160: 140-151
        • Waller L.
        • Walter H.
        • Kruschwitz J.D.
        • Reuter L.
        • Müller S.
        • Erk S.
        • Veer I.M.
        Evaluating the replicability, specificity, and generalizability of connectome fingerprints.
        Neuroimage. 2017; 158: 371-377
        • Cole M.W.
        • Ito T.
        • Bassett D.S.
        • Schultz D.H.
        Activity flow over resting-state networks shapes cognitive task activations.
        Nat Neurosci. 2016; 19: 1718-1726
        • Cole M.W.
        • Bassett D.S.
        • Power J.D.
        • Braver T.S.
        • Petersen S.E.
        Intrinsic and task-evoked network architectures of the human brain.
        Neuron. 2014; 83: 238-251
        • Alexander L.
        • Wood C.M.
        • Gaskin P.L.R.
        • Sawiak S.J.
        • Fryer T.D.
        • Hong Y.T.
        • et al.
        Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat.
        Nat Commun. 2020; 11: 5386
        • Grueschow M.
        • Stenz N.
        • Thörn H.
        • Ehlert U.
        • Breckwoldt J.
        • Brodmann Maeder M.
        • et al.
        Real-world stress resilience is associated with the responsivity of the locus coeruleus.
        Nat Commun. 2021; 12: 2275
        • Sousa N.
        The dynamics of the stress neuromatrix.
        Mol Psychiatry. 2016; 21: 302-312
        • Fornito A.
        • Zalesky A.
        • Breakspear M.
        The connectomics of brain disorders.
        Nat Rev Neurosci. 2015; 16: 159-172
        • Murray R.J.
        • Apazoglou K.
        • Celen Z.
        • Dayer A.
        • Aubry J.M.
        • Van De Ville D.
        • et al.
        Maladaptive emotion regulation traits predict altered corticolimbic recovery from psychosocial stress.
        J Affect Disord. 2021; 280: 54-63