From Magnetic Resonance Imaging to the Clinic: Using Neuroimaging to Characterize Psychiatric Phenotypes

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Woo C.W.
        • Chang L.J.
        • Lindquist M.A.
        • Wager T.D.
        Building better biomarkers: Brain models in translational neuroimaging.
        Nat Neurosci. 2017; 20: 365-377
        • Calhoun V.D.
        • Sui J.
        Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 230-244
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • Feczko E.
        • Miranda-Dominguez O.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The heterogeneity problem: Approaches to identify psychiatric subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Goldstein-Piekarski A.N.
        • Ball T.M.
        • Samara Z.
        • Staveland B.R.
        • Keller A.S.
        • Fleming S.L.
        • et al.
        Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety.
        Biol Psychiatry. 2022; 91: 561-571
        • Poldrack R.A.
        • Baker C.I.
        • Durnez J.
        • Gorgolewski K.J.
        • Matthews P.M.
        • Munafo M.R.
        • et al.
        Scanning the horizon: Towards transparent and reproducible neuroimaging research.
        Nat Rev. 2017; 18: 115-126
        • Shackman A.J.
        • Fox A.S.
        Getting serious about variation: Lessons for clinical neuroscience (a commentary on ‘The myth of optimality in clinical neuroscience’).
        Trends Cogn Sci. 2018; 22: 368-369
        • Bzdok D.
        • Meyer-Lindenberg A.
        Machine learning for precision psychiatry: Opportunities and challenges.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 223-230
        • Paulus M.P.
        • Thompson W.K.
        The challenges and opportunities of small effects: The new normal in academic psychiatry.
        JAMA Psychiatry. 2019; 76: 353-354
        • Gratton C.
        • Kraus B.T.
        • Greene D.J.
        • Gordon E.M.
        • Laumann T.O.
        • Nelson S.M.
        • et al.
        Defining individual-specific functional neuroanatomy for precision psychiatry.
        Biol Psychiatry. 2020; 88: 28-39

      Linked Article