Advertisement

Accumbal Histamine Signaling Engages Discrete Interneuron Microcircuits

  • Kevin M. Manz
    Correspondence
    Kevin M. Manz, Ph.D.
    Affiliations
    Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee

    Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee

    Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
    Search for articles by this author
  • Lillian J. Brady
    Affiliations
    Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
    Search for articles by this author
  • Erin S. Calipari
    Affiliations
    Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee

    Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee

    Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
    Search for articles by this author
  • Brad A. Grueter
    Correspondence
    Address correspondence to Brad A. Grueter, Ph.D.
    Affiliations
    Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee

    Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee

    Department of Pharmacology, Vanderbilt University, Nashville, Tennessee

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee

    Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
    Search for articles by this author

      Abstract

      Background

      Central histamine (HA) signaling modulates diverse cortical and subcortical circuits throughout the brain, including the nucleus accumbens (NAc). The NAc, a key striatal subregion directing reward-related behavior, expresses diverse HA receptor subtypes that elicit cellular and synaptic plasticity. However, the neuromodulatory capacity of HA within interneuron microcircuits in the NAc remains unknown.

      Methods

      We combined electrophysiology, pharmacology, voltammetry, and optogenetics in male transgenic reporter mice to determine how HA influences microcircuit motifs controlled by parvalbumin-expressing fast-spiking interneurons (PV-INs) and tonically active cholinergic interneurons (CINs) in the NAc shell.

      Results

      HA enhanced CIN output through an H2 receptor (H2R)–dependent effector pathway requiring Ca2+-activated small-conductance K+ channels, with a small but discernible contribution from H1Rs and synaptic H3Rs. While PV-IN excitability was unaffected by HA, presynaptic H3Rs decreased feedforward drive onto PV-INs via AC-cAMP-PKA (adenylyl cyclase–cyclic adenosine monophosphate–protein kinase A) signaling. H3R-dependent plasticity was differentially expressed at mediodorsal thalamus and prefrontal cortex synapses onto PV-INs, with mediodorsal thalamus synapses undergoing HA-induced long-term depression. These effects triggered downstream shifts in PV-IN- and CIN-controlled microcircuits, including near-complete collapse of mediodorsal thalamus–evoked feedforward inhibition and increased mesoaccumbens dopamine release.

      Conclusions

      HA targets H1R, H2R, and H3Rs in the NAc shell to engage synapse- and cell type–specific mechanisms that bidirectionally regulate PV-IN and CIN microcircuit activity. These findings extend the current conceptual framework of HA signaling and offer critical insight into the modulatory potential of HA in the brain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Takagi H.
        • Morishima Y.
        • Matsuyama T.
        • Hayashi H.
        • Watanabe T.
        • Wada H.
        Histaminergic axons in the neostriatum and cerebral cortex of the rat: A correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker.
        Brain Res. 1986; 364: 114-123
        • Watanabe T.
        • Taguchi Y.
        • Shiosaka S.
        • Tanaka J.
        • Kubota H.
        • Terano Y.
        • et al.
        Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker.
        Brain Res. 1984; 295: 13-25
        • Panula P.
        • Nuutinen S.
        The histaminergic network in the brain: Basic organization and role in disease [no. 7].
        Nat Rev Neurosci. 2013; 14: 472-487
        • Passani M.B.
        • Blandina P.
        Histamine receptors in the CNS as targets for therapeutic intervention.
        Trends Pharmacol Sci. 2011; 32: 242-249
        • Brabant C.
        • Alleva L.
        • Quertemont E.
        • Tirelli E.
        Involvement of the brain histaminergic system in addiction and addiction-related behaviors: A comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence.
        Prog Neurobiol. 2010; 92: 421-441
        • Taylor K.M.
        • Snyder S.H.
        Brain histamine: Rapid apparent turnover altered by restraint and cold stress.
        Science. 1971; 172: 1037-1039
        • Zhang X.Y.
        • Peng S.Y.
        • Shen L.P.
        • Zhuang Q.X.
        • Li B.
        • Xie S.T.
        • et al.
        Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors.
        Proc Natl Acad Sci U S A. 2020; 117: 32155-32164
        • Manz K.M.
        • Becker J.C.
        • Grueter C.A.
        • Grueter B.A.
        Histamine H3 receptor function biases excitatory gain in the nucleus accumbens.
        Biol Psychiatry. 2021; 89: 588-599
        • Bolam J.P.
        • Wainer B.H.
        • Smith A.D.
        Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy.
        Neuroscience. 1984; 12: 711-718
        • Castro D.C.
        • Bruchas M.R.
        A motivational and neuropeptidergic hub: Anatomical and functional diversity within the nucleus accumbens shell.
        Neuron. 2019; 102: 529-552
        • Morse A.K.
        • Leung B.K.
        • Heath E.
        • Bertran-Gonzalez J.
        • Pepin E.
        • Chieng B.C.
        • et al.
        Basolateral amygdala drives a GPCR-mediated striatal memory necessary for predictive learning to influence choice.
        Neuron. 2020; 106: 855-869.e8
        • Schall T.A.
        • Wright W.J.
        • Dong Y.
        Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors.
        Mol Psychiatry. 2021; 26: 234-246
        • Brown M.T.C.
        • Tan K.R.
        • O’Connor E.C.
        • Nikonenko I.
        • Muller D.
        • Lüscher C.
        Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.
        Nature. 2012; 492: 452-456
        • Collins A.L.
        • Aitken T.J.
        • Huang I.W.
        • Shieh C.
        • Greenfield V.Y.
        • Monbouquette H.G.
        • et al.
        Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior.
        Biol Psychiatry. 2019; 86: 388-396
        • Lee J.H.
        • Ribeiro E.A.
        • Kim J.
        • Ko B.
        • Kronman H.
        • Jeong Y.H.
        • et al.
        Dopaminergic regulation of nucleus accumbens cholinergic interneurons demarcates susceptibility to cocaine addiction.
        Biol Psychiatry. 2020; 88: 746-757
        • Wang X.
        • Gallegos D.A.
        • Pogorelov V.M.
        • O’Hare J.K.
        • Calakos N.
        • Wetsel W.C.
        • West A.E.
        Parvalbumin interneurons of the mouse nucleus accumbens are required for amphetamine-induced locomotor sensitization and conditioned place preference.
        Neuropsychopharmacology. 2018; 43: 953-963
        • Cachope R.
        • Mateo Y.
        • Mathur B.N.
        • Irving J.
        • Wang H.L.
        • Morales M.
        • et al.
        Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: Setting the tone for reward processing.
        Cell Rep. 2012; 2: 33-41
        • Manz K.M.
        • Ghose D.
        • Turner B.D.
        • Taylor A.
        • Becker J.
        • Grueter C.A.
        • Grueter B.A.
        Calcium-permeable AMPA receptors promote endocannabinoid signaling at parvalbumin interneuron synapses in the nucleus accumbens core.
        Cell Rep. 2020; 32: 107971
        • Mateo Y.
        • Johnson K.A.
        • Covey D.P.
        • Atwood B.K.
        • Wang H.L.
        • Zhang S.
        • et al.
        Endocannabinoid actions on cortical terminals orchestrate local modulation of dopamine release in the nucleus accumbens.
        Neuron. 2017; 96: 1112-1126.e5
        • Threlfell S.
        • Cragg S.J.
        Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons.
        Front Syst Neurosci. 2011; 5: 11
        • Mamaligas A.A.
        • Ford C.P.
        Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing.
        Neuron. 2016; 91: 574-586
        • Yorgason J.T.
        • Zeppenfeld D.M.
        • Williams J.T.
        Cholinergic interneurons underlie spontaneous dopamine release in nucleus accumbens.
        J Neurosci. 2017; 37: 2086-2096
        • Kawaguchi Y.
        Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum.
        J Neurosci. 1993; 13: 4908-4923
        • Yu J.
        • Yan Y.
        • Li K.L.
        • Wang Y.
        • Huang Y.H.
        • Urban N.N.
        • et al.
        Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration.
        Proc Natl Acad Sci U S A. 2017; 114: E8750-E8759
        • Ji M.J.
        • Zhang X.Y.
        • Peng X.C.
        • Zhang Y.X.
        • Chen Z.
        • Yu L.
        • et al.
        Histamine excites rat GABAergic ventral pallidum neurons via co-activation of H1 and H2 receptors.
        Neurosci Bull. 2018; 34: 1029-1036
        • Dorst M.C.
        • Tokarska A.
        • Zhou M.
        • Lee K.
        • Stagkourakis S.
        • Broberger C.
        • et al.
        Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner.
        Nat Commun. 2020; 11: 5113
        • Cheng J.
        • Umschweif G.
        • Leung J.
        • Sagi Y.
        • Greengard P.
        HCN2 channels in cholinergic interneurons of nucleus accumbens shell regulate depressive behaviors.
        Neuron. 2019; 101: 662-672.e5
        • Goldberg J.A.
        • Wilson C.J.
        Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.
        J Neurosci. 2005; 25: 10230-10238
        • Hopf F.W.
        • Bowers M.S.
        • Chang S.J.
        • Chen B.T.
        • Martin M.
        • Seif T.
        • et al.
        Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence.
        Neuron. 2010; 65: 682-694
        • Takeshita Y.
        • Watanabe T.
        • Sakata T.
        • Munakata M.
        • Ishibashi H.
        • Akaike N.
        Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus.
        Neuroscience. 1998; 87: 797-805
        • Vázquez-Vázquez H.
        • Gonzalez-Sandoval M.D.C.
        • Vega A.V.
        • Arias-Montaño J.A.
        • Barral J.
        Histamine H3 receptor activation modulates glutamate release in the corticostriatal synapse by acting at CaV2.1 (P/Q-type) calcium channels and GIRK (KIR3) potassium channels [published online ahead of print Oct 17].
        Cell Mol Neurobiol. 2020;
        • Drutel G.
        • Peitsaro N.
        • Karlstedt K.
        • Wieland K.
        • Smit M.J.
        • Timmerman H.
        • et al.
        Identification of rat H3 receptor isoforms with different brain expression and signaling properties.
        Mol Pharmacol. 2001; 59: 1-8
        • Nolan S.O.
        • Zachry J.E.
        • Johnson A.R.
        • Brady L.J.
        • Siciliano C.A.
        • Calipari E.S.
        Direct dopamine terminal regulation by local striatal microcircuitry.
        J Neurochem. 2020; 155: 475-493
        • Brimblecombe K.R.
        • Threlfell S.
        • Dautan D.
        • Kosillo P.
        • Mena-Segovia J.
        • Cragg S.J.
        Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors.
        eNeuro. 2018; 5 (ENEURO.0397-17.2018)
        • Kosillo P.
        • Zhang Y.F.
        • Threlfell S.
        • Cragg S.J.
        Cortical control of striatal dopamine transmission via striatal cholinergic interneurons.
        Cereb Cortex. 2016; 26: 4160-4169
        • Bell M.I.
        • Richardson P.J.
        • Lee K.
        Histamine depolarizes cholinergic interneurones in the rat striatum via a H1-receptor mediated action.
        Br J Pharmacol. 2000; 131: 1135-1142
        • Galosi R.
        • Lenard L.
        • Knoche A.
        • Haas H.
        • Huston J.P.
        • Schwarting R.K.
        Dopaminergic effects of histamine administration in the nucleus accumbens and the impact of H1-receptor blockade.
        Neuropharmacology. 2001; 40: 624-633
        • Choi S.J.
        • Ma T.C.
        • Ding Y.
        • Cheung T.
        • Joshi N.
        • Sulzer D.
        • et al.
        Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA.
        Elife. 2020; 9e56920
        • Francis T.C.
        • Yano H.
        • Demarest T.G.
        • Shen H.
        • Bonci A.
        High-frequency activation of nucleus accumbens D1-MSNs drives excitatory potentiation on D2-MSNs.
        Neuron. 2019; 103: 432-444.e3
        • Suzuki E.
        • Momiyama T.
        M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons.
        Eur J Neurosci. 2021; 53: 796-813
        • Vachez Y.M.
        • Tooley J.R.
        • Abiraman K.
        • Matikainen-Ankney B.
        • Casey E.
        • Earnest T.
        • et al.
        Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption.
        Nat Neurosci. 2021; 24: 379-390
        • Assous M.
        • Kaminer J.
        • Shah F.
        • Garg A.
        • Koós T.
        • Tepper J.M.
        Differential processing of thalamic information via distinct striatal interneuron circuits.
        Nat Commun. 2017; 8: 15860
        • Elghaba R.
        • Vautrelle N.
        • Bracci E.
        Mutual control of cholinergic and low-threshold spike interneurons in the striatum.
        Front Cell Neurosci. 2016; 10: 111
        • Faust T.W.
        • Assous M.
        • Tepper J.M.
        • Koós T.
        Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons.
        J Neurosci. 2016; 36: 9505-9511
        • Melendez-Zaidi A.E.
        • Lakshminarasimhah H.
        • Surmeier D.J.
        Cholinergic modulation of striatal nitric oxide-producing interneurons.
        Eur J Neurosci. 2019; 50: 3713-3731
        • Wang Z.
        • Kai L.
        • Day M.
        • Ronesi J.
        • Yin H.H.
        • Ding J.
        • et al.
        Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons.
        Neuron. 2006; 50: 443-452
        • Shin J.H.
        • Adrover M.F.
        • Wess J.
        • Alvarez V.A.
        Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens.
        Proc Natl Acad Sci U S A. 2015; 112: 8124-8129
        • Adrover M.F.
        • Shin J.H.
        • Quiroz C.
        • Ferré S.
        • Lemos J.C.
        • Alvarez V.A.
        Prefrontal cortex-driven dopamine signals in the striatum show unique spatial and pharmacological properties.
        J Neurosci. 2020; 40: 7510-7522
        • Lemos J.C.
        • Shin J.H.
        • Alvarez V.A.
        Striatal cholinergic interneurons are a novel target of corticotropin releasing factor.
        J Neurosci. 2019; 39: 5647-5661
        • Stouffer M.A.
        • Woods C.A.
        • Patel J.C.
        • Lee C.R.
        • Witkovsky P.
        • Bao L.
        • et al.
        Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.
        Nat Commun. 2015; 6: 8543