Advertisement

A Neuroeconomics Approach to Obesity

Published:September 28, 2021DOI:https://doi.org/10.1016/j.biopsych.2021.09.019

      Abstract

      Obesity is a heterogeneous condition that is affected by physiological, behavioral, and environmental factors. Value-based decision making is a useful framework for integrating these factors at the individual level. The disciplines of behavioral economics and reinforcement learning provide tools for identifying specific cognitive and motivational processes that may contribute to the development and maintenance of obesity. Neuroeconomics complements these disciplines by studying the neural mechanisms underlying these processes. We surveyed recent literature on individual decision characteristics that are most frequently implicated in obesity: discounting the value of future outcomes, attitudes toward uncertainty, and learning from rewards and punishments. Our survey highlighted both consistent and inconsistent behavioral findings. These findings underscore the need to examine multiple processes within individuals to identify unique behavioral profiles associated with obesity. Such individual characterization will inform future studies on the neurobiology of obesity as well as the design of effective interventions that are individually tailored.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hales C.M.
        • Carroll M.D.
        • Fryar C.D.
        • Ogden C.L.
        Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief, no. 360.
        National Center for Health Statistics, Hyattsville, MD2020
        • Malik V.S.
        • Willet W.C.
        • Hu F.B.
        Nearly a decade on—trends, risk factors and policy implications in global obesity.
        Nat Rev Endocrinol. 2020; 16: 615-616
        • Bell C.G.
        • Walley A.J.
        • Froguel P.
        The genetics of human obesity.
        Nat Rev Genet. 2005; 6: 221-234
        • Hammond R.A.
        Complex systems modeling for obesity research.
        Prev Chronic Dis. 2009; 6: A97
        • D’Ardenne K.
        • Savage C.R.
        • Small D.
        • Vainik U.
        • Stoeckel L.E.
        Core neuropsychological measures for obesity and diabetes trials: Initial report [published correction appears in Front Psychol 2020; 11:612441].
        Front Psychol. 2020; 11: 554127
        • Rangel A.
        Regulation of dietary choice by the decision-making circuitry.
        Nat Neurosci. 2013; 16: 1717-1724
        • Seabrook L.T.
        • Borgland S.L.
        The orbitofrontal cortex, food intake and obesity.
        J Psychiatry Neurosci. 2020; 45: 304-312
        • Cosme D.
        • Zeithamova D.
        • Stice E.
        • Berkman E.T.
        Multivariate neural signatures for health neuroscience: Assessing spontaneous regulation during food choice.
        Soc Cogn Affect Neurosci. 2020; 15: 1120-1134
        • Fisher G.
        Nutrition labeling reduces valuations of food through multiple health and taste channels.
        Appetite. 2018; 120: 500-504
        • Weygandt M.
        • Spranger J.
        • Leupelt V.
        • Maurer L.
        • Bobbert T.
        • Mai K.
        • Haynes J.D.
        Interactions between neural decision-making circuits predict long-term dietary treatment success in obesity.
        Neuroimage. 2019; 184: 520-534
        • Gobbi S.
        • Weber S.C.
        • Graf G.
        • Hinz D.
        • Asarian L.
        • Geary N.
        • et al.
        Reduced neural satiety responses in women affected by obesity.
        Neuroscience. 2020; 447: 94-112
        • Jia R.
        • Furlong E.
        • Gao S.
        • Santos L.R.
        • Levy I.
        Learning about the Ellsberg Paradox reduces, but does not abolish, ambiguity aversion.
        PLoS One. 2020; 15e0228782
        • Sahm C.R.
        How much does risk tolerance change?.
        Q J Financ. 2012; 2: 1250020
        • Kirby K.N.
        One-year temporal stability of delay-discount rates.
        Psychon Bull Rev. 2009; 16: 457-462
      1. Glimcher P.W. Fehr E. Neuroeconomics: Decision Making and the Brain. 2nd ed. Academic Press, Waltham, MA2013
        • Kable J.W.
        • Glimcher P.W.
        The neural correlates of subjective value during intertemporal choice.
        Nat Neurosci. 2007; 10: 1625-1633
        • Tom S.M.
        • Fox C.R.
        • Trepel C.
        • Poldrack R.A.
        The neural basis of loss aversion in decision-making under risk.
        Science. 2007; 315: 515-518
        • Simon J.J.
        • Wetzel A.
        • Sinno M.H.
        • Skunde M.
        • Bendszus M.
        • Preissl H.
        • et al.
        Integration of homeostatic signaling and food reward processing in the human brain.
        JCI Insight. 2017; 2e92970
        • Suzuki S.
        • Cross L.
        • O’Doherty J.P.
        Elucidating the underlying components of food valuation in the human orbitofrontal cortex.
        Nat Neurosci. 2017; 20: 1780-1786
        • Levy I.
        • Snell J.
        • Nelson A.J.
        • Rustichini A.
        • Glimcher P.W.
        Neural representation of subjective value under risk and ambiguity.
        J Neurophysiol. 2010; 103: 1036-1047
        • Schultz W.
        Multiple dopamine functions at different time courses.
        Annu Rev Neurosci. 2007; 30: 259-288
        • Schultz W.
        • Dayan P.
        • Montague P.R.
        A neural substrate of prediction and reward.
        Science. 1997; 275: 1593-1599
        • Horvath T.L.
        The hardship of obesity: A soft-wired hypothalamus.
        Nat Neurosci. 2005; 8: 561-565
        • Kenny P.J.
        Reward mechanisms in obesity: New insights and future directions.
        Neuron. 2011; 69: 664-679
        • Zald D.H.
        • Treadway M.T.
        Reward processing, neuroeconomics, and psychopathology.
        Annu Rev Clin Psychol. 2017; 13: 471-495
        • Pushkarskaya H.
        • Tolin D.
        • Ruderman L.
        • Kirshenbaum A.
        • Kelly J.M.L.
        • Pittenger C.
        • Levy I.
        Decision-making under uncertainty in obsessive-compulsive disorder.
        J Psychiatr Res. 2015; 69: 166-173
        • Ernst M.
        The usefulness of neuroeconomics for the study of depression across adolescence into adulthood.
        Biol Psychiatry. 2012; 72: 84-86
        • Miu A.C.
        • Miclea M.
        • Houser D.
        Anxiety and decision-making: Toward a neuroeconomics perspective.
        Adv Health Econ Health Serv Res. 2008; 20: 55-84
        • Monterosso J.
        • Piray P.
        • Luo S.
        Neuroeconomics and the study of addiction.
        Biol Psychiatry. 2012; 72: 107-112
        • Ruderman L.
        • Ehrlich D.B.
        • Roy A.
        • Pietrzak R.H.
        • Harpaz-Rotem I.
        • Levy I.
        Posttraumatic stress symptoms and aversion to ambiguous losses in combat veterans.
        Depress Anxiety. 2016; 33: 606-613
      2. Frederick S. Loewenstein G. O’Donoghue T. Time discounting and time preference: A critical review. Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice. Russell Sage Foundation, New York2003: 13-86
        • Ballard K.
        • Knutson B.
        Dissociable neural representations of future reward magnitude and delay during temporal discounting.
        Neuroimage. 2009; 45: 143-150
        • Hare T.A.
        • Hakimi S.
        • Rangel A.
        Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting.
        Front Neurosci. 2014; 8: 50
        • Figner B.
        • Knoch D.
        • Johnson E.J.
        • Krosch A.R.
        • Lisanby S.H.
        • Fehr E.
        • Weber E.U.
        Lateral prefrontal cortex and self-control in intertemporal choice.
        Nat Neurosci. 2010; 13: 538-539
        • Chen F.
        • He Q.
        • Han Y.
        • Zhang Y.
        • Gao X.
        Increased BOLD signals in dlPFC is associated with stronger self-control in food-related decision-making.
        Front Psychiatry. 2018; 9: 689
        • Hare T.A.
        • Camerer C.F.
        • Rangel A.
        Self-control in decision-making involves modulation of the vmPFC valuation system.
        Science. 2009; 324: 646-648
        • Odum A.L.
        • Becker R.J.
        • Haynes J.M.
        • Galizio A.
        • Frye C.C.J.
        • Downey H.
        • et al.
        Delay discounting of different outcomes: Review and theory.
        J Exp Anal Behav. 2020; 113: 657-679
        • Amlung M.
        • Vedelago L.
        • Acker J.
        • Balodis I.
        • MacKillop J.
        Steep delay discounting and addictive behavior: A meta-analysis of continuous associations.
        Addiction. 2017; 112: 51-62
        • Bickel W.K.
        • Marsch L.A.
        Toward a behavioral economic understanding of drug dependence: Delay discounting processes.
        Addiction. 2001; 96: 73-86
        • Audrain-McGovern J.
        • Rodriguez D.
        • Epstein L.H.
        • Cuevas J.
        • Rodgers K.
        • Wileyto E.P.
        Does delay discounting play an etiological role in smoking or is it a consequence of smoking?.
        Drug Alcohol Depend. 2009; 103: 99-106
        • MacKillop J.
        • Amlung M.T.
        • Few L.R.
        • Ray L.A.
        • Sweet L.H.
        • Munafò M.R.
        Delayed reward discounting and addictive behavior: A meta-analysis.
        Psychopharmacology (Berl). 2011; 216: 305-321
        • Tang J.
        • Chrzanowski-Smith O.J.
        • Hutchinson G.
        • Kee F.
        • Hunter R.F.
        Relationship between monetary delay discounting and obesity: A systematic review and meta-regression.
        Int J Obes. 2019; 43: 1135-1146
        • Story G.W.
        • Vlaev I.
        • Seymour B.
        • Darzi A.
        • Dolan R.J.
        Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective.
        Front Behav Neurosci. 2014; 8: 76
        • Epstein L.H.
        • Salvy S.J.
        • Carr K.A.
        • Dearing K.K.
        • Bickel W.K.
        Food reinforcement, delay discounting and obesity.
        Physiol Behav. 2010; 100: 438-445
        • Amlung M.
        • Petker T.
        • Jackson J.
        • Balodis I.
        • MacKillop J.
        Steep discounting of delayed monetary and food rewards in obesity: A meta-analysis.
        Psychol Med. 2016; 46: 2423-2434
        • Kekic M.
        • McClelland J.
        • Bartholdy S.
        • Chamali R.
        • Campbell I.C.
        • Schmidt U.
        Bad things come to those who do not wait: Temporal discounting is associated with compulsive overeating, eating disorder psychopathology and food addiction.
        Front Psychiatry. 2020; 10: 978
        • Price M.
        • Higgs S.
        • Maw J.
        • Lee M.
        A dual-process approach to exploring the role of delay discounting in obesity.
        Physiol Behav. 2016; 162: 46-51
        • Wainwright K.
        • Green B.E.
        • Romanowich P.
        The relationship between delay and social discounting, and body mass index in university students.
        Psychol Rec. 2018; 68: 441-449
        • Fields S.A.
        • Sabet M.
        • Reynolds B.
        Dimensions of impulsive behavior in obese, overweight, and healthy-weight adolescents.
        Appetite. 2013; 70: 60-66
        • Lawyer S.R.
        • Boomhower S.R.
        • Rasmussen E.B.
        Differential associations between obesity and behavioral measures of impulsivity.
        Appetite. 2015; 95: 375-382
        • Price M.
        • Lee M.
        • Higgs S.
        Impulsivity, eating behaviour and performance on a delay discounting task.
        Appetite. 2013; 71: 483
        • Bickel W.K.
        • George Wilson A.
        • Franck C.T.
        • Terry Mueller E.
        • Jarmolowicz D.P.
        • Koffarnus M.N.
        • Fede S.J.
        Using crowdsourcing to compare temporal, social temporal, and probability discounting among obese and non-obese individuals.
        Appetite. 2014; 75: 82-89
        • Dogbe W.
        • Gil J.M.
        Linking risk attitudes, time preferences, and body mass index in Catalonia.
        Econ Hum Biol. 2019; 35: 73-81
        • Dodd M.C.
        Intertemporal discounting as a risk factor for high BMI: Evidence from Australia, 2008.
        Econ Hum Biol. 2014; 12: 83-97
        • Garza K.B.
        • Harris C.V.
        • Bolding M.S.
        Examination of value of the future and health beliefs to explain dietary and physical activity behaviors.
        Res Social Adm Pharm. 2013; 9: 851-862
        • Kang M.I.
        • Ikeda S.
        Time discounting, present biases, and health-related behaviors: Evidence from Japan.
        Econ Hum Biol. 2016; 21: 122-136
        • Simmank J.
        • Murawski C.
        • Bode S.
        • Horstmann A.
        Incidental rewarding cues influence economic decisions in people with obesity.
        Front Behav Neurosci. 2015; 9: 1-16
        • Richards T.J.
        • Hamilton S.F.
        Obesity and hyperbolic discounting: An experimental analysis.
        Journal of Agricultural and Resource Economics. 2012; : 181-198
        • Klement J.
        • Kubera B.
        • Eggeling J.
        • Rädel C.
        • Wagner C.
        • Park S.Q.
        • Peters A.
        Effects of blood glucose on delay discounting, food intake and counterregulation in lean and obese men.
        Psychoneuroendocrinology. 2018; 89: 177-184
        • Jarmolowicz D.P.
        • Cherry J.B.
        • Reed D.D.
        • Bruce J.M.
        • Crespi J.M.
        • Lusk J.L.
        • Bruce A.S.
        Robust relation between temporal discounting rates and body mass.
        Appetite. 2014; 78: 63-67
        • Chabris C.F.
        • Laibson D.
        • Morris C.L.
        • Schuldt J.P.
        • Taubinsky D.
        Individual laboratory-measured discount rates predict field behavior.
        J Risk Uncertain. 2008; 37: 237-269
        • Reimers S.
        • Maylor E.A.
        • Stewart N.
        • Chater N.
        Associations between a one-shot delay discounting measure and age, income, education and real-world impulsive behavior.
        Pers Individ Dif. 2009; 47: 973-978
        • Davis C.
        • Patte K.
        • Curtis C.
        • Reid C.
        Immediate pleasures and future consequences. A neuropsychological study of binge eating and obesity.
        Appetite. 2010; 54: 208-213
        • Graham Thomas J.
        • Seiden A.
        • Koffarnus M.N.
        • Bickel W.K.
        • Wing R.R.
        Delayed reward discounting and grit in men and women with and without obesity.
        Obes Sci Pract. 2015; 1: 131-135
        • VanderBroek-Stice L.
        • Stojek M.K.
        • Beach S.R.H.
        • vanDellen M.R.
        • MacKillop J.
        Multidimensional assessment of impulsivity in relation to obesity and food addiction.
        Appetite. 2017; 112: 59-68
        • Nederkoorn C.
        • Smulders F.T.Y.
        • Havermans R.C.
        • Roefs A.
        • Jansen A.
        Impulsivity in obese women.
        Appetite. 2006; 47: 253-256
        • Kishinevsky F.I.
        • Cox J.E.
        • Murdaugh D.L.
        • Stoeckel L.E.
        • Cook E.W.
        • Weller R.E.
        fMRI reactivity on a delay discounting task predicts weight gain in obese women.
        Appetite. 2012; 58: 582-592
        • de Oliveira A.C.
        • Leonard T.C.
        • Shuval K.
        • Skinner C.S.
        • Eckel C.
        • Murdoch J.C.
        Economic preferences and obesity among a low-income African American community.
        J Econ Behav Organ. 2016; 131: 196-208
        • Conell-Price L.
        • Jamison J.
        Predicting health behaviors with economic preferences and locus of control.
        J Behav Exp Econ. 2015; 54: 1-9
        • Budría S.
        • Lacomba Arias J.A.
        • García Lagosia FM.
        • Swedberg P.
        When obese people are more patient than non-obese people. A study of post-surgery individuals in a weight loss association.
        Rev Int Sociol. 2012; 70: 83-98
        • Hagan K.E.
        • Jarmolowicz D.P.
        • Forbush K.T.
        Reconsidering delay discounting in bulimia nervosa.
        Eat Behav. 2021; 41: 101506
        • Kekic M.
        • Bartholdy S.
        • Cheng J.
        • McClelland J.
        • Boysen E.
        • Musiat P.
        • et al.
        Increased temporal discounting in bulimia nervosa.
        Int J Eat Disord. 2016; 49: 1077-1081
        • Miranda-Olivos R.
        • Steward T.
        • Martínez-Zalacaín I.
        • Mestre-Bach G.
        • Juaneda-Seguí A.
        • Jiménez-Murcia S.
        • et al.
        The neural correlates of delay discounting in obesity and binge eating disorder [published online ahead of print Apr 26].
        J Behav Addict. 2021;
        • Levy I.
        Neuroanatomical substrates for risk behavior.
        Neuroscientist. 2017; 23: 275-286
        • Kahneman D.
        • Tversky A.
        Prospect theory: An analysis of decision under risk.
        Econometrica. 1979; 47: 263-292
        • Navas J.F.
        • Vilar-López R.
        • Perales J.C.
        • Steward T.
        • Fernández-Aranda F.
        • Verdejo-García A.
        Altered decision-making under risk in obesity.
        PLoS One. 2016; 11e0155600
        • Patterson F.
        • Shank C.
        Health habits and behavioral biases.
        (Available at:)
        https://doi.org/10.2139/ssrn.3538882
        Date accessed: November 17, 2021
        • Anderson L.R.
        • Mellor J.M.
        Predicting health behaviors with an experimental measure of risk preference.
        J Health Econ. 2008; 27: 1260-1274
        • Pastore C.
        • Schurer S.
        • Tymula A.
        • Fuller N.
        • Caterson I.
        Economic preferences and obesity: Evidence from a clinical lab-in-field experiment. IZA Discussion Papers 13915.
        Institute of Labor Economics (IZA), 2020
        • Koritzky G.
        • Yechiam E.
        • Bukay I.
        • Milman U.
        Obesity and risk taking. A male phenomenon.
        Appetite. 2012; 59: 289-297
        • Ellsberg D.
        Risk, ambiguity, and the savage axioms.
        Q J Econ. 1961; 75: 643-669
        • Konova A.B.
        • Lopez-Guzman S.
        • Urmanche A.
        • Ross S.
        • Louie K.
        • Rotrosen J.
        • Glimcher P.W.
        Computational markers of risky decision-making for identification of temporal windows of vulnerability to opioid use in a real-world clinical setting.
        JAMA Psychiatry. 2020; 77: 368-377
        • Huettel S.A.
        • Stowe C.J.
        • Gordon E.M.
        • Warner B.T.
        • Platt M.L.
        Neural signatures of economic preferences for risk and ambiguity.
        Neuron. 2006; 49: 765-775
        • Tymula A.
        • Belmaker L.A.R.
        • Ruderman L.
        • Glimcher P.W.
        • Levy I.
        Like cognitive function, decision making across the life span shows profound age-related changes.
        Proc Natl Acad Sci U S A. 2013; 110: 17143-17148
        • Buckholtz J.W.
        • Karmarkar U.
        • Ye S.
        • Brennan G.M.
        • Baskin-Sommers A.
        Blunted ambiguity aversion during cost-benefit decisions in antisocial individuals.
        Sci Rep. 2017; 7: 1-9
        • Schmidt U.
        • Traub S.
        An experimental test of loss aversion.
        J Risk Uncertain. 2002; 25: 233-249
        • Gächter S.
        • Johnson E.J.
        • Herrmann A.
        Individual-level loss aversion in riskless and risky choices.
        Theory Decis. 2021;
        • Lim S.L.
        • Bruce A.S.
        Prospect theory and body mass: Characterizing psychological parameters for weight-related risk attitudes and weight-gain aversion.
        Front Psychol. 2015; 6: 330
        • Kube J.
        • Mathar D.
        • Horstmann A.
        • Kotz S.A.
        • Villringer A.
        • Neumann J.
        Altered monetary loss processing and reinforcement-based learning in individuals with obesity.
        Brain Imaging Behav. 2018; 12: 1431-1449
        • Levy D.J.
        • Glimcher P.W.
        Comparing apples and oranges: Using reward-specific and reward-general subjective value representation in the brain.
        J Neurosci. 2011; 31: 14693-14707
        • Preuschoff K.
        • Quartz S.R.
        • Bossaerts P.
        Human insula activation reflects risk prediction errors as well as risk.
        J Neurosci. 2008; 28: 2745-2752
        • Huettel S.A.
        • Song A.W.
        • McCarthy G.
        Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices.
        J Neurosci. 2005; 25: 3304-3311
        • Mohr P.N.C.
        • Biele G.
        • Heekeren H.R.
        Neural processing of risk.
        J Neurosci. 2010; 30: 6613-6619
        • Preuschoff K.
        • Bossaerts P.
        • Quartz S.R.
        Neural differentiation of expected reward and risk in human subcortical structures.
        Neuron. 2006; 51: 381-390
        • Kahnt T.
        • Tobler P.N.
        Dopamine modulates the functional organization of the orbitofrontal cortex.
        J Neurosci. 2017; 37: 1493-1504
        • Symmonds M.
        • Wright N.D.
        • Bach D.R.
        • Dolan R.J.
        Deconstructing risk: Separable encoding of variance and skewness in the brain.
        Neuroimage. 2011; 58: 1139-1149
        • Bach D.R.
        • Seymour B.
        • Dolan R.J.
        Neural activity associated with the passive prediction of ambiguity and risk for aversive events.
        J Neurosci. 2009; 29: 1648-1656
        • Grubb M.A.
        • Tymula A.
        • Gilaie-Dotan S.
        • Glimcher P.W.
        • Levy I.
        Neuroanatomy accounts for age-related changes in risk preferences.
        Nat Commun. 2016; 7: 13822
        • Gilaie-Dotan S.
        • Tymula A.
        • Cooper N.
        • Kable J.W.
        • Glimcher P.W.
        • Levy I.
        Neuroanatomy predicts individual risk attitudes.
        J Neurosci. 2014; 34: 12394-12401
        • Jung W.H.
        • Lee S.
        • Lerman C.
        • Kable J.W.
        Amygdala functional and structural connectivity predicts individual risk tolerance.
        Neuron. 2018; 98: 394-404.e4
        • Gill H.
        • Gill B.
        • Lipsitz O.
        • Rodrigues N.B.
        • Cha D.S.
        • El-Halabi S.
        • et al.
        The impact of overweight/obesity on monetary reward processing: A systematic review.
        J Psychiatr Res. 2021; 137: 456-464
        • Coppin G.
        • Nolan-Poupart S.
        • Jones-Gotman M.
        • Small D.M.
        Working memory and reward association learning impairments in obesity.
        Neuropsychologia. 2014; 65: 146-155
        • Zhang Z.
        • Manson K.F.
        • Schiller D.
        • Levy I.
        Impaired associative learning with food rewards in obese women.
        Curr Biol. 2014; 24: 1731-1736
        • Meemken M.T.
        • Kube J.
        • Wickner C.
        • Horstmann A.
        Keeping track of promised rewards: Obesity predicts enhanced flexibility when learning from observation.
        Appetite. 2018; 131: 117-124
        • Mathar D.
        • Neumann J.
        • Villringer A.
        • Horstmann A.
        Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.
        Cortex. 2017; 95: 222-237
        • Perpiñá C.
        • Segura M.
        • Sánchez-Reales S.
        Cognitive flexibility and decision-making in eating disorders and obesity.
        Eat Weight Disord. 2017; 22: 435-444
        • Hildebrandt T.
        • Grotzinger A.
        • Reddan M.
        • Greif R.
        • Levy I.
        • Goodman W.
        • Schiller D.
        Testing the disgust conditioning theory of food-avoidance in adolescents with recent onset anorexia nervosa.
        Behav Res Ther. 2015; 71: 131-138
        • Small D.M.
        Dopamine adaptations as a common pathway for neurocognitive impairment in diabetes and obesity: A neuropsychological perspective.
        Front Neurosci. 2017; 11: 134
        • Adams W.K.
        • Sussman J.L.
        • Kaur S.
        • D’souza A.M.
        • Kieffer T.J.
        • Winstanley C.A.
        Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling—two markers of addiction vulnerability.
        Eur J Neurosci. 2015; 42: 3095-3104
        • Johnson P.M.
        • Kenny P.J.
        Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.
        Nat Neurosci. 2010; 13: 635-641
        • Wang G.J.
        • Volkow N.D.
        • Logan J.
        • Pappas N.R.
        • Wong C.T.
        • Zhu W.
        • et al.
        Brain dopamine and obesity.
        Lancet. 2001; 357: 354-357
        • de Weijer B.A.
        • van de Giessen E.
        • van Amelsvoort T.A.
        • Boot E.
        • Braak B.
        • Janssen I.M.
        • et al.
        Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects.
        EJNMMI Res. 2011; 1: 37
        • Cosgrove K.P.
        • Veldhuizen M.G.
        • Sandiego C.M.
        • Morris E.D.
        • Small D.M.
        Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum.
        Synapse. 2015; 69: 195-202
        • Guo J.
        • Simmons W.K.
        • Herscovitch P.
        • Martin A.
        • Hall K.D.
        Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior.
        Mol Psychiatry. 2014; 19: 1078-1084
        • Horstmann A.
        • Fenske W.K.
        • Hankir M.K.
        Argument for a non-linear relationship between severity of human obesity and dopaminergic tone.
        Obes Rev. 2015; 16: 821-830
        • Schoenbaum G.
        • Takahashi Y.
        • Liu T.L.
        • Mcdannald M.A.
        Does the orbitofrontal cortex signal value?.
        Ann N Y Acad Sci. 2011; 1239: 87-99
        • Padoa-Schioppa Camillo
        • Conen K.
        Orbitofrontal cortex: A neural circuit for economic decisions.
        Neuron. 2017; 96: 736-754
        • Zhang Z.
        • Fanning J.
        • Ehrlich D.B.
        • Chen W.
        • Lee D.
        • Levy I.
        Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments.
        Nat Commun. 2017; 8: 1907
        • Gardner R.S.
        • Gold P.E.
        • Korol D.L.
        Inactivation of the striatum in aged rats rescues their ability to learn a hippocampus-sensitive spatial navigation task.
        Neurobiol Learn Mem. 2020; 172: 107231
        • Groman S.M.
        • Lee D.
        • Taylor J.R.
        Unlocking the reinforcement-learning circuits of the orbitofrontal cortex.
        Behav Neurosci. 2021; 135: 120-128
        • Frank G.K.
        • Reynolds J.R.
        • Shott M.E.
        • Jappe L.
        • Yang T.T.
        • Tregellas J.R.
        • O’Reilly R.C.
        Anorexia nervosa and obesity are associated with opposite brain reward response.
        Neuropsychopharmacology. 2012; 37: 2031-2046
        • Shahar N.
        • Hauser T.U.
        • Moutoussis M.
        • Moran R.
        • Keramati M.
        • consortium N.S.P.N.
        • Dolan R.J.
        Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling.
        PLoS Comput Biol. 2019; 15e1006803
        • Sutton R.S.
        • Barto A.G.
        Reinforcement Learning: An Introduction.
        MIT Press, Cambridge, MA2018
        • Dolan R.J.
        • Dayan P.
        Goals and habits in the brain.
        Neuron. 2013; 80: 312-325
        • Janssen L.K.
        • Mahner F.P.
        • Schlagenhauf F.
        • Deserno L.
        • Horstmann A.
        Reliance on model-based and model-free control in obesity.
        Sci Rep. 2020; 10: 22433
        • Voon V.
        • Derbyshire K.
        • Rück C.
        • Irvine M.A.
        • Worbe Y.
        • Enander J.
        • et al.
        Disorders of compulsivity: A common bias towards learning habits.
        Mol Psychiatry. 2015; 20: 345-352
        • Horstmann A.
        • Dietrich A.
        • Mathar D.
        • Pössel M.
        • Villringer A.
        • Neumann J.
        Slave to habit? Obesity is associated with decreased behavioural sensitivity to reward devaluation.
        Appetite. 2015; 87: 175-183
        • Janssen L.K.
        • Duif I.
        • van Loon I.
        • Wegman J.
        • de Vries J.H.M.
        • Cools R.
        • Aarts E.
        Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity.
        Neuroimage. 2017; 146: 148-156
        • Huang Y.
        • Yaple Z.A.
        • Yu R.
        Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning.
        Neuroimage. 2020; 215: 116834
        • Kroemer N.B.
        • Lee Y.
        • Pooseh S.
        • Eppinger B.
        • Goschke T.
        • Smolka M.N.
        L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action.
        Neuroimage. 2019; 186: 113-125
        • Sharp M.E.
        • Foerde K.
        • Daw N.D.
        • Shohamy D.
        Dopamine selectively remediates ‘model-based’ reward learning: a computational approach.
        Brain. 2016; 139: 355-364
        • DiFeliceantonio A.G.
        • Small D.M.
        Dopamine and diet-induced obesity.
        Nat Neurosci. 2019; 22: 1-2
        • Davis C.
        • Strachan S.
        • Berkson M.
        Sensitivity to reward: Implications for overeating and overweight.
        Appetite. 2004; 42: 131-138
        • Davis C.
        • Patte K.
        • Levitan R.
        • Reid C.
        • Tweed S.
        • Curtis C.
        From motivation to behaviour: A model of reward sensitivity, overeating, and food preferences in the risk profile for obesity.
        Appetite. 2007; 48: 12-19
        • Hursh S.R.
        Behavioral economic concepts and methods for studying health behavior.
        in: Bickel W.K. Vuchinich R.E. Reframing Health Behavior Change with Behavioral Economics. Lawrence Erlbaum Associates Publishers, Mahwah, NJ2000: 27-60
        • Epstein L.H.
        • Temple J.L.
        • Neaderhiser B.J.
        • Salis R.J.
        • Erbe R.W.
        • Leddy J.J.
        Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans.
        Behav Neurosci. 2007; 121: 877-886
        • Saelens B.E.
        • Epstein L.H.
        Reinforcing value of food in obese and non-obese women.
        Appetite. 1996; 27: 41-50
        • Giesen J.C.
        • Havermans R.C.
        • Douven A.
        • Tekelenburg M.
        • Jansen A.
        Will work for snack food: The association of BMI and snack reinforcement.
        Obesity (Silver Spring). 2010; 18: 966-970
        • Mathar D.
        • Horstmann A.
        • Pleger B.
        • Villringer A.
        • Neumann J.
        Is it worth the effort? Novel insights into obesity-associated alterations in cost-benefit decision-making.
        Front Behav Neurosci. 2016; 9: 360
        • Rasmussen E.B.
        • Reilly W.
        • Buckley J.
        • Boomhower S.R.
        Rimonabant reduces the essential value of food in the genetically obese Zucker rat: An exponential demand analysis.
        Physiol Behav. 2012; 105: 734-741
        • Atalayer D.
        • Robertson K.L.
        • Haskell-Luevano C.
        • Andreasen A.
        • Rowland N.E.
        Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R1667-R1674
        • Salamone J.D.
        • Correa M.
        The mysterious motivational functions of mesolimbic dopamine.
        Neuron. 2012; 76: 470-485
        • Avena N.M.
        • Rada P.
        • Hoebel B.G.
        Sugar bingeing in rats.
        Curr Protoc Neurosci. 2006; 36: 9-23
        • Kanoski S.E.
        • Davidson T.L.
        Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity.
        Physiol Behav. 2011; 103: 59-68
        • Greenwood C.E.
        • Winocurt G.
        Learning and memory impairment in rats fed a high saturated fat diet.
        Behav Neural Biol. 1990; 53: 74-87
        • Furlong T.M.
        • Jayaweera H.K.
        • Balleine B.W.
        • Corbit L.H.
        Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum.
        J Neurosci. 2014; 34: 5012-5022
        • Morris M.J.
        • Beilharz J.E.
        • Maniam J.
        • Reichelt A.C.
        • Westbrook R.F.
        Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition.
        Neurosci Biobehav Rev. 2015; 58: 36-45
        • Hargrave S.L.
        • Jones S.
        • Davidson T.
        The outward spiral: A vicious cycle model of obesity and cognitive dysfunction.
        Physiol Behav. 2016; 176: 100-106
        • Schebendach J.
        • Broft A.
        • Foltin R.W.
        • Walsh B.T.
        Can the reinforcing value of food be measured in bulimia nervosa?.
        Appetite. 2013; 62: 70-75
        • Bartra O.
        • McGuire J.T.
        • Kable J.W.
        The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value.
        Neuroimage. 2013; 76: 412-427
        • Lopez-Guzman S.
        • Konova A.B.
        • Louie K.
        • Glimcher P.W.
        Risk preferences impose a hidden distortion on measures of choice impulsivity.
        PLoS One. 2018; 13e0191357
        • Morriss J.
        • Christakou A.
        • van Reekum C.M.
        Nothing is safe: Intolerance of uncertainty is associated with compromised fear extinction learning.
        Biol Psychol. 2016; 121: 187-193
        • Daniel T.O.
        • Stanton C.M.
        • Epstein L.H.
        The future is now: Comparing the effect of episodic future thinking on impulsivity in lean and obese individuals.
        Appetite. 2013; 71: 120-125
        • Kakoschke N.
        • Kemps E.
        • Tiggemann M.
        Approach bias modification training and consumption: A review of the literature.
        Addict Behav. 2017; 64: 21-28
        • Stein J.S.
        • Sze Y.Y.
        • Athamneh L.
        • Koffarnus M.N.
        • Epstein L.H.
        • Bickel W.K.
        Think fast: Rapid assessment of the effects of episodic future thinking on delay discounting in overweight/obese participants.
        J Behav Med. 2017; 40: 832-838
        • Kennedy A.P.
        • Shea J.L.
        • Sun G.
        Comparison of the classification of obesity by BMI vs. dual-energy x-ray absorptiometry in the Newfoundland population.
        Obesity. 2009; 17: 2094-2099
        • Rahman M.
        • Berenson A.B.
        Accuracy of current body mass index obesity classification for white, black and Hispanic reproductive-age women.
        Obstet Gynecol. 2010; 115: 982
        • Tincani M.
        • Travers J.
        Replication research, publication bias, and applied behavior analysis.
        Perspect Behav Sci. 2019; 42: 59-75
        • Kraak V.I.
        • Englund T.
        • Misyak S.
        • Serrano E.L.
        A novel marketing mix and choice architecture framework to nudge restaurant customers toward healthy food environments to reduce obesity in the United States.
        Obes Rev. 2017; 18: 852-868
        • Thorndike A.N.
        • Sunstein C.R.
        Obesity prevention in the supermarket—choice architecture and the Supplemental Nutrition Assistance Program.
        Am J Public Health. 2017; 107: 1582-1583