Advertisement

Higher-Order Inputs Involved in Appetite Control

      Abstract

      The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual’s emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hinde R.A.
        Ethological models and the concept of ‘drive’.
        Br J Philos Sci. 1956; 6: 321-331
        • Mohr B.
        Hypemphie der Hypophysk cereb,.i undadurch bedingter buck auf die Hhgmndfliche, ins besondere auf die Sehnerven, das Chiasma derselben und den linkseitigen Himschenkel.
        Wschr ges Heilk. 1840; 6: 565-571
        • Anand B.K.
        • Brobeck J.R.
        Hypothalamic control of food intake in rats and cats.
        Yale J Biol Med. 1951; 24: 123-140
        • Hetherington A.W.
        • Ranson S.W.
        Hypothalamic lesions and adiposity in the rat.
        Anat Rec. 1940; 78: 149-172
        • Grill H.J.
        • Kaplan J.M.
        The neuroanatomical axis for control of energy balance.
        Front Neuroendocrinol. 2002; 23: 2-40
        • Pessoa L.
        • Hof P.R.
        From Paul Broca’s great limbic lobe to the limbic system.
        J Comp Neurol. 2015; 523: 2495-2500
        • Grastyfin E.
        • Lissik K.
        • Szab J.
        • Vereby G.
        Uber die functionelle Bedeutung des hippocampus.
        In: Problems of the Modern Physiology of the Nervous and Muscle System (in Honor of Beritashvili). Academy of Sciences of the Georgian SSR,. 1956; 1: 67-70
        • Hebben N.
        • Corkin S.
        • Eichenbaum H.
        • Shedlack K.
        Diminished ability to interpret and report internal states after bilateral medial temporal resection: case H.M.
        Behav Neurosci. 1985; 99: 1031-1039
        • Rozin P.
        • Dow S.
        • Moscovitch M.
        • Rajaram S.
        What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients.
        Psychol Sci. 1998; 9: 392-396
        • Davidson T.L.
        • Chan K.
        • Jarrard L.E.
        • Kanoski S.E.
        • Clegg D.J.
        • Benoit S.C.
        Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation.
        Hippocampus. 2009; 19: 235-252
        • O’Keefe J.
        A computational theory of the hippocampal cognitive map.
        Prog Brain Res. 1990; 83: 301-312
        • McNaughton B.L.
        • Barnes C.A.
        • O’Keefe J.
        The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely moving rats.
        Exp Brain Res. 1983; 52: 41-49
        • Trouche S.
        • Koren V.
        • Doig N.M.
        • Ellender T.J.
        • El-Gaby M.
        • Lopes-Dos-Santos V.
        • et al.
        A hippocampus-accumbens tripartite neuronal motif guides appetitive memory in space.
        Cell. 2019; 176: 1393-1406.e16
        • Azevedo E.P.
        • Pomeranz L.
        • Cheng J.
        • Schneeberger M.
        • Vaughan R.
        • Stern S.A.
        • et al.
        A role of Drd2 hippocampal neurons in context-dependent food intake.
        Neuron. 2019; 102: 873-886.e5
        • Herzog L.E.
        • Katz D.B.
        • Jadhav S.P.
        Refinement and reactivation of a taste-responsive hippocampal network.
        Curr Biol. 2020; 30: 1306-1311.e4
        • Woods N.I.
        • Stefanini F.
        • Apodaca-Montano D.L.
        • Tan I.M.C.
        • Biane J.S.
        • Kheirbek M.A.
        The dentate gyrus classifies cortical representations of learned stimuli.
        Neuron. 2020; 107: 173-184.e6
        • Xu L.
        • Gong Y.
        • Wang H.
        • Sun X.
        • Guo F.
        • Gao S.
        • Gu F.
        The stimulating effect of ghrelin on gastric motility and firing activity of gastric-distension-sensitive hippocampal neurons and its underlying regulation by the hypothalamus.
        Exp Physiol. 2014; 99: 123-135
        • Sun S.
        • Xu L.
        • Sun X.
        • Guo F.
        • Gong Y.
        • Gao S.
        Orexin-A affects gastric distention sensitive neurons in the hippocampus and gastric motility and regulation by the perifornical area in rats.
        Neurosci Res. 2016; 110: 59-67
        • Hsu T.M.
        • Noble E.E.
        • Liu C.M.
        • Cortella A.M.
        • Konanur V.R.
        • Suarez A.N.
        • et al.
        A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling.
        Mol Psychiatry. 2018; 23: 1555-1565
        • Hsu T.M.
        • Hahn J.D.
        • Konanur V.R.
        • Lam A.
        • Kanoski S.E.
        Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission.
        Neuropsychopharmacology. 2015; 40: 327-337
        • Kanoski S.E.
        • Fortin S.M.
        • Ricks K.M.
        • Grill H.J.
        Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feeding via PI3K-Akt signaling.
        Biol Psychiatry. 2013; 73: 915-923
        • Sweeney P.
        • Yang Y.
        An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding.
        Nat Commun. 2015; 6: 10188
        • Suarez A.N.
        • Liu C.M.
        • Cortella A.M.
        • Noble E.E.
        • Kanoski S.E.
        Ghrelin and orexin interact to increase meal size through a descending hippocampus to hindbrain signaling pathway.
        Biol Psychiatry. 2020; 87: 1001-1011
        • Brutkowski S.
        • Fonberg E.
        • Kreiner J.
        • Mempel E.
        • Sychowa B.
        Aphagia and adipsia in a dog with bilateral complete lesion of the amygdaloid complex.
        Acta Biol Exp (Warsz). 1962; 22: 43-50
        • Schwartz N.B.
        • Kling A.
        The effect of amygdaloid lesions on feeding, grooming and reproduction in rats.
        Acta Neuroveg (Wien). 1964; 26: 12-34
        • Krettek J.E.
        • Price J.L.
        Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat.
        J Comp Neurol. 1978; 178: 225-254
        • Kishi T.
        • Tsumori T.
        • Yokota S.
        • Yasui Y.
        Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat.
        J Comp Neurol. 2006; 496: 349-368
        • Zheng J.
        • Anderson K.L.
        • Leal S.L.
        • Shestyuk A.
        • Gulsen G.
        • Mnatsakanyan L.
        • et al.
        Amygdala-hippocampal dynamics during salient information processing.
        Nat Commun. 2017; 8: 14413
        • Janak P.H.
        • Tye K.M.
        From circuits to behaviour in the amygdala.
        Nature. 2015; 517: 284-292
        • Stern S.A.
        • Azevedo E.P.
        • Pomeranz L.E.
        • Doerig K.R.
        • Ivan V.J.
        • Friedman J.M.
        Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons.
        Cell Metab. 2021; 33: 1418-1432.e6
        • McDonald R.J.
        • White N.M.
        Information acquired by the hippocampus interferes with acquisition of the amygdala-based conditioned-cue preference in the rat.
        Hippocampus. 1995; 5: 189-197
        • Johnsrude I.S.
        • Owen A.M.
        • White N.M.
        • Zhao W.V.
        • Bohbot V.
        Impaired preference conditioning after anterior temporal lobe resection in humans.
        J Neurosci. 2000; 20: 2649-2656
        • Holland P.C.
        • Petrovich G.D.
        • Gallagher M.
        The effects of amygdala lesions on conditioned stimulus-potentiated eating in rats.
        Physiol Behav. 2002; 76: 117-129
        • Hardaway J.A.
        • Halladay L.R.
        • Mazzone C.M.
        • Pati D.
        • Bloodgood D.W.
        • Kim M.
        • et al.
        Central amygdala Prepronociceptin-expressing neurons mediate palatable food consumption and reward [published correction appears in Neuron 2019;102:1088].
        Neuron. 2019; 102: 1037-1052.e7
        • Ishida H.
        • Inoue K.I.
        • Takada M.
        Multisynaptic projections from the amygdala to the ventral premotor cortex in macaque monkeys: Anatomical substrate for feeding behavior.
        Front Neuroanat. 2018; 12: 3
        • Jin T.
        • Jiang Z.
        • Luan X.
        • Qu Z.
        • Guo F.
        • Gao S.
        • et al.
        Exogenous orexin-A microinjected into central nucleus of the amygdala modulates feeding and gastric motility in rats.
        Front Neurosci. 2020; 14: 274
        • Douglass A.M.
        • Kucukdereli H.
        • Ponserre M.
        • Markovic M.
        • Gründemann J.
        • Strobel C.
        • et al.
        Central amygdala circuits modulate food consumption through a positive-valence mechanism.
        Nat Neurosci. 2017; 20: 1384-1394
        • Cai H.
        • Haubensak W.
        • Anthony T.E.
        • Anderson D.J.
        Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.
        Nat Neurosci. 2014; 17: 1240-1248
        • Torruella-Suárez M.L.
        • Vandenberg J.R.
        • Cogan E.S.
        • Tipton G.J.
        • Teklezghi A.
        • Dange K.
        • et al.
        Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice.
        J Neurosci. 2020; 40: 632-647
        • Brady J.V.
        • Nauta W.J.
        Subcortical mechanisms in emotional behavior: The duration of affective changes following septal and habenular lesions in the albino rat.
        J Comp Physiol Psychol. 1955; 48: 412-420
        • Gotsick J.E.
        • Marshall R.C.
        Time course of the septal rage syndrome.
        Physiol Behav. 1972; 9: 685-687
        • Albert D.J.
        • Chew G.L.
        The septal forebrain and the inhibitory modulation of attack and defense in the rat. A review.
        Behav Neural Biol. 1980; 30: 357-388
        • Albert D.J.
        • Walsh M.L.
        • White R.
        • Longley W.
        A comparison of prey eating by spontaneous mouse killing rats and rats with lateral septal, medial accumbens, or medial hypothalamic lesions.
        Physiol Behav. 1984; 33: 517-523
        • Besnard A.
        • Gao Y.
        • TaeWoo Kim M.
        • Twarkowski H.
        • Reed A.K.
        • Langberg T.
        • et al.
        Dorsolateral septum somatostatin interneurons gate mobility to calibrate context-specific behavioral fear responses.
        Nat Neurosci. 2019; 22: 436-446
        • Parfitt G.M.
        • Nguyen R.
        • Bang J.Y.
        • Aqrabawi A.J.
        • Tran M.M.
        • Seo D.K.
        • et al.
        Bidirectional control of anxiety-related behaviors in mice: Role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex.
        Neuropsychopharmacology. 2017; 42: 1715-1728
        • Sheehan T.P.
        • Chambers R.A.
        • Russell D.S.
        Regulation of affect by the lateral septum: Implications for neuropsychiatry.
        Brain Res Brain Res Rev. 2004; 46: 71-117
        • Azevedo E.P.
        • Tan B.
        • Pomeranz L.E.
        • Ivan V.
        • Fetcho R.
        • Schneeberger M.
        • et al.
        A limbic circuit selectively links active escape to food suppression.
        Elife. 2020; 9e58894
        • Bakshi V.P.
        • Newman S.M.
        • Smith-Roe S.
        • Jochman K.A.
        • Kalin N.H.
        Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: Functional homology to CRF1 receptors in basolateral amygdala.
        J Neurosci. 2007; 27: 10568-10577
        • Sweeney P.
        • Yang Y.
        An inhibitory septum to lateral hypothalamus circuit that suppresses feeding.
        J Neurosci. 2016; 36: 11185-11195
        • Gavioli E.C.
        • Canteras N.S.
        • De Lima T.C.
        Anxiogenic-like effect induced by substance P injected into the lateral septal nucleus.
        Neuroreport. 1999; 10: 3399-3403
        • Wang C.
        • Kotz C.M.
        Urocortin in the lateral septal area modulates feeding induced by orexin A in the lateral hypothalamus.
        Am J Physiol Regul Integr Comp Physiol. 2002; 283: R358-R367
        • Terrill S.J.
        • Maske C.B.
        • Williams D.L.
        Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.
        Physiol Behav. 2018; 192: 17-22
        • Terrill S.J.
        • Jackson C.M.
        • Greene H.E.
        • Lilly N.
        • Maske C.B.
        • Vallejo S.
        • Williams D.L.
        Role of lateral septum glucagon-like peptide 1 receptors in food intake.
        Am J Physiol Regul Integr Comp Physiol. 2016; 311: R124-R132
        • Scopinho A.A.
        • Resstel L.B.
        • Corrêa F.M.
        alpha(1)-adrenoceptors in the lateral septal area modulate food intake behaviour in rats.
        Br J Pharmacol. 2008; 155: 752-756
        • Trent N.L.
        • Menard J.L.
        Lateral septal infusions of the neuropeptide Y Y2 receptor agonist, NPY(13–36) differentially affect different defensive behaviors in male, Long Evans rats.
        Physiol Behav. 2013; 110–111: 20-29
        • Terrill S.J.
        • Wall K.D.
        • Medina N.D.
        • Maske C.B.
        • Williams D.L.
        Lateral septum growth hormone secretagogue receptor affects food intake and motivation for sucrose reinforcement.
        Am J Physiol Regul Integr Comp Physiol. 2018; 315: R76-R83
        • Calderwood M.T.
        • Tseng A.
        • Glenn Stanley B.
        Lateral septum mu opioid receptors in stimulation of feeding.
        Brain Res. 2020; 1734: 146648
        • Buresova O.
        Vliianie rasprostraniaiushcheisia EEG depressii na bezuslovnye i natural’nye uslovnye pishchevye refleksy v technie depressii [Effect of spreading EEG depression on unconditioned and natural conditioned digestive reflexes during the depression].
        Physiol Bohemoslov. 1956; 5: 350-358
        • Kolb B.
        • Nonneman A.J.
        Functional development of prefrontal cortex in rats continues into adolescence.
        Science. 1976; 193: 335-336
        • Huston J.P.
        • Bures J.
        Drinking and eating elicited by cortical spreading depression.
        Science. 1970; 169: 702-704
        • Wise S.P.
        Forward frontal fields: Phylogeny and fundamental function.
        Trends Neurosci. 2008; 31: 599-608
        • Carlén M.
        What constitutes the prefrontal cortex?.
        Science. 2017; 358: 478-482
        • Laubach M.
        • Amarante L.M.
        • Swanson K.
        • White S.R.
        What, if anything, is rodent prefrontal cortex?.
        eNeuro. 2018; 5 (ENEURO.0315-0318.2018)
        • Oh S.W.
        • Harris J.A.
        • Ng L.
        • Winslow B.
        • Cain N.
        • Mihalas S.
        • et al.
        A mesoscale connectome of the mouse brain.
        Nature. 2014; 508: 207-214
        • Land B.B.
        • Narayanan N.S.
        • Liu R.J.
        • Gianessi C.A.
        • Brayton C.E.
        • Grimaldi D.M.
        • et al.
        Medial prefrontal D1 dopamine neurons control food intake.
        Nat Neurosci. 2014; 17: 248-253
        • Mena J.D.
        • Sadeghian K.
        • Baldo B.A.
        Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex.
        J Neurosci. 2011; 31: 3249-3260
        • Mena J.D.
        • Selleck R.A.
        • Baldo B.A.
        Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding.
        J Neurosci. 2013; 33: 18540-18552
        • Baldo B.A.
        • Spencer R.C.
        • Sadeghian K.
        • Mena J.D.
        GABA-mediated inactivation of medial prefrontal and agranular insular cortex in the rat: Contrasting effects on hunger- and palatability-driven feeding.
        Neuropsychopharmacology. 2016; 41: 960-970
        • Ahn S.
        • Phillips A.G.
        Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex.
        J Neurosci. 2002; 22: 10958-10965
        • McClelland J.
        • Dalton B.
        • Kekic M.
        • Bartholdy S.
        • Campbell I.C.
        • Schmidt U.
        A systematic review of temporal discounting in eating disorders and obesity: Behavioural and neuroimaging findings.
        Neurosci Biobehav Rev. 2016; 71: 506-528
        • Van den Eynde F.
        • Claudino A.M.
        • Mogg A.
        • Horrell L.
        • Stahl D.
        • Ribeiro W.
        • et al.
        Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders.
        Biol Psychiatry. 2010; 67: 793-795
        • Kim S.H.
        • Chung J.H.
        • Kim T.H.
        • Lim S.H.
        • Kim Y.
        • Eun Y.M.
        • Lee Y.A.
        The effects of repetitive transcranial magnetic stimulation on body weight and food consumption in obese adults: A randomized controlled study.
        Brain Stimul. 2019; 12: 1556-1564
        • Safati A.B.
        • Hall P.A.
        Contextual cues as modifiers of cTBS effects on indulgent eating.
        Brain Stimul. 2019; 12: 1253-1260
        • Allen G.V.
        • Saper C.B.
        • Hurley K.M.
        • Cechetto D.F.
        Organization of visceral and limbic connections in the insular cortex of the rat.
        J Comp Neurol. 1991; 311: 1-16
        • Maffei A.
        • Haley M.
        • Fontanini A.
        Neural processing of gustatory information in insular circuits.
        Curr Opin Neurobiol. 2012; 22: 709-716
        • Pérez C.A.
        • Stanley S.A.
        • Wysocki R.W.
        • Havranova J.
        • Ahrens-Nicklas R.
        • Onyimba F.
        • Friedman J.M.
        Molecular annotation of integrative feeding neural circuits.
        Cell Metab. 2011; 13: 222-232
        • Spector A.C.
        • Travers S.P.
        The representation of taste quality in the mammalian nervous system.
        Behav Cogn Neurosci Rev. 2005; 4: 143-191
        • Livneh Y.
        • Ramesh R.N.
        • Burgess C.R.
        • Levandowski K.M.
        • Madara J.C.
        • Fenselau H.
        • et al.
        Homeostatic circuits selectively gate food cue responses in insular cortex.
        Nature. 2017; 546: 611-616
        • Wu Y.
        • Chen C.
        • Chen M.
        • Qian K.
        • Lv X.
        • Wang H.
        • et al.
        The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice.
        Nat Commun. 2020; 11: 640
        • Gehrlach D.A.
        • Weiand C.
        • Gaitanos T.N.
        • Cho E.
        • Klein A.S.
        • Hennrich A.A.
        • et al.
        A whole-brain connectivity map of mouse insular cortex.
        Elife. 2020; 9e55585
        • Zhang-Molina C.
        • Schmit M.B.
        • Cai H.
        Neural circuit mechanism underlying the feeding controlled by insula-central amygdala pathway.
        iScience. 2020; 23: 101033
        • Barbier M.
        • Chometton S.
        • Pautrat A.
        • Miguet-Alfonsi C.
        • Datiche F.
        • Gascuel J.
        • et al.
        A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior.
        Proc Natl Acad Sci U S A. 2020; 117: 15967-15976
        • Yiannakas A.
        • Rosenblum K.
        The insula and taste learning.
        Front Mol Neurosci. 2017; 10: 335
        • Livneh Y.
        • Sugden A.U.
        • Madara J.C.
        • Essner R.A.
        • Flores V.I.
        • Sugden L.A.
        • et al.
        Estimation of current and future physiological states in insular cortex.
        Neuron. 2020; 105: 1094-1111.e10
        • Gutierrez R.
        • Carmena J.M.
        • Nicolelis M.A.
        • Simon S.A.
        Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards.
        J Neurophysiol. 2006; 95: 119-133
        • Jennings J.H.
        • Kim C.K.
        • Marshel J.H.
        • Raffiee M.
        • Ye L.
        • Quirin S.
        • et al.
        Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour.
        Nature. 2019; 565: 645-649
        • Mora F.
        • Avrith D.B.
        • Phillips A.G.
        • Rolls E.T.
        Effects of satiety on self-stimulation of the orbitofrontal cortex in the rhesus monkey.
        Neurosci Lett. 1979; 13: 141-145
        • Nakano Y.
        • Oomura Y.
        • Nishino H.
        • Aou S.
        • Yamamoto T.
        • Nemoto S.
        Neuronal activity in the medial orbitofrontal cortex of the behaving monkey: Modulation by glucose and satiety.
        Brain Res Bull. 1984; 12: 381-385
        • Howard J.D.
        • Reynolds R.
        • Smith D.E.
        • Voss J.L.
        • Schoenbaum G.
        • Kahnt T.
        Targeted stimulation of human orbitofrontal networks disrupts outcome-guided behavior.
        Curr Biol. 2020; 30: 490-498.e4
        • Thompson J.L.
        • Drysdale M.
        • Baimel C.
        • Kaur M.
        • MacGowan T.
        • Pitman K.A.
        • Borgland S.L.
        Obesity-induced structural and neuronal plasticity in the lateral orbitofrontal cortex.
        Neuropsychopharmacology. 2017; 42: 1480-1490
        • Kringelbach M.L.
        Food for thought: Hedonic experience beyond homeostasis in the human brain.
        Neuroscience. 2004; 126: 807-819
        • Babalian A.
        • Eichenberger S.
        • Bilella A.
        • Girard F.
        • Szabolcsi V.
        • Roccaro D.
        • et al.
        The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter.
        Brain Struct Funct. 2019; 224: 293-314
        • Rempel-Clower N.L.
        • Barbas H.
        Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey.
        J Comp Neurol. 1998; 398: 393-419
        • Barbas H.
        • Saha S.
        • Rempel-Clower N.
        • Ghashghaei T.
        Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression.
        BMC Neurosci. 2003; 4: 25
        • Levine A.S.
        • Jewett D.C.
        • Cleary J.P.
        • Kotz C.M.
        • Billington C.J.
        Our journey with neuropeptide Y: Effects on ingestive behaviors and energy expenditure.
        Peptides. 2004; 25: 505-510
        • Gehlert D.R.
        Introduction to the reviews on neuropeptide Y.
        Neuropeptides. 2004; 38: 135-140
        • Joksimovic J.
        • Selakovic D.
        • Jovicic N.
        • Mitrovic S.
        • Mihailovic V.
        • Katanic J.
        • et al.
        Exercise attenuates anabolic steroids-induced anxiety via hippocampal NPY and MC4 receptor in rats.
        Front Neurosci. 2019; 13: 172
        • Li Q.
        • Bartley A.F.
        • Dobrunz L.E.
        Endogenously released neuropeptide Y suppresses hippocampal short-term facilitation and is impaired by stress-induced anxiety.
        J Neurosci. 2017; 37: 23-37
        • Hörmer B.A.
        • Verma D.
        • Gasser E.
        • Wieselthaler-Hölzl A.
        • Herzog H.
        • Tasan R.O.
        Hippocampal NPY Y2 receptors modulate memory depending on emotional valence and time.
        Neuropharmacology. 2018; 143: 20-28
        • Trent N.L.
        • Menard J.L.
        Infusions of neuropeptide Y into the lateral septum reduce anxiety-related behaviors in the rat.
        Pharmacol Biochem Behav. 2011; 99: 580-590
        • Ip C.K.
        • Zhang L.
        • Farzi A.
        • Qi Y.
        • Clarke I.
        • Reed F.
        • et al.
        Amygdala NPY circuits promote the development of accelerated obesity under chronic stress conditions.
        Cell Metab. 2019; 30: 111-128.e6
        • Tasan R.O.
        • Verma D.
        • Wood J.
        • Lach G.
        • Hörmer B.
        • de Lima T.C.
        • et al.
        The role of neuropeptide Y in fear conditioning and extinction.
        Neuropeptides. 2016; 55: 111-126
        • Saffari R.
        • Teng Z.
        • Zhang M.
        • Kravchenko M.
        • Hohoff C.
        • Ambrée O.
        • Zhang W.
        NPY+-, but not PV+- GABAergic neurons mediated long-range inhibition from infra- to prelimbic cortex.
        Transl Psychiatry. 2016; 6: e736
        • Izawa S.
        • Chowdhury S.
        • Miyazaki T.
        • Mukai Y.
        • Ono D.
        • Inoue R.
        • et al.
        REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories.
        Science. 2019; 365: 1308-1313
        • Oh S.T.
        • Liu Q.F.
        • Jeong H.J.
        • Lee S.
        • Samidurai M.
        • Jo J.
        • et al.
        Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer’s disease mouse models.
        Mol Neurobiol. 2019; 56: 8076-8086
        • Sita L.V.
        • Diniz G.B.
        • Canteras N.S.
        • Xavier G.F.
        • Bittencourt J.C.
        Effect of intrahippocampal administration of anti-melanin-concentrating hormone on spatial food-seeking behavior in rats.
        Peptides. 2016; 76: 130-138
        • Noble E.E.
        • Wang Z.
        • Liu C.M.
        • Davis E.A.
        • Suarez A.N.
        • Stein L.M.
        • et al.
        Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone.
        Nat Commun. 2019; 10: 4923
        • Bénard M.
        • Bellisle F.
        • Kesse-Guyot E.
        • Julia C.
        • Andreeva V.A.
        • Etilé F.
        • et al.
        Impulsivity is associated with food intake, snacking, and eating disorders in a general population.
        Am J Clin Nutr. 2019; 109: 117-126
        • Trapp S.
        • Cork S.C.
        PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.
        Am J Physiol Regul Integr Comp Physiol. 2015; 309: R795-R804
        • Eren-Yazicioglu C.Y.
        • Yigit A.
        • Dogruoz R.E.
        • Yapici-Eser H.
        Can GLP-1 be a target for reward system related disorders? A qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol.
        Front Behav Neurosci. 2021; 14: 614884
        • Diano S.
        • Farr S.A.
        • Benoit S.C.
        • McNay E.C.
        • da Silva I.
        • Horvath B.
        • et al.
        Ghrelin controls hippocampal spine synapse density and memory performance.
        Nat Neurosci. 2006; 9: 381-388
        • Tóth K.
        • László K.
        • Lénárd L.
        Role of intraamygdaloid acylated-ghrelin in spatial learning.
        Brain Res Bull. 2010; 81: 33-37
        • Carlini V.P.
        • Varas M.M.
        • Cragnolini A.B.
        • Schiöth H.B.
        • Scimonelli T.N.
        • de Barioglio S.R.
        Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin.
        Biochem Biophys Res Commun. 2004; 313: 635-641
        • Davis E.A.
        • Wald H.S.
        • Suarez A.N.
        • Zubcevic J.
        • Liu C.M.
        • Cortella A.M.
        • et al.
        Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve.
        Curr Biol. 2020; 30: 4510-4518.e6
        • Zhao T.J.
        • Liang G.
        • Li R.L.
        • Xie X.
        • Sleeman M.W.
        • Murphy A.J.
        • et al.
        Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice.
        Proc Natl Acad Sci U S A. 2010; 107: 7467-7472
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue [published correction appears in Nature 1995;374:479].
        Nature. 1994; 372: 425-432
        • Scott M.M.
        • Lachey J.L.
        • Sternson S.M.
        • Lee C.E.
        • Elias C.F.
        • Friedman J.M.
        • Elmquist J.K.
        Leptin targets in the mouse brain.
        J Comp Neurol. 2009; 514: 518-532
        • Kanoski S.E.
        • Hayes M.R.
        • Greenwald H.S.
        • Fortin S.M.
        • Gianessi C.A.
        • Gilbert J.R.
        • Grill H.J.
        Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.
        Neuropsychopharmacology. 2011; 36: 1859-1870
        • Shanley L.J.
        • Irving A.J.
        • Harvey J.
        Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity.
        J Neurosci. 2001; 21: RC186
        • Farr S.A.
        • Banks W.A.
        • Morley J.E.
        Effects of leptin on memory processing.
        Peptides. 2006; 27: 1420-1425
        • Farr O.M.
        • Fiorenza C.
        • Papageorgiou P.
        • Brinkoetter M.
        • Ziemke F.
        • Koo B.B.
        • et al.
        Leptin therapy alters appetite and neural responses to food stimuli in brain areas of leptin-sensitive subjects without altering brain structure.
        J Clin Endocrinol Metab. 2014; 99: E2529-E2538
        • Malik S.
        • McGlone F.
        • Bedrossian D.
        • Dagher A.
        Ghrelin modulates brain activity in areas that control appetitive behavior.
        Cell Metab. 2008; 7: 400-409
        • Kaye W.H.
        • Bulik C.M.
        • Thornton L.
        • Barbarich N.
        • Masters K.
        Comorbidity of anxiety disorders with anorexia and bulimia nervosa.
        Am J Psychiatry. 2004; 161: 2215-2221
        • García-Alba C.
        Anorexia and depression: Depressive comorbidity in anorexic adolescents.
        Span J Psychol. 2004; 7: 40-52
        • Brand-Gothelf A.
        • Leor S.
        • Apter A.
        • Fennig S.
        The impact of comorbid depressive and anxiety disorders on severity of anorexia nervosa in adolescent girls.
        J Nerv Ment Dis. 2014; 202: 759-762
        • Meier S.M.
        • Bulik C.M.
        • Thornton L.M.
        • Mattheisen M.
        • Mortensen P.B.
        • Petersen L.
        Diagnosed anxiety disorders and the risk of subsequent anorexia nervosa: A Danish population register study.
        Eur Eat Disord Rev. 2015; 23: 524-530
        • Root T.L.
        • Szatkiewicz J.P.
        • Jonassaint C.R.
        • Thornton L.M.
        • Pinheiro A.P.
        • Strober M.
        • et al.
        Association of candidate genes with phenotypic traits relevant to anorexia nervosa.
        Eur Eat Disord Rev. 2011; 19: 487-493
        • Stunkard A.J.
        • Faith M.S.
        • Allison K.C.
        Depression and obesity.
        Biol Psychiatry. 2003; 54: 330-337
        • Hryhorczuk C.
        • Sharma S.
        • Fulton S.E.
        Metabolic disturbances connecting obesity and depression.
        Front Neurosci. 2013; 7: 177
        • Dixon J.B.
        • Dixon M.E.
        • O’Brien P.E.
        Depression in association with severe obesity: Changes with weight loss.
        Arch Intern Med. 2003; 163: 2058-2065
        • Luppino F.S.
        • de Wit L.M.
        • Bouvy P.F.
        • Stijnen T.
        • Cuijpers P.
        • Penninx B.W.
        • Zitman F.G.
        Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies.
        Arch Gen Psychiatry. 2010; 67: 220-229
        • Yamada N.
        • Katsuura G.
        • Ochi Y.
        • Ebihara K.
        • Kusakabe T.
        • Hosoda K.
        • Nakao K.
        Impaired CNS leptin action is implicated in depression associated with obesity.
        Endocrinology. 2011; 152: 2634-2643
        • Sharma S.
        • Fulton S.
        Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry.
        Int J Obes (Lond). 2013; 37: 382-389
        • Ely D.R.
        • Dapper V.
        • Marasca J.
        • Corrêa J.B.
        • Gamaro G.D.
        • Xavier M.H.
        • et al.
        Effect of restraint stress on feeding behavior of rats.
        Physiol Behav. 1997; 61: 395-398
        • Yau Y.H.
        • Potenza M.N.
        Stress and eating behaviors.
        Minerva Endocrinol. 2013; 38: 255-267
        • Razzoli M.
        • Pearson C.
        • Crow S.
        • Bartolomucci A.
        Stress, overeating, and obesity: Insights from human studies and preclinical models.
        Neurosci Biobehav Rev. 2017; 76: 154-162
        • Morris M.J.
        • Beilharz J.E.
        • Maniam J.
        • Reichelt A.C.
        • Westbrook R.F.
        Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition.
        Neurosci Biobehav Rev. 2015; 58: 36-45
        • Horesh N.
        • Apter A.
        • Lepkifker E.
        • Ratzoni G.
        • Weizmann R.
        • Tyano S.
        Life events and severe anorexia nervosa in adolescence.
        Acta Psychiatr Scand. 1995; 91: 5-9
        • Guarda A.S.
        • Schreyer C.C.
        • Boersma G.J.
        • Tamashiro K.L.
        • Moran T.H.
        Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning.
        Physiol Behav. 2015; 152: 466-472
        • Hill A.P.
        • Zuckerman K.E.
        • Fombonne E.
        Obesity and autism.
        Pediatrics. 2015; 136: 1051-1061
        • Zilkha N.
        • Kuperman Y.
        • Kimchi T.
        High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism.
        Neuroscience. 2017; 345: 142-154
        • Veniaminova E.
        • Cespuglio R.
        • Cheung C.W.
        • Umriukhin A.
        • Markova N.
        • Shevtsova E.
        • et al.
        Autism-like behaviours and memory deficits result from a western diet in mice.
        Neural Plast. 2017; 2017: 9498247
        • Dietrich M.O.
        • Zimmer M.R.
        • Bober J.
        • Horvath T.L.
        Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding.
        Cell. 2015; 160: 1222-1232
        • Bulik C.M.
        • Sullivan P.F.
        • Fear J.L.
        • Joyce P.R.
        Eating disorders and antecedent anxiety disorders: A controlled study.
        Acta Psychiatr Scand. 1997; 96: 101-107
        • Yilmaz Z.
        • Halvorsen M.
        • Bryois J.
        • Yu D.
        • Thornton L.M.
        • Zerwas S.
        • et al.
        Examination of the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder.
        Mol Psychiatry. 2020; 25: 2036-2046