Advertisement

A Neural Circuit for Spirituality and Religiosity Derived From Patients With Brain Lesions

  • Michael A. Ferguson
    Correspondence
    Address correspondence to Michael A. Ferguson, Ph.D.
    Affiliations
    Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Frederic L.W.V.J. Schaper
    Affiliations
    Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts

    Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
    Search for articles by this author
  • Alexander Cohen
    Affiliations
    Harvard Medical School, Boston, Massachusetts

    Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
    Search for articles by this author
  • Shan Siddiqi
    Affiliations
    Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts

    Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

    Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
    Search for articles by this author
  • Sarah M. Merrill
    Affiliations
    Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
    Search for articles by this author
  • Jared A. Nielsen
    Affiliations
    Department of Psychology, Brigham Young University, Provo, Utah
    Search for articles by this author
  • Jordan Grafman
    Affiliations
    Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois

    Cognitive Neuroscience Laboratory, Think + Speak Lab, Shirley Ryan Ability Lab, Chicago, Illinois
    Search for articles by this author
  • Cosimo Urgesi
    Affiliations
    Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
    Search for articles by this author
  • Franco Fabbro
    Affiliations
    Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
    Search for articles by this author
  • Michael D. Fox
    Affiliations
    Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts

    Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts

    Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts

    Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
    Search for articles by this author

      Abstract

      Background

      Over 80% of the global population consider themselves religious, with even more identifying as spiritual, but the neural substrates of spirituality and religiosity remain unresolved.

      Methods

      In two independent brain lesion datasets (N1 = 88; N2 = 105), we applied lesion network mapping to test whether lesion locations associated with spiritual and religious belief map to a specific human brain circuit.

      Results

      We found that brain lesions associated with self-reported spirituality map to a brain circuit centered on the periaqueductal gray. Intersection of lesion locations with this same circuit aligned with self-reported religiosity in an independent dataset and previous reports of lesions associated with hyper-religiosity. Lesion locations causing delusions and alien limb syndrome also intersected this circuit.

      Conclusions

      These findings suggest that spirituality and religiosity map to a common brain circuit centered on the periaqueductal gray, a brainstem region previously implicated in fear conditioning, pain modulation, and altruistic behavior.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Atran S.
        Gods We Trust: The Evolutionary Landscape of Religion.
        Oxford University Press, Oxford2002
        • Dawkins R.
        • Ward L.
        The God Delusion.
        Houghton Mifflin Company, Boston2006
        • Durkheim E.
        • Swain J.W.
        The Elementary Forms of the Religious Life.
        Dover Publications, Mineola2008
        • Freud S.
        Civilization and Its Discontents.
        Broadview Press, Peterborough2015
        • Laine J.W.
        Meta-Religion: Religion and Power in World History.
        University of California Press, Oakland2014
        • Hackett C.
        • Stonawski M.
        • McClendon D.
        The Changing Global Religious Landscape.
        Pew Research Centre, Washington, D.C.2017
        • Cloninger C.R.
        • Svrakic D.M.
        • Przybeck T.R.
        A psychobiological model of temperament and character.
        Arch Gen Psychiatry. 1993; 50: 975-990
        • Garcia-Romeu A.
        Self-transcendence as a measurable transpersonal construct.
        J Transpers Psychol. 2010; 42: 26
        • Cohen-Zimerman S.
        • Cristofori I.
        • Zhong W.
        • Bulbulia J.
        • Krueger F.
        • Gordon B.
        • Grafman J.
        Neural underpinning of a personal relationship with God and sense of control: A lesion-mapping study.
        Cogn Affect Behav Neurosci. 2020; 20: 575-587
        • Borg J.
        • Andrée B.
        • Soderstrom H.
        • Farde L.
        The serotonin system and spiritual experiences.
        Am J Psychiatry. 2003; 160: 1965-1969
        • Comings D.E.
        • Gonzales N.
        • Saucier G.
        • Johnson J.P.
        • MacMurray J.P.
        The DRD4 gene and the spiritual transcendence scale of the character temperament index.
        Psychiatr Genet. 2000; 10: 185-189
        • Lorenzi C.
        • Serretti A.
        • Mandelli L.
        • Tubazio V.
        • Ploia C.
        • Smeraldi E.
        5-HT1A polymorphism and self-transcendence in mood disorders.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 137B: 33-35
        • Nilsson K.W.
        • Damberg M.
        • Ohrvik J.
        • Leppert J.
        • Lindström L.
        • Anckarsäter H.
        • Oreland L.
        Genes encoding for AP-2beta and the serotonin transporter are associated with the Personality Character Spiritual Acceptance.
        Neurosci Lett. 2007; 411: 233-237
        • Ferguson M.A.
        • Nielsen J.A.
        • King J.B.
        • Dai L.
        • Giangrasso D.M.
        • Holman R.
        • et al.
        Reward, salience, and attentional networks are activated by religious experience in devout Mormons.
        Soc Neurosci. 2018; 13: 104-116
        • Beauregard M.
        • Paquette V.
        Neural correlates of a mystical experience in Carmelite nuns.
        Neurosci Lett. 2006; 405: 186-190
        • Rim J.I.
        • Ojeda J.C.
        • Svob C.
        • Kayser J.
        • Drews E.
        • Kim Y.
        • et al.
        Current understanding of religion, spirituality, and their neurobiological correlates.
        Harv Rev Psychiatry. 2019; 27: 303-316
        • Grafman J.
        • Cristofori I.
        • Zhong W.
        • Bulbulia J.
        The neural basis of religious cognition.
        Curr Dir Psychol Sci. 2020; 29: 126-133
        • Waxman S.G.
        • Geschwind N.
        The interictal behavior syndrome of temporal lobe epilepsy.
        Arch Gen Psychiatry. 1975; 32: 1580-1586
        • Geschwind N.
        Behavioural changes in temporal lobe epilepsy1.
        Psychol Med. 1979; 9: 217-219
        • Ogata A.
        • Miyakawa T.
        Religious experiences in epileptic patients with a focus on ictus-related episodes.
        Psychiatry Clin Neurosci. 1998; 52: 321-325
        • Devinsky O.
        • Lai G.
        Spirituality and religion in epilepsy.
        Epilepsy Behav. 2008; 12: 636-643
        • Urgesi C.
        • Aglioti S.M.
        • Skrap M.
        • Fabbro F.
        The spiritual brain: Selective cortical lesions modulate human self-transcendence.
        Neuron. 2010; 65: 309-319
        • Zhong W.
        • Cristofori I.
        • Bulbulia J.
        • Krueger F.
        • Grafman J.
        Biological and cognitive underpinnings of religious fundamentalism.
        Neuropsychologia. 2017; 100: 18-25
        • Wuerfel J.
        • Krishnamoorthy E.S.
        • Brown R.J.
        • Lemieux L.
        • Koepp M.
        • Tebartz van Elst L.
        • Trimble M.R.
        Religiosity is associated with hippocampal but not amygdala volumes in patients with refractory epilepsy.
        J Neurol Neurosurg Psychiatry. 2004; 75: 640-642
        • Asp E.
        • Ramchandran K.
        • Tranel D.
        Authoritarianism, religious fundamentalism, and the human prefrontal cortex.
        Neuropsychology. 2012; 26: 414-421
        • Fox M.D.
        Mapping symptoms to brain networks with the human connectome.
        N Engl J Med. 2018; 379: 2237-2245
        • Ferguson M.A.
        • Lim C.
        • Cooke D.
        • Darby R.R.
        • Wu O.
        • Rost N.S.
        • et al.
        A human memory circuit derived from brain lesions causing amnesia.
        Nat Commun. 2019; 10: 3497
        • Darby R.R.
        • Horn A.
        • Cushman F.
        • Fox M.D.
        Lesion network localization of criminal behavior.
        Proc Natl Acad Sci U S A. 2018; 115: 601-606
        • Boes A.D.
        • Prasad S.
        • Liu H.
        • Liu Q.
        • Pascual-Leone A.
        • Caviness Jr., V.S.
        • Fox M.D.
        Network localization of neurological symptoms from focal brain lesions.
        Brain. 2015; 138: 3061-3075
        • Darby R.R.
        • Joutsa J.
        • Burke M.J.
        • Fox M.D.
        Lesion network localization of free will.
        Proc Natl Acad Sci U S A. 2018; 115: 10792-10797
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Holmes A.J.
        • Hollinshead M.O.
        • O’Keefe T.M.
        • Petrov V.I.
        • Fariello G.R.
        • Wald L.L.
        • et al.
        Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.
        Sci Data. 2015; 2: 150031
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Van Essen D.C.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc Natl Acad Sci U S A. 2005; 102: 9673-9678
        • Padmanabhan J.L.
        • Cooke D.
        • Joutsa J.
        • Siddiqi S.H.
        • Ferguson M.A.
        • Darby R.R.
        • et al.
        A human depression circuit derived from focal brain lesions.
        Biol Psychiatry. 2019; 86: 749-758
        • Raymont V.
        • Salazar A.M.
        • Krueger F.
        • Grafman J.
        “Studying injured minds” - The Vietnam head injury study and 40 years of brain injury research.
        Front Neurol. 2011; 2: 15
        • Snider S.B.
        • Hsu J.
        • Darby R.R.
        • Cooke D.
        • Fischer D.
        • Cohen A.L.
        • et al.
        Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem.
        Hum Brain Mapp. 2020; 41: 1520-1531
        • Cotovio G.
        • Talmasov D.
        • Barahona-Corrêa J.B.
        • Hsu J.
        • Senova S.
        • Ribeiro R.
        • et al.
        Mapping mania symptoms based on focal brain damage.
        J Clin Invest. 2020; 130: 5209-5222
        • Bell V.
        • Raihani N.
        • Wilkinson S.
        Derationalizing delusions.
        Clin Psychol Sci. 2021; 9: 24-37
        • Bronstein M.V.
        • Pennycook G.
        • Joormann J.
        • Corlett P.R.
        • Cannon T.D.
        Dual-process theory, conflict processing, and delusional belief.
        Clin Psychol Rev. 2019; 72: 101748
        • Fasano A.
        • Laganiere S.E.
        • Lam S.
        • Fox M.D.
        Lesions causing freezing of gait localize to a cerebellar functional network.
        Ann Neurol. 2017; 81: 129-141
        • Kim N.Y.
        • Hsu J.
        • Talmasov D.
        • Joutsa J.
        • Soussand L.
        • Wu O.
        • et al.
        Lesions causing hallucinations localize to one common brain network.
        Mol Psychiatry. 2021; 26: 1299-1309
        • Joutsa J.
        • Horn A.
        • Hsu J.
        • Fox M.D.
        Localizing parkinsonism based on focal brain lesions.
        Brain. 2018; 141: 2445-2456
        • Kapogiannis D.
        • Barbey A.K.
        • Su M.
        • Zamboni G.
        • Krueger F.
        • Grafman J.
        Cognitive and neural foundations of religious belief.
        Proc Natl Acad Sci U S A. 2009; 106: 4876-4881
        • Kim J.J.
        • Rison R.A.
        • Fanselow M.S.
        Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear.
        Behav Neurosci. 1993; 107: 1093-1098
        • Hosobuchi Y.
        Dorsal periaqueductal gray-matter stimulation in humans.
        Pacing Clin Electrophysiol. 1987; 10: 213-216
        • Linnman C.
        • Moulton E.A.
        • Barmettler G.
        • Becerra L.
        • Borsook D.
        Neuroimaging of the periaqueductal gray: State of the field.
        Neuroimage. 2012; 60: 505-522
        • Beauregard M.
        • Courtemanche J.
        • Paquette V.
        • St-Pierre E.L.
        The neural basis of unconditional love.
        Psychiatry Res. 2009; 172: 93-98
        • Jenkins J.S.
        • Ang V.T.
        • Hawthorn J.
        • Rossor M.N.
        • Iversen L.L.
        Vasopressin, oxytocin and neurophysins in the human brain and spinal cord.
        Brain Res. 1984; 291: 111-117
        • Back F.P.
        • Carobrez A.P.
        Periaqueductal gray glutamatergic, cannabinoid and vanilloid receptor interplay in defensive behavior and aversive memory formation.
        Neuropharmacology. 2018; 135: 399-411
        • Koenig H.G.
        In the Wake of Disaster: Religious Responses to Terrorism and Catastrophe.
        Templeton Foundation Press, West Conshohocken2006
        • Kohls N.
        • Sauer S.
        • Offenbächer M.
        • Giordano J.
        Spirituality: An overlooked predictor of placebo effects?.
        Philos Trans R Soc Lond B Biol Sci. 2011; 366: 1838-1848
        • Silva C.
        • McNaughton N.
        Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review.
        Prog Neurobiol. 2019; 177: 33-72
        • Goleman D.
        Healing Emotions: Conversations With the Dalai Lama on Mindfulness, Emotions, and Health.
        Shambhala Publications, Boston2003
        • Pope Benedict X.V.I.
        God Is Love--Deus Caritas Est: Encyclical Letter.
        USCCB Publishing, Washington, D.C.2006
        • Acevedo B.P.
        • Aron A.
        • Fisher H.E.
        • Brown L.L.
        Neural correlates of long-term intense romantic love.
        Soc Cogn Affect Neurosci. 2012; 7: 145-159
        • Bartels A.
        • Zeki S.
        The neural basis of romantic love.
        Neuroreport. 2000; 11: 3829-3834
        • Bartels A.
        • Zeki S.
        The neural correlates of maternal and romantic love.
        NeuroImage. 2004; 21: 1155-1166
        • Cacioppo S.
        • Bianchi-Demicheli F.
        • Frum C.
        • Pfaus J.G.
        • Lewis J.W.
        The common neural bases between sexual desire and love: A multilevel kernel density fMRI analysis.
        J Sex Med. 2012; 9: 1048-1054
        • Diamond L.M.
        • Dickenson J.A.
        The neuroimaging of love and desire: Review and future directions.
        Clin Neuropsychiatry. 2012; 9: 39-46
        • Stoléru S.
        • Fonteille V.
        • Cornélis C.
        • Joyal C.
        • Moulier V.
        Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis.
        Neurosci Biobehav Rev. 2012; 36: 1481-1509
        • Noriuchi M.
        • Kikuchi Y.
        • Senoo A.
        The functional neuroanatomy of maternal love: Mother’s response to infant’s attachment behaviors.
        Biol Psychiatry. 2008; 63: 415-423
        • Kim J.J.
        • Cunnington R.
        • Kirby J.N.
        The neurophysiological basis of compassion: An fMRI meta-analysis of compassion and its related neural processes.
        Neurosci Biobehav Rev. 2020; 108: 112-123
        • Purzycki B.G.
        • Apicella C.
        • Atkinson Q.D.
        • Cohen E.
        • McNamara R.A.
        • Willard A.K.
        • et al.
        Moralistic gods, supernatural punishment and the expansion of human sociality.
        Nature. 2016; 530: 327-330
        • Blumenfeld H.
        • McNally K.A.
        • Vanderhill S.D.
        • Paige A.L.
        • Chung R.
        • Davis K.
        • et al.
        Positive and negative network correlations in temporal lobe epilepsy.
        Cereb Cortex. 2004; 14: 892-902
        • Blumenfeld H.
        • Varghese G.I.
        • Purcaro M.J.
        • Motelow J.E.
        • Enev M.
        • McNally K.A.
        • et al.
        Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures.
        Brain. 2009; 132: 999-1012
        • Mueller S.G.
        • Bateman L.M.
        • Laxer K.D.
        Evidence for brainstem network disruption in temporal lobe epilepsy and sudden unexplained death in epilepsy.
        Neuroimage Clin. 2014; 5: 208-216
        • Kraepelin E.
        Dementia Praecox and Paraphrenia.
        Livingstone, London1919
        • Kraepelin E.
        Manic depressive insanity and paranoia.
        J Nerv Ment Dis. 1921; 53: 350
        • Taves A.
        Revelatory Events: Three Case Studies of the Emergence of New Spiritual Paths.
        Princeton University Press, Princeton2016
        • Cole B.
        • Pargament K.
        Spiritual surrender: A paradoxical path to control.
        in: Miller W.R. Integrating Spirituality Into Treatment: Resources for Practitioners. American Psychological Association, Washington, D.C.1999: 179-198
        • Miller W.R.
        • Thoresen C.E.
        Spirituality, religion, and health. An emerging research field.
        Am Psychol. 2003; 58: 24-35
        • McNamara P.
        • Durso R.
        • Brown A.
        Religiosity in patients with Parkinson’s disease.
        Neuropsychiatr Dis Treat. 2006; 2: 341-348
        • Butler P.M.
        • McNamara P.
        • Durso R.
        Deficits in the automatic activation of religious concepts in patients with Parkinson’s disease.
        J Int Neuropsychol Soc. 2010; 16: 252-261