Advertisement

Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders

  • Francesca Copperi
    Affiliations
    Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York
    Search for articles by this author
  • Jung Dae Kim
    Affiliations
    Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York
    Search for articles by this author
  • Sabrina Diano
    Correspondence
    Address correspondence to Sabrina Diano, Ph.D.
    Affiliations
    Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York

    Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York

    Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York
    Search for articles by this author

      Abstract

      Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized.
      The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators
        Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2018; 392: 1789-1858
        • Goldmann E.
        • Galea S.
        Mental health consequences of disasters.
        Annu Rev Public Health. 2014; 35: 169-183
        • Galea S.
        • Ahern J.
        • Resnick H.
        • Kilpatrick D.
        • Bucuvalas M.
        • Gold J.
        • Vlahov D.
        Psychological sequelae of the September 11 terrorist attacks in New York City.
        N Engl J Med. 2002; 346: 982-987
        • Ettman C.K.
        • Abdalla S.M.
        • Cohen G.H.
        • Sampson L.
        • Vivier P.M.
        • Galea S.
        Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic.
        JAMA Netw Open. 2020; 3e2019686
        • American Psychiatric Association, DSM-5 Task Force
        Diagnostic and Statistical Manual of Mental Disorders: DSM-5.
        5th ed. American Psychiatric Publishing, Inc, Arlington, VA2013
        • Lasserre A.M.
        • Glaus J.
        • Vandeleur C.L.
        • Marques-Vidal P.
        • Vaucher J.
        • Bastardot F.
        • et al.
        Depression with atypical features and increase in obesity, body mass index, waist circumference, and fat mass: A prospective, population-based study.
        JAMA Psychiatry. 2014; 71: 880-888
        • De Wit L.M.
        • Van Straten A.
        • Van Herten M.
        • Penninx B.W.
        • Cuijpers P.
        Depression and body mass index, a U-shaped association.
        BMC Public Health. 2009; 9: 14
        • Afshin A.
        • Forouzanfar M.H.
        • Reitsma M.B.
        • Sur P.
        • Estep K.
        • et al.
        • The GBD 2015 Obesity Collaborators
        Health effects of overweight and obesity in 195 countries over 25 years.
        N Engl J Med. 2017; 377: 13-27
        • Wormser D.
        • Kaptoge S.
        • Di Angelantonio E.
        • Wood A.M.
        • Pennells L.
        • et al.
        • Emerging Risk Factors Collaboration
        Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies.
        Lancet. 2011; 377: 1085-1095
        • Astrup A.
        • Finer N.
        Redefining type 2 diabetes: ‘Diabesity’ or ‘obesity dependent diabetes mellitus’?.
        Obes Rev. 2000; 1: 57-59
        • Wearing S.C.
        • Hennig E.M.
        • Byrne N.M.
        • Steele J.R.
        • Hills A.P.
        Musculoskeletal disorders associated with obesity: A biomechanical perspective.
        Obes Rev. 2006; 7: 239-250
        • Hall J.E.
        • Henegar J.R.
        • Dwyer T.M.
        • Liu J.
        • Da Silva A.A.
        • Kuo J.J.
        • Tallam L.
        Is obesity a major cause of chronic kidney disease?.
        Adv Ren Replace Ther. 2004; 11: 41-54
        • Luppino F.S.
        • De Wit L.M.
        • Bouvy P.F.
        • Stijnen T.
        • Cuijpers P.
        • Penninx B.W.J.H.
        • Zitman F.G.
        Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies.
        Arch Gen Psychiatry. 2010; 67: 220-229
        • Xu Q.
        • Anderson D.
        • Lurie-Beck J.
        The relationship between abdominal obesity and depression in the general population: A systematic review and meta-analysis.
        Obes Res Clin Pract. 2011; 5: e267-e360
        • Sharma S.
        • Fulton S.
        Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry.
        Int J Obes (Lond). 2013; 37: 382-389
        • Johnson P.M.
        • Kenny P.J.
        Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.
        Nat Neurosci. 2010; 13: 635-641
        • Watanabe H.
        • Nakano T.
        • Saito R.
        • Akasaka D.
        • Saito K.
        • Ogasawara H.
        • et al.
        Serotonin improves high fat diet induced obesity in mice.
        PLoS One. 2016; 11e0147143
        • Bose M.
        • Oliván B.
        • Laferrère B.
        Stress and obesity: The role of the hypothalamic-pituitary-adrenal axis in metabolic disease.
        Curr Opin Endocrinol Diabetes Obes. 2009; 16: 340-346
        • Overstreet D.H.
        Commentary: A behavioral, psychopharmacological, and neurochemical update on the flinders sensitive line rat, a potential genetic animal model of depression.
        Behav Genet. 1991; 21: 67-74
        • Overstreet D.H.
        • Wegener G.
        The flinders sensitive line rat model of depression-25 years and still producing.
        Pharmacol Rev. 2013; 65: 143-155
        • Peciña S.
        • Cagniard B.
        • Berridge K.C.
        • Aldridge J.W.
        • Zhuang X.
        Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards.
        J Neurosci. 2003; 23: 9395-9402
        • Salamone J.D.
        • Cousins M.S.
        • McCullough L.D.
        • Carriero D.L.
        • Berkowitz R.J.
        Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption.
        Pharmacol Biochem Behav. 1994; 49: 25-31
        • Treadway M.T.
        • Buckholtz J.W.
        • Schwartzman A.N.
        • Lambert W.E.
        • Zald D.H.
        Worth the “EEfRT”? The effort expenditure for rewards task as an objective measure of motivation and anhedonia.
        PLoS One. 2009; 4e6598
        • Yang X.H.
        • Huang J.
        • Zhu C.Y.
        • Wang Y.F.
        • Cheung E.F.
        • Chan R.C.
        • Xie G.R.
        Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients.
        Psychiatry Res. 2014; 220: 874-882
        • Coccurello R.
        Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing.
        Behav Brain Res. 2019; 372: 112041
        • Hill M.N.
        • McLaughlin R.J.
        • Bingham B.
        • Shrestha L.
        • Lee T.T.Y.
        • Gray J.M.
        • et al.
        Endogenous cannabinoid signaling is essential for stress adaptation.
        Proc Natl Acad Sci U S A. 2010; 107: 9406-9411
        • Horder J.
        • Harmer C.J.
        • Cowen P.J.
        • McCabe C.
        Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers.
        Int J Neuropsychopharmacol. 2010; 13: 1103-1113
        • Simmons W.K.
        • Burrows K.
        • Avery J.A.
        • Kerr K.L.
        • Taylor A.
        • Bodurka J.
        • et al.
        Appetite changes reveal depression subgroups with distinct endocrine, metabolic, and immune states.
        Mol Psychiatry. 2020; 25: 1457-1468
        • Blackburn-Munro G.
        • Blackburn-Munro R.E.
        Chronic pain, chronic stress and depression: Coincidence or consequence?.
        J Neuroendocrinol. 2001; 13: 1009-1023
        • Patterson Z.R.
        • Khazall R.
        • MacKay H.
        • Anisman H.
        • Abizaid A.
        Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress.
        Endocrinology. 2013; 154: 1080-1091
        • Scott K.A.
        • Melhorn S.J.
        • Sakai R.R.
        Effects of chronic social stress on obesity.
        Curr Obes Rep. 2012; 1: 16-25
        • Wester V.L.
        • Staufenbiel S.M.
        • Veldhorst M.A.B.
        • Visser J.A.
        • Manenschijn L.
        • Koper J.W.
        • et al.
        Long-term cortisol levels measured in scalp hair of obese patients.
        Obesity (Silver Spring). 2014; 22: 1956-1958
        • Fardet L.
        • Fève B.
        Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events.
        Drugs. 2014; 74: 1731-1745
        • Carroll B.J.
        • Cassidy F.
        • Naftolowitz D.
        • Tatham N.E.
        • Wilson W.H.
        • Iranmanesh A.
        • et al.
        Pathophysiology of hypercortisolism in depression.
        Acta Psychiatr Scand Suppl. 2007; 115: 90-103
        • Brouwer J.P.
        • Appelhof B.C.
        • Hoogendijk W.J.G.
        • Huyser J.
        • Endert E.
        • Zuketto C.
        • et al.
        Thyroid and adrenal axis in major depression: A controlled study in outpatients.
        Eur J Endocrinol. 2005; 152: 185-191
        • Lamers F.
        • Vogelzangs N.
        • Merikangas K.R.
        • de Jonge P.
        • Beekman A.T.
        • Penninx B.W.
        Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression.
        Mol Psychiatry. 2013; 18: 692-699
        • Huszar D.
        • Lynch C.A.
        • Fairchild-Huntress V.
        • Dunmore J.H.
        • Fang Q.
        • Berkemeier L.R.
        • et al.
        Targeted disruption of the melanocortin-4 receptor results in obesity in mice.
        Cell. 1997; 88: 131-141
        • Yaswen L.
        • Diehl N.
        • Brennan M.B.
        • Hochgeschwender U.
        Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin.
        Nat Med. 1999; 5: 1066-1070
        • Challis B.G.
        • Coll A.P.
        • Yeo G.S.H.
        • Pinnock S.B.
        • Dickson S.L.
        • Thresher R.R.
        • et al.
        Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36).
        Proc Natl Acad Sci U S A. 2004; 101: 4695-4700
        • Yeo G.S.H.
        • Farooqi I.S.
        • Aminian S.
        • Halsall D.J.
        • Stanhope R.G.
        • O’Rahilly S.
        A frameshift mutation in MC4R associated with dominantly inherited human obesity [1].
        Nat Genet. 1998; 20: 111-112
        • Vaisse C.
        • Clement K.
        • Durand E.
        • Hercberg S.
        • Guy-Grand B.
        • Froguel P.
        Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity.
        J Clin Invest. 2000; 106: 253-262
        • Krude H.
        • Biebermann H.
        • Luck W.
        • Horn R.
        • Brabant G.
        • Grüters A.
        Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans.
        Nat Genet. 1998; 19: 155-157
        • Benjannet S.
        • Rondeau N.
        • Day R.
        • Chrétien M.
        • Seidah N.G.
        PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues.
        Proc Natl Acad Sci U S A. 1991; 88: 3564-3568
        • Benoit S.
        • Schwartz M.
        • Baskin D.
        • Woods S.C.
        • Seeley R.J.
        CNS melanocortin system involvement in the regulation of food intake.
        Horm Behav. 2000; 37: 299-305
        • Millington G.W.
        • Tung Y.C.
        • Hewson A.K.
        • O’Rahilly S.
        • Dickson S.L.
        Differential effects of alpha-, beta- and gamma(2)-melanocyte-stimulating hormones on hypothalamic neuronal activation and feeding in the fasted rat.
        Neuroscience. 2001; 108: 437-445
        • Kokare D.M.
        • Dandekar M.P.
        • Singru P.S.
        • Gupta G.L.
        • Subhedar N.K.
        Involvement of α-MSH in the social isolation induced anxiety- and depression-like behaviors in rat.
        Neuropharmacology. 2010; 58: 1009-1018
        • Lu X.Y.
        • Barsh G.S.
        • Akil H.
        • Watson S.J.
        Interaction between α-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses.
        J Neurosci. 2003; 23: 7863-7872
        • Bruschetta G.
        • Jin S.
        • Liu Z.W.
        • Kim J.D.
        • Diano S.
        MC4R signaling in dorsal raphe nucleus controls feeding, anxiety, and depression.
        Cell Rep. 2020; 33: 108267
        • Goyal S.N.
        • Kokare D.M.
        • Chopde C.T.
        • Subhedar N.K.
        Alpha-melanocyte stimulating hormone antagonizes antidepressant-like effect of neuropeptide Y in Porsolt’s test in rats.
        Pharmacol Biochem Behav. 2006; 85: 369-377
        • Kim C.S.
        • Lee S.H.
        • Kim R.Y.
        • Kim B.J.
        • Li S.Z.
        • Lee I.H.
        • et al.
        Identification of domains directing specificity of coupling to G-proteins for the melanocortin MC3 and MC4 receptors.
        J Biol Chem. 2002; 277: 31310-31317
        • Chen A.S.
        • Marsh D.J.
        • Trumbauer M.E.
        • Frazier E.G.
        • Guan X.M.
        • Yu H.
        • et al.
        Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass.
        Nat Genet. 2000; 26: 97-102
        • Butler A.A.
        • Kesterson R.A.
        • Khong K.
        • Cullen M.J.
        • Pelleymounter M.A.
        • Dekoning J.
        • et al.
        A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse.
        Endocrinology. 2000; 141: 3518-3521
        • Pandit R.
        • Omrani A.
        • Luijendijk M.C.M.
        • De Vrind V.A.J.
        • Van Rozen A.J.
        • Ophuis R.J.A.O.
        • et al.
        Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward.
        Neuropsychopharmacology. 2016; 41: 2241-2251
        • Butler A.A.
        • Marks D.L.
        • Fan W.
        • Kuhn C.M.
        • Bartolome M.
        • Cone R.D.
        Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat.
        Nat Neurosci. 2001; 4: 605-611
        • Ste Marie L.
        • Luquet S.
        • Cole T.B.
        • Palmiter R.D.
        Modulation of neuropeptide Y expression in adult mice does not affect feeding.
        Proc Natl Acad Sci U S A. 2005; 102: 18632-18637
        • Balthasar N.
        • Dalgaard L.T.
        • Lee C.E.
        • Yu J.
        • Funahashi H.
        • Williams T.
        • et al.
        Divergence of melanocortin pathways in the control of food intake and energy expenditure.
        Cell. 2005; 123: 493-505
        • Chaki S.
        • Okuyama S.
        Involvement of melanocortin-4 receptor in anxiety and depression.
        Peptides. 2005; 26: 1952-1964
        • Ollmann M.M.
        • Wilson B.D.
        • Yang Y.K.
        • Kerns J.A.
        • Chen Y.
        • Gantz I.
        • Barsh G.S.
        Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein.
        Science. 1997; 278: 135-138
        • Rossi M.
        • Kim M.S.
        • Morgan D.G.
        • Small C.J.
        • Edwards C.M.
        • Sunter D.
        • et al.
        A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo.
        Endocrinology. 1998; 139: 4428-4431
        • Nijenhuis W.A.J.
        • Oosterom J.
        • Adan R.A.H.
        AgRP(83–132) acts as an inverse agonist on the human-Melanocortin-4 receptor.
        Mol Endocrinol. 2001; 15: 164-171
        • Wallingford N.
        • Perroud B.
        • Gao Q.
        • Coppola A.
        • Gyengesi E.
        • Liu Z.W.
        • et al.
        Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents.
        J Clin Invest. 2009; 119: 2291-2303
        • Mountjoy K.G.
        Distribution and function of melanocortin receptors within the brain.
        Adv Exp Med Biol. 2010; 681: 29-48
        • Nyamugenda E.
        • Russell S.
        • Cooney K.
        • Griffin H.
        • Hoang V.N.
        • Phelan K.D.
        • Baldini G.
        Obesity by high fat diet decreases the abundance of MC4R protein in the paraventricular nucleus of the hypothalamus without reducing the number of MC4R neurons.
        FASEB J. 2019; 33 (553.4–553.4)
        • Shah B.P.
        • Vong L.
        • Olson D.P.
        • Koda S.
        • Krashes M.J.
        • Ye C.
        • et al.
        MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus.
        Proc Natl Acad Sci U S A. 2014; 111: 13193-13198
        • Boghossian S.
        • Park M.
        • York D.A.
        Melanocortin activity in the amygdala controls appetite for dietary fat.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R385-R393
        • Garza J.C.
        • Kim C.S.
        • Liu J.
        • Zhang W.
        • Lu X.Y.
        Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity.
        J Endocrinol. 2008; 197: 471-482
        • Nectow A.R.
        • Schneeberger M.
        • Zhang H.
        • Field B.C.
        • Renier N.
        • Azevedo E.
        • et al.
        Identification of a brainstem circuit controlling feeding.
        Cell. 2017; 170: 429-442.e11
        • Ghamari-Langroudi M.
        • Cakir I.
        • Lippert R.N.
        • Sweeney P.
        • Litt M.J.
        • Ellacott K.L.J.
        • Cone R.D.
        Regulation of energy rheostasis by the melanocortin-3 receptor.
        Sci Adv. 2018; 4eaat0866
        • Enriori P.J.
        • Chen W.
        • Garcia-Rudaz M.C.
        • Grayson B.E.
        • Evans A.E.
        • Comstock S.M.
        • et al.
        α-melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors.
        Mol Metab. 2016; 5: 807-822
        • McMinn J.E.
        • Wilkinson C.W.
        • Havel P.J.
        • Woods S.C.
        • Schwartz M.W.
        Effect of intracerebroventricular alpha-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression.
        Am J Physiol Regul Integr Comp Physiol. 2000; 279: R695-R703
        • Samama P.
        • Rumennik L.
        • Grippo J.F.
        The melanocortin receptor MCR4 controls fat consumption.
        Regul Pept. 2003; 113: 85-88
        • van den Heuvel J.K.
        • Eggels L.
        • van Rozen A.J.
        • Fliers E.
        • Kalsbeek A.
        • Adan R.A.H.
        • la Fleur S.E.
        Inhibitory effect of the melanocortin receptor agonist melanotan-II (MTII) on feeding depends on dietary fat content and not obesity in rats on free-choice diets.
        Front Behav Neurosci. 2015; 9: 358
        • Davis J.F.
        • Choi D.L.
        • Shurdak J.D.
        • Krause E.G.
        • Fitzgerald M.F.
        • Lipton J.W.
        • et al.
        Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat.
        Physiol Behav. 2011; 102: 491-495
        • Roseberry A.G.
        Altered feeding and body weight following melanocortin administration to the ventral tegmental area in adult rats.
        Psychopharmacol (Berl). 2013; 226: 25-34
        • Pandit R.
        • van der Zwaal E.M.
        • Luijendijk M.C.
        • Brans M.A.
        • van Rozen A.J.
        • Oude Ophuis R.J.A.
        • et al.
        Central melanocortins regulate the motivation for sucrose reward.
        PLoS One. 2015; 10e0121768
        • Adan R.A.H.
        • Szklarczyk A.W.
        • Oosterom J.
        • Brakkee J.H.
        • Nijenhuis W.A.J.
        • Schaaper W.M.M.
        • et al.
        Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat.
        Eur J Pharmacol. 1999; 378: 249-258
        • De Barioglio S.R.
        • Lezcano N.
        • Celis M.E.
        Alpha MSH-induced excessive grooming behavior involves a GABAergic mechanism.
        Peptides. 1991; 12: 203-205
        • Rao T.L.
        • Kokare D.M.
        • Sarkar S.
        • Khisti R.T.
        • Chopde C.T.
        • Subhedar N.
        GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats.
        Pharmacol Biochem Behav. 2003; 76: 417-423
        • Stogner K.A.
        • Holmes P.V.
        Neuropeptide-Y exerts antidepressant-like effects in the forced swim test in rats.
        Eur J Pharmacol. 2000; 387: R9-10
        • Gonzalez M.I.
        • Vaziri S.
        • Wilson C.A.
        Behavioral effects of α-MSH and MCH after central administration in the female rat.
        Peptides. 1996; 17: 171-177
        • Ste Marie L.S.
        • Miura G.I.
        • Marsh D.J.
        • Yagaloff K.
        • Palmiter R.D.
        A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors.
        Proc Natl Acad Sci U S A. 2000; 97: 12339-12344
        • Hinney A.
        • Volckmar A.L.
        • Knoll N.
        Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis.
        Prog Mol Biol Transl Sci. 2013; 114: 147-191
        • Chaki S.
        • Ogawa S.I.
        • Toda Y.
        • Funakoshi T.
        • Okuyama S.
        Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents.
        Eur J Pharmacol. 2003; 474: 95-101
        • Serova L.I.
        • Laukova M.
        • Alaluf L.G.
        • Sabban E.L.
        Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress.
        Behav Brain Res. 2013; 250: 139-147
        • Kishi T.
        • Aschkenasi C.J.
        • Lee C.E.
        • Mountjoy K.G.
        • Saper C.B.
        • Elmquist J.K.
        Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat.
        J Comp Neurol. 2003; 457: 213-235
        • Cowley M.A.
        • Pronchuk N.
        • Fan W.
        • Dinulescu D.M.
        • Colmers W.F.
        • Cone R.D.
        Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: Evidence of a cellular basis for the adipostat.
        Neuron. 1999; 24: 155-163
        • Albert P.R.
        • Benkelfat C.
        • Descarries L.
        The neurobiology of depression-revisiting the serotonin hypothesis. I. Cellular and molecular mechanism.
        Philos Trans R Soc B Biol Sci. 2012; 367: 2378-2381
        • Chaki S.
        • Okuyama S.
        • Nakazato A.
        • Kumagai T.
        • Okubo T.
        • Ikeda Y.
        • et al.
        In vitro pharmacological profile of nonpeptide CRF1 receptor antagonists, CRA1000 and CRA1001.
        Eur J Pharmacol. 1999; 371: 205-211
        • Müller O.A.
        • von Werder K.
        Ectopic production of ACTH and corticotropin-releasing hormone (CRH).
        J Steroid Biochem Mol Biol. 1992; 43: 403-408
        • Vecsernyés M.
        • Biró E.
        • Gardi J.
        • Julesz J.
        • Telegdy G.
        Involvement of endogenous corticotropin-releasing factor in mediation of neuroendocrine and behavioral effects to alpha-melanocyte-stimulating hormone.
        Endocr Res. 2000; 26: 347-356
        • Muglia L.
        • Jacobson L.
        • Dikkes P.
        • Majzoub J.A.
        Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need.
        Nature. 1995; 373: 427-432
        • Weninger S.C.
        • Muglia L.J.
        • Jacobson L.
        • Majzoub J.A.
        CRH-deficient mice have a normal anorectic response to chronic stress.
        Regul Pept. 1999; 84: 69-74
        • Dirks A.
        • Groenink L.
        • Bouwknecht J.A.
        • Hijzen T.H.
        • Van Der Gugten J.
        • Ronken E.
        • et al.
        Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations.
        Eur J Neurosci. 2002; 16: 1751-1760
        • Romanova I.V.
        • Mikhailova E.V.
        • Shpakov A.O.
        Immunochemical identification of melanocortin and leptin receptors on serotoninergic neurons in the rat midbrain.
        Neurosci Behav Physiol. 2019; 49: 832-837
        • Kask A.
        • Schiöth H.B.
        Tonic inhibition of food intake during inactive phase is reversed by the injection of the melanocortin receptor antagonist into the paraventricular nucleus of the hypothalamus and central amygdala of the rat.
        Brain Res. 2000; 887: 460-464
        • Liu J.
        • Garza J.C.
        • Li W.
        • Lu X.Y.
        Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion.
        Int J Neuropsychopharmacol. 2013; 16: 105-120
        • Kwon E.
        • Jo Y.H.
        Activation of the ARCPOMC→MeA projection reduces food intake.
        Front Neural Circuits. 2020; 14: 595783
        • Mountjoy K.G.
        • Robbins L.S.
        • Mortrud M.T.
        • Cone R.D.
        The cloning of a family of genes that encode the melanocortin receptors.
        Science. 1992; 257: 1248-1251
        • Gantz I.
        • Shimoto Y.
        • Konda Y.
        • Miwa H.
        • Dickinson C.J.
        • Yamada T.
        Molecular cloning, expression, and characterization of a fifth melanocortin receptor.
        Biochem Biophys Res Commun. 1994; 200: 1214-1220
        • Dunn A.J.
        • Berridge C.W.
        Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses?.
        Brain Res Brain Res Rev. 1990; 15: 71-100
        • Lippert R.N.
        • Ellacott K.L.J.
        • Cone R.D.
        Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.
        Endocrinology. 2014; 155: 1718-1727
        • Ikemoto S.
        Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory.
        Neurosci Biobehav Rev. 2010; 35: 129-150
        • Kaufling J.
        Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression.
        Cell Tissue Res. 2019; 377: 59-71
        • Roseberry A.G.
        • Stuhrman K.
        • Dunigan A.I.
        Regulation of the mesocorticolimbic and mesostriatal dopamine systems by α-melanocyte stimulating hormone and agouti-related protein.
        Neurosci Biobehav Rev. 2015; 56: 15-25
        • Dunigan A.I.
        • Swanson A.M.
        • Olson D.P.
        • Roseberry A.G.
        Whole-brain efferent and afferent connectivity of mouse ventral tegmental area melanocortin-3 receptor neurons.
        J Comp Neurol. 2021; 529: 1157-1183
        • Yang Y.
        • Xu Y.
        The central melanocortin system and human obesity.
        J Mol Cell Biol. 2020; 12: 785-797
        • Farooqi I.S.
        • O’Rahilly S.
        Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity.
        Nat Clin Pract Endocrinol Metab. 2008; 4: 569-577
        • Yang Y.
        • van der Klaauw A.A.
        • Zhu L.
        • Cacciottolo T.M.
        • He Y.
        • Stadler L.K.J.
        • et al.
        Steroid receptor coactivator-1 modulates the function of pomc neurons and energy homeostasis.
        Nat Commun. 2019; 10: 1718
        • Farooqi I.S.
        • Keogh J.M.
        • Yeo G.S.H.
        • Lank E.J.
        • Cheetham T.
        • O’Rahilly S.
        Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene.
        N Engl J Med. 2003; 348: 1085-1095
        • Siljee J.E.
        • Wang Y.
        • Bernard A.A.
        • Ersoy B.A.
        • Zhang S.
        • Marley A.
        • et al.
        Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.
        Nat Genet. 2018; 50: 180-185
        • Lotta L.A.
        • Mokrosiński J.
        • Mendes de Oliveira E.
        • Li C.
        • Sharp S.J.
        • Luan J.
        • et al.
        Human gain-of-function MC4R variants show signaling bias and protect against obesity.
        Cell. 2019; 177: 597-607.e9
        • Mulugeta A.
        • Zhou A.
        • Vimaleswaran K.S.
        • Dickson C.
        • Hyppönen E.
        Depression increases the genetic susceptibility to high body mass index: Evidence from UK Biobank.
        Depress Anxiety. 2019; 36: 1154-1162
        • Sriram K.
        • Insel P.A.
        G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs?.
        Mol Pharmacol. 2018; 93: 251-258
        • Gonçalves J.P.L.
        • Palmer D.
        • Meldal M.
        MC4R agonists: Structural overview on Antiobesity Therapeutics.
        Trends Pharmacol Sci. 2018; 39: 402-423
        • Clément K.
        • van den Akker E.
        • Argente J.
        • Bahm A.
        • Chung W.K.
        • Connors H.
        • et al.
        Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials.
        Lancet Diabetes Endocrinol. 2020; 8: 960-970
        • Chaki S.
        • Oshida Y.
        • Ogawa S.I.
        • Funakoshi T.
        • Shimazaki T.
        • Okubo T.
        • et al.
        MCL0042: A nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity.
        Pharmacol Biochem Behav. 2005; 82: 621-626
        • Shimazaki T.
        • Chaki S.
        Anxiolytic-like effect of a selective and non-peptidergic melanocortin 4 receptor antagonist, MCL0129, in a social interaction test.
        Pharmacol Biochem Behav. 2005; 80: 395-400
        • Gill H.
        • Gill B.
        • El-Halabi S.
        • Chen-Li D.
        • Lipsitz O.
        • Rosenblat J.D.
        • et al.
        Antidepressant medications and weight change: A narrative review.
        Obesity (Silver Spring). 2020; 28: 2064-2072
        • Heisler L.K.
        • Jobst E.E.
        • Sutton G.M.
        • Zhou L.
        • Borok E.
        • Thornton-Jones Z.
        • et al.
        Serotonin reciprocally regulates melanocortin neurons to modulate food intake.
        Neuron. 2006; 51: 239-249