Advertisement

Fluoroethylnormemantine, a Novel NMDA Receptor Antagonist, for the Prevention and Treatment of Stress-Induced Maladaptive Behavior

      Abstract

      Background

      Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior.

      Methods

      Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection.

      Results

      Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor–mediated bursts in vCA3, indicating a common neurobiological mechanism for further study.

      Conclusions

      Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM’s mechanism of action with the goal of clinical development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        Depression fact sheet.
        (Available at:)
        • National Institute of Mental Health
        Major depression statistics.
        (Available at:)
        • Sanacora G.
        • Treccani G.
        • Popoli M.
        Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders.
        Neuropharmacology. 2012; 62: 63-77
        • Mathews D.C.
        • Henter I.D.
        • Zarate C.A.
        Targeting the glutamatergic system to treat major depressive disorder: Rationale and progress to date.
        Drugs. 2012; 72: 1313-1333
        • Moriguchi S.
        • Takamiya A.
        • Noda Y.
        • Horita N.
        • Wada M.
        • Tsugawa S.
        • et al.
        Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies.
        Mol Psychiatry. 2019; 24: 952-964
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zorumski C.F.
        • Izumi Y.
        • Mennerick S.
        Ketamine: NMDA receptors and beyond.
        J Neurosci. 2016; 36: 11158-11164
        • Abdallah C.G.
        • Sanacora G.
        • Duman R.S.
        • Krystal J.H.
        Ketamine and rapid-acting antidepressants: A window into a new neurobiology for mood disorder therapeutics.
        Annu Rev Med. 2015; 66: 509-523
        • Gerhard D.M.
        • Wohleb E.S.
        • Duman R.S.
        Emerging treatment mechanisms for depression: Focus on glutamate and synaptic plasticity.
        Drug Discov Today. 2016; 21: 454-464
        • Serafini G.
        • Howland R.H.
        • Rovedi F.
        • Girardi P.
        • Amore M.
        The role of ketamine in treatment-resistant depression: A systematic review.
        Curr Neuropharmacol. 2014; 12: 444-461
        • Murrough J.W.
        • Perez A.M.
        • Pillemer S.
        • Stern J.
        • Parides M.K.
        • aan het Rot M.
        • et al.
        Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression.
        Biol Psychiatry. 2013; 74: 250-256
        • Murrough J.W.
        • Perez A.M.
        • Mathew S.J.
        • Charney D.S.
        A case of sustained remission following an acute course of ketamine in treatment-resistant depression.
        J Clin Psychiatry. 2011; 72: 414-415
        • Zarate Jr., C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Daly E.J.
        • Singh J.B.
        • Fedgchin M.
        • Cooper K.
        • Lim P.
        • Shelton R.C.
        • et al.
        Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial.
        JAMA Psychiatry. 2018; 75: 139-148
        • Popova V.
        • Daly E.J.
        • Trivedi M.
        • Cooper K.
        • Lane R.
        • Lim P.
        • et al.
        Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: A randomized double-blind active-controlled study.
        Am J Psychiatry. 2019; 176: 428-438
        • Brachman R.A.
        • McGowan J.C.
        • Perusini J.N.
        • Lim S.C.
        • Pham T.H.
        • Faye C.
        • et al.
        Ketamine as a prophylactic against stress-induced depressive-like behavior.
        Biol Psychiatry. 2016; 79: 776-786
        • McGowan J.C.
        • LaGamma C.T.
        • Lim S.C.
        • Tsitsiklis M.
        • Neria Y.
        • Brachman R.A.
        • Denny C.A.
        Prophylactic ketamine attenuates learned fear.
        Neuropsychopharmacology. 2017; 42: 1577-1589
        • Mastrodonato A.
        • Martinez R.
        • Pavlova I.P.
        • LaGamma C.T.
        • Brachman R.A.
        • Robison A.J.
        • Denny C.A.
        Ventral CA3 activation mediates prophylactic ketamine efficacy against stress-induced depressive-like behavior.
        Biol Psychiatry. 2018; 84: 846-856
        • McGowan J.C.
        • Hill C.
        • Mastrodonato A.
        • LaGamma C.T.
        • Kitayev A.
        • Brachman R.A.
        • et al.
        Prophylactic ketamine alters nucleotide and neurotransmitter metabolism in brain and plasma following stress.
        Neuropsychopharmacology. 2018; 43: 1813-1821
        • Mastrodonato A.
        • Cohensedgh O.
        • LaGamma C.T.
        • McGowan J.C.
        • Hunsberger H.C.
        • Denny C.A.
        Prophylactic (R,S)-ketamine selectively protects against inflammatory stressors.
        Behav Brain Res. 2020; 378: 112238
        • Chen B.K.
        • Luna V.M.
        • LaGamma C.T.
        • Xu X.
        • Deng S.X.
        • Suckow R.F.
        • et al.
        Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine.
        Neuropsychopharmacology. 2020; 45: 1545-1556
        • Chen B.K.
        • Mendez-David I.
        • Luna V.M.
        • Faye C.
        • Gardier A.M.
        • David D.J.
        • Denny C.A.
        Prophylactic efficacy of 5-HT 4 R agonists against stress.
        Neuropsychopharmacology. 2020; 45: 542-552
        • Amat J.
        • Dolzani S.D.
        • Tilden S.
        • Christianson J.P.
        • Kubala K.H.
        • Bartholomay K.
        • et al.
        Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress.
        J Neurosci. 2016; 36: 153-161
        • Dolzani S.D.
        • Baratta M.V.
        • Moss J.M.
        • Leslie N.L.
        • Tilden S.G.
        • Sørensen A.T.
        • et al.
        Inhibition of a descending prefrontal circuit prevents ketamine-induced stress resilience in females.
        eNeuro. 2018; 5 (ENEURO.0025-18.2018)
        • McGhee L.L.
        • Maani C.V.
        • Garza T.H.
        • Gaylord K.M.
        • Black I.H.
        The correlation between ketamine and posttraumatic stress disorder in burned service members.
        J Trauma. 2008; 64 (Discussion S197–S198): S195-S198
        • McGhee L.L.
        • Maani C.V.
        • Garza T.H.
        • Slater T.M.
        • Petz L.N.
        • Fowler M.
        The intraoperative administration of ketamine to burned U.S. service members does not increase the incidence of post-traumatic stress disorder.
        Mil Med. 2014; 179: 41-46
        • Ma J.H.
        • Wang S.Y.
        • Yu H.Y.
        • Li D.Y.
        • Luo S.C.
        • Zheng S.S.
        • et al.
        Prophylactic use of ketamine reduces postpartum depression in Chinese women undergoing cesarean section ✰.
        Psychiatry Res. 2019; 279: 252-258
        • Xu Y.
        • Li Y.
        • Huang X.
        • Chen D.
        • She B.
        • Ma D.
        Single bolus low-dose of ketamine does not prevent postpartum depression: A randomized, double-blind, placebo-controlled, prospective clinical trial.
        Arch Gynecol Obstet. 2017; 295: 1167-1174
        • Salabert A.S.
        • Fonta C.
        • Fontan C.
        • Adel D.
        • Alonso M.
        • Pestourie C.
        • et al.
        Radiolabeling of [18F]-fluoroethylnormemantine and initial in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors.
        Nucl Med Biol. 2015; 42: 643-653
        • Salabert A.S.
        • Mora-Ramirez E.
        • Beaurain M.
        • Alonso M.
        • Fontan C.
        • Tahar H.B.
        • et al.
        Evaluation of [ 18 F]FNM biodistribution and dosimetry based on whole-body PET imaging of rats.
        Nucl Med Biol. 2018; 59: 1-8
        • Yang C.
        • Yang J.
        • Luo A.
        • Hashimoto K.
        Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites.
        Transl Psychiatry. 2019; 9: 280
        • Chen B.K.
        • Le Pen G.
        • Eckmier A.
        • Rubinstenn G.
        • Jay T.M.
        • Denny C.A.
        Fluoroethylnormemantine, a novel derivative of memantine, facilitates extinction learning without sensorimotor deficits.
        Int J Neuropsychopharmacol. 2021; 24: 519-531
        • Almeida R.C.
        • Souza D.G.
        • Soletti R.C.
        • López M.G.
        • Rodrigues A.L.
        • Gabilan N.H.
        Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice.
        Neurosci Lett. 2006; 395: 93-97
        • Couly S.
        • Denus M.
        • Bouchet M.
        • Rubinstenn G.
        • Maurice T.
        Anti-amnesic and neuroprotective effects of Fluoroethylnormemantine in a pharmacological mouse model of Alzheimer’s disease.
        Int J Neuropsychopharmacol. 2021; 24: 142-157
        • Piccinelli M.
        • Wilkinson G.
        Gender differences in depression. Critical review.
        Br J Psychiatry. 2000; 177: 486-492
        • Shansky R.M.
        • Murphy A.Z.
        Considering sex as a biological variable will require a global shift in science culture.
        Nat Neurosci. 2021; 24: 457-464
        • Portera-Cailliau C.
        • Price D.L.
        • Martin L.J.
        N-methyl-D-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies.
        J Neurochem. 1996; 66: 692-700
        • Monyer H.
        • Burnashev N.
        • Laurie D.J.
        • Sakmann B.
        • Seeburg P.H.
        Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.
        Neuron. 1994; 12: 529-540
        • Highland J.N.
        • Zanos P.
        • Georgiou P.
        • Gould T.D.
        Group II metabotropic glutamate receptor blockade promotes stress resilience in mice.
        Neuropsychopharmacology. 2019; 44: 1788-1796
        • Moda-Sava R.N.
        • Murdock M.H.
        • Parekh P.K.
        • Fetcho R.N.
        • Huang B.S.
        • Huynh T.N.
        • et al.
        Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation.
        Science. 2019; 364eaat8078
        • Riaza Bermudo-Soriano C.
        • Perez-Rodriguez M.M.
        • Vaquero-Lorenzo C.
        • Baca-Garcia E.
        New perspectives in glutamate and anxiety.
        Pharmacol Biochem Behav. 2012; 100: 752-774
        • Horn S.R.
        • Charney D.S.
        • Feder A.
        Understanding resilience: New approaches for preventing and treating PTSD.
        Exp Neurol. 2016; 284: 119-132
        • Shin L.M.
        • Liberzon I.
        The neurocircuitry of fear, stress, and anxiety disorders.
        Neuropsychopharmacology. 2010; 35: 169-191
        • Wang M.
        • Arnsten A.F.
        Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates.
        Neurosci Bull. 2015; 31: 191-197
        • Lv Q.
        • Yang L.
        • Li G.
        • Wang Z.
        • Shen Z.
        • Yu W.
        • et al.
        Large-scale persistent network reconfiguration induced by ketamine in anesthetized monkeys: Relevance to mood disorders.
        Biol Psychiatry. 2016; 79: 765-775
        • Nugent A.C.
        • Ballard E.D.
        • Gould T.D.
        • Park L.T.
        • Moaddel R.
        • Brutsche N.E.
        • Zarate C.A.
        Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects.
        Mol Psychiatry. 2019; 24: 1040-1052
        • Zanos P.
        • Gould T.D.
        Mechanisms of ketamine action as an antidepressant.
        Mol Psychiatry. 2018; 23: 801-811
        • Kadriu B.
        • Musazzi L.
        • Henter I.D.
        • Graves M.
        • Popoli M.
        • Zarate Jr., C.A.
        Glutamatergic neurotransmission: Pathway to developing novel rapid-acting antidepressant treatments.
        Int J Neuropsychopharmacol. 2019; 22: 119-135
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Breier A.
        • Malhotra A.K.
        • Pinals D.A.
        • Weisenfeld N.I.
        • Pickar D.
        Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers.
        Am J Psychiatry. 1997; 154: 805-811
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
        J Neurosci. 2007; 27: 11496-11500
        • Chowdhury G.M.
        • Zhang J.
        • Thomas M.
        • Banasr M.
        • Ma X.
        • Pittman B.
        • et al.
        Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects.
        Mol Psychiatry. 2017; 22: 120-126
        • Miller O.H.
        • Yang L.
        • Wang C.C.
        • Hargroder E.A.
        • Zhang Y.
        • Delpire E.
        • Hall B.J.
        GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine.
        Elife. 2014; 3e03581
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Park S.W.
        • Lee J.G.
        • Seo M.K.
        • Lee C.H.
        • Cho H.Y.
        • Lee B.J.
        • et al.
        Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons.
        Int J Neuropsychopharmacol. 2014; 17: 1831-1846
        • Zhou W.
        • Wang N.
        • Yang C.
        • Li X.M.
        • Zhou Z.Q.
        • Yang J.J.
        Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
        Eur Psychiatry. 2014; 29: 419-423
        • Nosyreva E.
        • Szabla K.
        • Autry A.E.
        • Ryazanov A.G.
        • Monteggia L.M.
        • Kavalali E.T.
        Acute suppression of spontaneous neurotransmission drives synaptic potentiation.
        J Neurosci. 2013; 33: 6990-7002
        • Autry A.E.
        • Adachi M.
        • Nosyreva E.
        • Na E.S.
        • Los M.F.
        • Cheng P.F.
        • et al.
        NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.
        Nature. 2011; 475: 91-95
        • Yang Y.
        • Cui Y.
        • Sang K.
        • Dong Y.
        • Ni Z.
        • Ma S.
        • Hu H.
        Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.
        Nature. 2018; 554: 317-322
        • Maeng L.Y.
        • Milad M.R.
        Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones.
        Horm Behav. 2015; 76: 106-117
        • Dalla C.
        • Edgecomb C.
        • Whetstone A.S.
        • Shors T.J.
        Females do not express learned helplessness like males do.
        Neuropsychopharmacology. 2008; 33: 1559-1569
        • Keiser A.A.
        • Turnbull L.M.
        • Darian M.A.
        • Feldman D.E.
        • Song I.
        • Tronson N.C.
        Sex differences in context fear generalization and recruitment of hippocampus and amygdala during retrieval.
        Neuropsychopharmacology. 2017; 42: 397-407
        • Goldstein J.M.
        • Jerram M.
        • Abbs B.
        • Whitfield-Gabrieli S.
        • Makris N.
        Sex differences in stress response circuitry activation dependent on female hormonal cycle.
        J Neurosci. 2010; 30: 431-438
        • Lebron-Milad K.
        • Abbs B.
        • Milad M.R.
        • Linnman C.
        • Rougemount-Bücking A.
        • Zeidan M.A.
        • et al.
        Sex differences in the neurobiology of fear conditioning and extinction: A preliminary fMRI study of shared sex differences with stress-arousal circuitry.
        Biol Mood Anxiety Disord. 2012; 2: 7
        • Kogler L.
        • Gur R.C.
        • Derntl B.
        Sex differences in cognitive regulation of psychosocial achievement stress: Brain and behavior.
        Hum Brain Mapp. 2015; 36: 1028-1042
        • Björkholm C.
        • Monteggia L.M.
        BDNF - A key transducer of antidepressant effects.
        Neuropharmacology. 2016; 102: 72-79
        • Nakao S.
        • Miyamoto E.
        • Masuzawa M.
        • Kambara T.
        • Shingu K.
        Ketamine-induced c-Fos expression in the mouse posterior cingulate and retrosplenial cortices is mediated not only via NMDA receptors but also via sigma receptors.
        Brain Res. 2002; 926: 191-196
        • Radulovic J.
        • Kammermeier J.
        • Spiess J.
        Relationship between fos production and classical fear conditioning: Effects of novelty, latent inhibition, and unconditioned stimulus preexposure.
        J Neurosci. 1998; 18: 7452-7461
        • Knapska E.
        • Maren S.
        Reciprocal patterns of c-fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear.
        Learn Mem. 2009; 16: 486-493
        • Jett J.D.
        • Boley A.M.
        • Girotti M.
        • Shah A.
        • Lodge D.J.
        • Morilak D.A.
        Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway.
        Psychopharmacol (Berl). 2015; 232: 3123-3133
        • Ardalan M.
        • Wegener G.
        • Polsinelli B.
        • Madsen T.M.
        • Nyengaard J.R.
        Neurovascular plasticity of the hippocampus one week after a single dose of ketamine in genetic rat model of depression.
        Hippocampus. 2016; 26: 1414-1423
        • Duman R.S.
        • Monteggia L.M.
        A neurotrophic model for stress-related mood disorders.
        Biol Psychiatry. 2006; 59: 1116-1127
        • Duman R.S.
        • Li N.
        • Liu R.J.
        • Duric V.
        • Aghajanian G.
        Signaling pathways underlying the rapid antidepressant actions of ketamine.
        Neuropharmacology. 2012; 62: 35-41
        • Kaeser P.S.
        • Regehr W.G.
        Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release.
        Annu Rev Physiol. 2014; 76: 333-363
        • Lisman J.
        Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: Long-term potentiation, long-term depression, short-term potentiation and scaling.
        Philos Trans R Soc Lond B Biol Sci. 2017; 372: 20160260
        • Penn A.C.
        • Balik A.
        • Wozny C.
        • Cais O.
        • Greger I.H.
        Activity-mediated AMPA receptor remodeling, driven by alternative splicing in the ligand-binding domain.
        Neuron. 2012; 76: 503-510