Advertisement

The Neurocircuitry of Posttraumatic Stress Disorder and Major Depression: Insights Into Overlapping and Distinct Circuit Dysfunction—A Tribute to Ron Duman

  • Author Footnotes
    1 JEP and VAV contributed equally to this work.
    Jonathan E. Ploski
    Correspondence
    Address correspondence to Jonathan E. Ploski, Ph.D.
    Footnotes
    1 JEP and VAV contributed equally to this work.
    Affiliations
    Department of Neuroscience and Molecular & Cell Biology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
    Search for articles by this author
  • Author Footnotes
    1 JEP and VAV contributed equally to this work.
    Vidita A. Vaidya
    Correspondence
    Vidita A. Vaidya, Ph.D.
    Footnotes
    1 JEP and VAV contributed equally to this work.
    Affiliations
    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Search for articles by this author
  • Author Footnotes
    1 JEP and VAV contributed equally to this work.

      Abstract

      The neurocircuitry that contributes to the pathophysiology of posttraumatic stress disorder and major depressive disorder, psychiatric conditions that exhibit a high degree of comorbidity, likely involves both overlapping and unique structural and functional changes within multiple limbic brain regions. In this review, we discuss neurobiological alterations that are associated with posttraumatic stress disorder and major depressive disorder and highlight both similarities and differences that may exist between these disorders to argue for the existence of a shared neurobiology. We highlight the key contributions based on preclinical studies, emerging from the late Professor Ronald Duman’s research, that have shaped our understanding of the neurocircuitry that contributes to both the etiopathology and treatment of major depressive disorder and posttraumatic stress disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rytwinski N.K.
        • Scur M.D.
        • Feeny N.C.
        • Youngstrom E.A.
        The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: A meta-analysis.
        J Trauma Stress. 2013; 26: 299-309
        • Flory J.D.
        • Yehuda R.
        Comorbidity between post-traumatic stress disorder and major depressive disorder: Alternative explanations and treatment considerations.
        Dialogues Clin Neurosci. 2015; 17: 141-150
        • Blanchard E.B.
        • Buckley T.C.
        • Hickling E.J.
        • Taylor A.E.
        Posttraumatic stress disorder and comorbid major depression: Is the correlation an illusion?.
        J Anxiety Disord. 1998; 12: 21-37
        • Campbell D.G.
        • Felker B.L.
        • Liu C.F.
        • Yano E.M.
        • Kirchner J.E.
        • Chan D.
        • et al.
        Prevalence of depression-PTSD comorbidity: Implications for clinical practice guidelines and primary care-based interventions.
        J Gen Intern Med. 2007; 22: 711-718
        • Taghva A.
        • Oluigbo C.
        • Corrigan J.
        • Rezai A.R.
        Posttraumatic stress disorder: Neurocircuitry and implications for potential deep brain stimulation.
        Stereotact Funct Neurosurg. 2013; 91: 207-219
        • Hare B.D.
        • Duman R.S.
        Prefrontal cortex circuits in depression and anxiety: Contribution of discrete neuronal populations and target regions.
        Mol Psychiatry. 2020; 25: 2742-2758
        • Lucassen P.J.
        • Pruessner J.
        • Sousa N.
        • Almeida O.F.X.
        • Van Dam A.M.
        • Rajkowska G.
        • et al.
        Neuropathology of stress.
        Acta Neuropathol. 2014; 127: 109-135
        • McLaughlin K.A.
        • Koenen K.C.
        • Bromet E.J.
        • Karam E.G.
        • Liu H.
        • Petukhova M.
        • et al.
        Childhood adversities and post-traumatic stress disorder: Evidence for stress sensitisation in the World Mental Health Surveys.
        Br J Psychiatry. 2017; 211: 280-288
        • Cowan C.S.M.
        • Callaghan B.L.
        • Kan J.M.
        • Richardson R.
        The lasting impact of early-life adversity on individuals and their descendants: Potential mechanisms and hope for intervention.
        Genes Brain Behav. 2016; 15: 155-168
        • Liu R.T.
        Childhood adversities and depression in adulthood: Current findings and future directions.
        Clin Psychol (New York). 2017; 24: 140-153
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Planchez B.
        • Surget A.
        • Belzung C.
        Animal models of major depression: Drawbacks and challenges.
        J Neural Transm (Vienna). 2019; 126: 1383-1408
        • Borghans B.
        • Homberg J.R.
        Animal models for posttraumatic stress disorder: An overview of what is used in research.
        World J Psychiatry. 2015; 5: 387-396
        • Enman N.M.
        • Arthur K.
        • Ward S.J.
        • Perrine S.A.
        • Unterwald E.M.
        Anhedonia, reduced cocaine reward, and dopamine dysfunction in a rat model of posttraumatic stress disorder.
        Biol Psychiatry. 2015; 78: 871-879
        • Deslauriers J.
        • Toth M.
        • Der-Avakian A.
        • Risbrough V.B.
        Current status of animal models of posttraumatic stress disorder: Behavioral and biological phenotypes, and future challenges in improving translation.
        Biol Psychiatry. 2018; 83: 895-907
        • Verbitsky A.
        • Dopfel D.
        • Zhang N.
        Rodent models of post-traumatic stress disorder: Behavioral assessment.
        Transl Psychiatry. 2020; 10: 132
        • Russo S.J.
        • Nestler E.J.
        The brain reward circuitry in mood disorders.
        Nat Rev Neurosci. 2013; 14: 609-625
        • Heshmati M.
        • Russo S.J.
        Anhedonia and the brain reward circuitry in depression.
        Curr Behav Neurosci Rep. 2015; 2: 146-153
        • Pizzagalli D.A.
        • Holmes A.J.
        • Dillon D.G.
        • Goetz E.L.
        • Birk J.L.
        • Bogdan R.
        • et al.
        Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder.
        Am J Psychiatry. 2009; 166: 702-710
        • Pizzagalli D.A.
        Depression, stress, and anhedonia: Toward a synthesis and integrated model.
        Annu Rev Clin Psychol. 2014; 10: 393-423
        • Knowland D.
        • Lim B.K.
        Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond.
        Pharmacol Biochem Behav. 2018; 174: 42-52
        • Xu L.
        • Nan J.
        • Lan Y.
        The nucleus accumbens: A common target in the comorbidity of depression and addiction.
        Front Neural Circuits. 2020; 14: 37
        • Sailer U.
        • Robinson S.
        • Fischmeister F.P.S.
        • König D.
        • Oppenauer C.
        • Lueger-Schuster B.
        • et al.
        Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder.
        Neuropsychologia. 2008; 46: 2836-2844
        • Nawijn L.
        • van Zuiden M.
        • Frijling J.L.
        • Koch S.B.J.
        • Veltman D.J.
        • Olff M.
        Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia.
        Neurosci Biobehav Rev. 2015; 51: 189-204
        • Shirayama Y.
        • Ishida H.
        • Iwata M.
        • Hazama G.I.
        • Kawahara R.
        • Duman R.S.
        Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects.
        J Neurochem. 2004; 90: 1258-1268
        • Newton S.S.
        • Thome J.
        • Wallace T.L.
        • Shirayama Y.
        • Schlesinger L.
        • Sakai N.
        • et al.
        Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect.
        J Neurosci. 2002; 22: 10883-10890
        • Nestler E.J.
        • Barrot M.
        • DiLeone R.J.
        • Eisch A.J.
        • Gold S.J.
        • Monteggia L.M.
        Neurobiology of depression.
        Neuron. 2002; 34: 13-25
        • Eisch A.J.
        • Bolaños C.A.
        • De Wit J.
        • Simonak R.D.
        • Pudiak C.M.
        • Barrot M.
        • et al.
        Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression.
        Biol Psychiatry. 2003; 54: 994-1005
        • Pliakas A.M.
        • Carlson R.R.
        • Neve R.L.
        • Konradi C.
        • Nestler E.J.
        • Carlezon Jr., W.A.
        Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens.
        J Neurosci. 2001; 21: 7397-7403
        • Perrotti L.I.
        • Hadeishi Y.
        • Ulery P.G.
        • Barrot M.
        • Monteggia L.
        • Duman R.S.
        • Nestler E.J.
        Induction of deltaFosB in reward-related brain structures after chronic stress.
        J Neurosci. 2004; 24: 10594-10602
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Kelz M.B.
        • Chen J.
        • Carlezon Jr., W.A.
        • Whisler K.
        • Gilden L.
        • Beckmann A.M.
        • et al.
        Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine.
        Nature. 1999; 401: 272-276
        • Mague S.D.
        • Pliakas A.M.
        • Todtenkopf M.S.
        • Tomasiewicz H.C.
        • Zhang Y.
        • Stevens Jr., W.C.
        • et al.
        Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats.
        J Pharmacol Exp Ther. 2003; 305: 323-330
        • Wook Koo J.
        • Labonté B.
        • Engmann O.
        • Calipari E.S.
        • Juarez B.
        • Lorsch Z.
        • et al.
        Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress-induced depressive behaviors.
        Biol Psychiatry. 2016; 80: 469-478
        • Walsh J.J.
        • Friedman A.K.
        • Sun H.
        • Heller E.A.
        • Ku S.M.
        • Juarez B.
        • et al.
        Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway.
        Nat Neurosci. 2014; 17: 27-29
        • Carlezon Jr., W.A.
        • Duman R.S.
        • Nestler E.J.
        The many faces of CREB.
        Trends Neurosci. 2005; 28: 436-445
        • Carlezon Jr., W.A.
        • Krystal A.D.
        Kappa-opioid antagonists for psychiatric disorders: From bench to clinical trials.
        Depress Anxiety. 2016; 33: 895-906
        • Tye K.M.
        • Mirzabekov J.J.
        • Warden M.R.
        • Ferenczi E.A.
        • Tsai H.C.
        • Finkelstein J.
        • et al.
        Dopamine neurons modulate neural encoding and expression of depression-related behaviour.
        Nature. 2013; 493: 537-541
        • Wacker J.
        • Dillon D.G.
        • Pizzagalli D.A.
        The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques.
        Neuroimage. 2009; 46: 327-337
        • Ancelin M.L.
        • Carrière I.
        • Artero S.
        • Maller J.
        • Meslin C.
        • Ritchie K.
        • et al.
        Lifetime major depression and grey-matter volume.
        J Psychiatry Neurosci. 2019; 44: 45-53
        • Sharma A.
        • Wolf D.H.
        • Ciric R.
        • Kable J.W.
        • Moore T.M.
        • Vandekar S.N.
        • et al.
        Common dimensional reward deficits across mood and psychotic disorders: A connectome-wide association study.
        Am J Psychiatry. 2017; 174: 657-666
        • Schlaepfer T.E.
        • Cohen M.X.
        • Frick C.
        • Kosel M.
        • Brodesser D.
        • Axmacher N.
        • et al.
        Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.
        Neuropsychopharmacology. 2008; 33: 368-377
        • Bewernick B.H.
        • Hurlemann R.
        • Matusch A.
        • Kayser S.
        • Grubert C.
        • Hadrysiewicz B.
        • et al.
        Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression.
        Biol Psychiatry. 2010; 67: 110-116
        • Yehuda R.
        • Bierer L.M.
        • Sarapas C.
        • Makotkine I.
        • Andrew R.
        • Seckl J.R.
        Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001.
        Psychoneuroendocrinology. 2009; 34: 1304-1313
        • Bremner D.
        • Vermetten E.
        • Kelley M.E.
        Cortisol, dehydroepiandrosterone, and estradiol measured over 24 hours in women with childhood sexual abuse-related posttraumatic stress disorder.
        J Nerv Ment Dis. 2007; 195: 919-927
        • Meewisse M.L.
        • Reitsma J.B.
        • de Vries G.J.
        • Gersons B.P.
        • Olff M.
        Cortisol and post-traumatic stress disorder in adults: Systematic review and meta-analysis.
        Br J Psychiatry. 2007; 191: 387-392
        • Delahanty D.L.
        • Raimonde A.J.
        • Spoonster E.
        Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims.
        Biol Psychiatry. 2000; 48: 940-947
        • Delahanty D.L.
        • Nugent N.R.
        • Christopher N.C.
        • Walsh M.
        Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims.
        Psychoneuroendocrinology. 2005; 30: 121-128
        • Dam H.
        • Mellerup E.T.
        • Rafaelsen O.J.
        The dexamethasone suppression test in depression.
        J Affect Disord. 1985; 8: 95-103
        • Delahanty D.L.
        • Gabert-Quillen C.
        • Ostrowski S.A.
        • Nugent N.R.
        • Fischer B.
        • Morris A.
        • et al.
        The efficacy of initial hydrocortisone administration at preventing posttraumatic distress in adult trauma patients: A randomized trial.
        CNS Spectr. 2013; 18: 103-111
        • Yehuda R.
        • Southwick S.M.
        • Krystal J.H.
        • Bremner D.
        • Charney D.S.
        • Mason J.W.
        Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder.
        Am J Psychiatry. 1993; 150: 83-86
        • Morris M.C.
        • Compas B.E.
        • Garber J.
        Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis.
        Clin Psychol Rev. 2012; 32: 301-315
        • Daskalakis N.P.
        • Lehrner A.
        • Yehuda R.
        Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment.
        Endocrinol Metab Clin North Am. 2013; 42: 503-513
        • Carroll B.J.
        • Curtis G.C.
        • Mendels J.
        Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients.
        Arch Gen Psychiatry. 1976; 33: 1051-1058
        • Watson S.
        • Gallagher P.
        • Del-Estal D.
        • Hearn A.
        • Ferrier I.N.
        • Young A.H.
        Hypothalamic-pituitary-adrenal axis function in patients with chronic depression.
        Psychol Med. 2002; 32: 1021-1028
        • Kasckow J.W.
        • Baker D.
        • Geracioti Jr., T.D.
        Corticotropin-releasing hormone in depression and post-traumatic stress disorder.
        Peptides. 2001; 22: 845-851
        • Dunlop B.W.
        • Wong A.
        The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions.
        Prog Neuropsychopharmacol Biol Psychiatry. 2019; 89: 361-379
        • Baker D.G.
        • West S.A.
        • Nicholson W.E.
        • Ekhator N.N.
        • Kasckow J.W.
        • Hill K.K.
        • et al.
        Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder.
        Am J Psychiatry. 1999; 156: 585-588
        • Bremner J.D.
        • Licinio J.
        • Darnell A.
        • Krystal J.H.
        • Owens M.J.
        • Southwick S.M.
        • et al.
        Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder.
        Am J Psychiatry. 1997; 154: 624-629
        • Raadsheer F.C.
        • Hoogendijk W.J.
        • Stam F.C.
        • Tilders F.J.
        • Swaab D.F.
        Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients.
        Neuroendocrinology. 1994; 60: 436-444
        • Brady L.S.
        • Whitfield Jr., H.J.
        • Fox R.J.
        • Gold P.W.
        • Herkenham M.
        Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications.
        J Clin Invest. 1991; 87: 831-837
        • Brady L.S.
        • Lynn A.B.
        • Whitfield Jr., H.J.
        • Kim H.
        • Herkenham M.
        Intrahippocampal colchicine alters hypothalamic corticotropin-releasing hormone and hippocampal steroid receptor mRNA in rat brain.
        Neuroendocrinology. 1992; 55: 121-133
        • Binder E.B.
        • Bradley R.G.
        • Liu W.
        • Epstein M.P.
        • Deveau T.C.
        • Mercer K.B.
        • et al.
        Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults.
        JAMA. 2008; 299: 1291-1305
        • Binder E.B.
        The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders.
        Psychoneuroendocrinology. 2009; 34: S186-S195
        • Mehta D.
        • Gonik M.
        • Klengel T.
        • Rex-Haffner M.
        • Menke A.
        • Rubel J.
        • et al.
        Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies.
        Arch Gen Psychiatry. 2011; 68: 901-910
        • Binder E.B.
        • Salyakina D.
        • Lichtner P.
        • Wochnik G.M.
        • Ising M.
        • Pütz B.
        • et al.
        Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment.
        Nat Genet. 2004; 36: 1319-1325
        • Holmes S.E.
        • Girgenti M.J.
        • Davis M.T.
        • Pietrzak R.H.
        • Dellagioia N.
        • Nabulsi N.
        • et al.
        Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence.
        Proc Natl Acad Sci U S A. 2017; 114: 8390-8395
        • Burgess N.
        • Maguire E.A.
        • O’Keefe J.
        The human hippocampus and spatial and episodic memory.
        Neuron. 2002; 35: 625-641
        • Jacobson L.
        • Sapolsky R.
        The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.
        Endocr Rev. 1991; 12: 118-134
        • Campbell S.
        • Marriott M.
        • Nahmias C.
        • MacQueen G.M.
        Lower hippocampal volume in patients suffering from depression: A meta-analysis.
        Am J Psychiatry. 2004; 161: 598-607
        • Videbech P.
        • Ravnkilde B.
        Hippocampal volume and depression: A meta-analysis of MRI studies.
        Am J Psychiatry. 2004; 161: 1957-1966
        • McKinnon M.C.
        • Yucel K.
        • Nazarov A.
        • MacQueen G.M.
        A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder.
        J Psychiatry Neurosci. 2009; 34: 41-54
        • Arnone D.
        • McIntosh A.M.
        • Ebmeier K.P.
        • Munafò M.R.
        • Anderson I.M.
        Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses.
        Eur Neuropsychopharmacol. 2012; 22: 1-16
        • Arnone D.
        • Job D.
        • Selvaraj S.
        • Abe O.
        • Amico F.
        • Cheng Y.
        • et al.
        Computational meta-analysis of statistical parametric maps in major depression.
        Hum Brain Mapp. 2016; 37: 1393-1404
        • Frodl T.
        • Jäger M.
        • Smajstrlova I.
        • Born C.
        • Bottlender R.
        • Palladino T.
        • et al.
        Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study.
        J Psychiatry Neurosci. 2008; 33: 423-430
        • Chen M.C.
        • Hamilton J.P.
        • Gotlib I.H.
        Decreased hippocampal volume in healthy girls at risk of depression.
        Arch Gen Psychiatry. 2010; 67: 270-276
        • Rao U.
        • Chen L.A.
        • Bidesi A.S.
        • Shad M.U.
        • Thomas M.A.
        • Hammen C.L.
        Hippocampal changes associated with early-life adversity and vulnerability to depression.
        Biol Psychiatry. 2010; 67: 357-364
        • Amico F.
        • Meisenzahl E.
        • Koutsouleris N.
        • Reiser M.
        • Möller H.J.
        • Frodl T.
        Structural MRI correlates for vulnerability and resilience to major depressive disorder.
        J Psychiatry Neurosci. 2011; 36: 15-22
        • Carballedo A.
        • Lisiecka D.
        • Fagan A.
        • Saleh K.
        • Ferguson Y.
        • Connolly G.
        • et al.
        Early life adversity is associated with brain changes in subjects at family risk for depression.
        World J Biol Psychiatry. 2012; 13: 569-578
        • Schoenfeld T.J.
        • McCausland H.C.
        • Morris H.D.
        • Padmanaban V.
        • Cameron H.A.
        Stress and loss of adult neurogenesis differentially reduce hippocampal volume.
        Biol Psychiatry. 2017; 82: 914-923
        • Jayatissa M.N.
        • Henningsen K.
        • Nikolajsen G.
        • West M.J.
        • Wiborg O.
        A reduced number of hippocampal granule cells does not associate with an anhedonia-like phenotype in a rat chronic mild stress model of depression.
        Stress. 2010; 13: 95-105
        • Delgado y Palacios R.
        • Campo A.
        • Henningsen K.
        • Verhoye M.
        • Poot D.
        • Dijkstra J.
        • et al.
        Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model.
        Biol Psychiatry. 2011; 70: 449-457
        • Bremner J.D.
        • Vythilingam M.
        • Vermetten E.
        • Southwick S.M.
        • McGlashan T.
        • Nazeer A.
        • et al.
        MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder.
        Am J Psychiatry. 2003; 160: 924-932
        • Gilbertson M.W.
        • Shenton M.E.
        • Ciszewski A.
        • Kasai K.
        • Lasko N.B.
        • Orr S.P.
        • Pitman R.K.
        Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma.
        Nat Neurosci. 2002; 5: 1242-1247
        • Kitayama N.
        • Vaccarino V.
        • Kutner M.
        • Weiss P.
        • Bremner J.D.
        Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis.
        J Affect Disord. 2005; 88: 79-86
        • Wang Z.
        • Neylan T.C.
        • Mueller S.G.
        • Lenoci M.
        • Truran D.
        • Marmar C.R.
        • et al.
        Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder.
        Arch Gen Psychiatry. 2010; 67: 296-303
        • Samuelson K.W.
        Post-traumatic stress disorder and declarative memory functioning: A review.
        Dialogues Clin Neurosci. 2011; 13: 346-351
        • Gilbertson M.W.
        • Williston S.K.
        • Paulus L.A.
        • Lasko N.B.
        • Gurvits T.V.
        • Shenton M.E.
        • et al.
        Configural cue performance in identical twins discordant for posttraumatic stress disorder: Theoretical implications for the role of hippocampal function.
        Biol Psychiatry. 2007; 62: 513-520
        • Pilz G.A.
        • Bottes S.
        • Betizeau M.
        • Jörg D.J.
        • Carta S.
        • Simons B.D.
        • et al.
        Live imaging of neurogenesis in the adult mouse hippocampus.
        Science. 2018; 359: 658-662
        • van Praag H.
        • Kempermann G.
        • Gage F.H.
        Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.
        Nat Neurosci. 1999; 2: 266-270
        • Kempermann G.
        • Kuhn H.G.
        • Gage F.H.
        More hippocampal neurons in adult mice living in an enriched environment.
        Nature. 1997; 386: 493-495
        • Malberg J.E.
        • Eisch A.J.
        • Nestler E.J.
        • Duman R.S.
        Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.
        J Neurosci. 2000; 20: 9104-9110
        • Gould E.
        • Beylin A.
        • Tanapat P.
        • Reeves A.
        • Shors T.J.
        Learning enhances adult neurogenesis in the hippocampal formation.
        Nat Neurosci. 1999; 2: 260-265
        • Gould E.
        • McEwen B.S.
        • Tanapat P.
        • Galea L.A.
        • Fuchs E.
        Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation.
        J Neurosci. 1997; 17: 2492-2498
        • Gould E.
        • Cameron H.A.
        • Daniels D.C.
        • Woolley C.S.
        • McEwen B.S.
        Adrenal hormones suppress cell division in the adult rat dentate gyrus.
        J Neurosci. 1992; 12: 3642-3650
        • Mandyam C.D.
        • Koob G.F.
        The addicted brain craves new neurons: Putative role for adult-born progenitors in promoting recovery.
        Trends Neurosci. 2012; 35: 250-260
        • Duman R.S.
        • Heninger G.R.
        • Nestler E.J.
        A molecular and cellular theory of depression.
        Arch Gen Psychiatry. 1997; 54: 597-606
        • Jaggar M.
        • Fanibunda S.E.
        • Ghosh S.
        • Duman R.S.
        • Vaidya V.A.
        The neurotrophic hypothesis of depression revisited: New insights and therapeutic implications.
        in: Neurobiology of Depression. Elsevier, Amsterdam2019: 43-62
        • Nibuya M.
        • Morinobu S.
        • Duman R.S.
        Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.
        J Neurosci. 1995; 15: 7539-7547
        • Licznerski P.
        • Duman R.S.
        Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression.
        Neuroscience. 2013; 251: 33-50
        • Vaidya V.A.
        • Siuciak J.A.
        • Du F.
        • Duman R.S.
        Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures.
        Neuroscience. 1999; 89: 157-166
        • Norrholm S.D.
        • Ouimet C.C.
        Altered dendritic spine density in animal models of depression and in response to antidepressant treatment.
        Synapse. 2001; 42: 151-163
        • Kheirbek M.A.
        • Klemenhagen K.C.
        • Sahay A.
        • Hen R.
        Neurogenesis and generalization: A new approach to stratify and treat anxiety disorders.
        Nat Neurosci. 2012; 15: 1613-1620
        • Clelland C.D.
        • Choi M.
        • Romberg C.
        • Clemenson Jr., G.D.
        • Fragniere A.
        • Tyers P.
        • et al.
        A functional role for adult hippocampal neurogenesis in spatial pattern separation.
        Science. 2009; 325: 210-213
        • Sahay A.
        • Scobie K.N.
        • Hill A.S.
        • O’Carroll C.M.
        • Kheirbek M.A.
        • Burghardt N.S.
        • et al.
        Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.
        Nature. 2011; 472: 466-470
        • Sahay A.
        • Wilson D.A.
        • Hen R.
        Pattern separation: A common function for new neurons in hippocampus and olfactory bulb.
        Neuron. 2011; 70: 582-588
        • Schoenfeld T.J.
        • Rhee D.
        • Martin L.
        • Smith J.A.
        • Sonti A.N.
        • Padmanaban V.
        • Cameron H.A.
        New neurons restore structural and behavioral abnormalities in a rat model of PTSD.
        Hippocampus. 2019; 29: 848-861
        • Francis D.
        • Diorio J.
        • Liu D.
        • Meaney M.J.
        Nongenomic transmission across generations of maternal behavior and stress responses in the rat.
        Science. 1999; 286: 1155-1158
        • Weaver I.C.
        • Cervoni N.
        • Champagne F.A.
        • D’Alessio A.C.
        • Sharma S.
        • Seckl J.R.
        • et al.
        Epigenetic programming by maternal behavior.
        Nat Neurosci. 2004; 7: 847-854
        • McGowan P.O.
        • Sasaki A.
        • D’Alessio A.C.
        • Dymov S.
        • Labonté B.
        • Szyf M.
        • et al.
        Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse.
        Nat Neurosci. 2009; 12: 342-348
        • Lemogne C.
        • Delaveau P.
        • Freton M.
        • Guionnet S.
        • Fossati P.
        Medial prefrontal cortex and the self in major depression.
        J Affect Disord. 2012; 136: e1-e11
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 167-202
        • Hiser J.
        • Koenigs M.
        The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology.
        Biol Psychiatry. 2018; 83: 638-647
        • Smaers J.B.
        • Gómez-Robles A.
        • Parks A.N.
        • Sherwood C.C.
        Exceptional evolutionary expansion of prefrontal cortex in great apes and humans.
        Curr Biol. 2017; 27: 714-720
        • Koenigs M.
        • Grafman J.
        The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex.
        Behav Brain Res. 2009; 201: 239-243
        • Bora E.
        • Fornito A.
        • Pantelis C.
        • Yücel M.
        Gray matter abnormalities in Major Depressive Disorder: A meta-analysis of voxel based morphometry studies.
        J Affect Disord. 2012; 138: 9-18
        • Kühn S.
        • Gallinat J.
        Gray matter correlates of posttraumatic stress disorder: A quantitative meta-analysis.
        Biol Psychiatry. 2013; 73: 70-74
        • Kang H.J.
        • Voleti B.
        • Hajszan T.
        • Rajkowska G.
        • Stockmeier C.A.
        • Licznerski P.
        • et al.
        Decreased expression of synapse-related genes and loss of synapses in major depressive disorder.
        Nat Med. 2012; 18: 1413-1417
        • Holmes S.E.
        • Scheinost D.
        • Finnema S.J.
        • Naganawa M.
        • Davis M.T.
        • DellaGioia N.
        • et al.
        Lower synaptic density is associated with depression severity and network alterations.
        Nat Commun. 2019; 10: 1529
        • Bremner J.D.
        • Staib L.H.
        • Kaloupek D.
        • Southwick S.M.
        • Soufer R.
        • Charney D.S.
        Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study.
        Biol Psychiatry. 1999; 45: 806-816
        • Bremner J.D.
        • Narayan M.
        • Staib L.H.
        • Southwick S.M.
        • McGlashan T.
        • Charney D.S.
        Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder.
        Am J Psychiatry. 1999; 156: 1787-1795
        • Bremner J.D.
        • Vythilingam M.
        • Vermetten E.
        • Southwick S.M.
        • McGlashan T.
        • Staib L.H.
        • et al.
        Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse.
        Biol Psychiatry. 2003; 53: 879-889
        • Bremner J.D.
        • Vermetten E.
        • Vythilingam M.
        • Afzal N.
        • Schmahl C.
        • Elzinga B.
        • Charney D.S.
        Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder.
        Biol Psychiatry. 2004; 55: 612-620
        • Ota K.T.
        • Liu R.J.
        • Voleti B.
        • Maldonado-Aviles J.G.
        • Duric V.
        • Iwata M.
        • et al.
        REDD1 is essential for stress-induced synaptic loss and depressive behavior.
        Nat Med. 2014; 20: 531-535
        • Duman R.S.
        • Aghajanian G.K.
        Synaptic dysfunction in depression: Potential therapeutic targets.
        Science. 2012; 338: 68-72
        • Shin L.M.
        • Rauch S.L.
        • Pitman R.K.
        Amygdala, medial prefrontal cortex, and hippocampal function in PTSD.
        Ann N Y Acad Sci. 2006; 1071: 67-79
        • Henigsberg N.
        • Kalember P.
        • Petrović Z.K.
        • Šečić A.
        Neuroimaging research in posttraumatic stress disorder - Focus on amygdala, hippocampus and prefrontal cortex.
        Prog Neuropsychopharmacol Biol Psychiatry. 2019; 90: 37-42
        • Drevets W.C.
        • Price J.L.
        • Furey M.L.
        Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression.
        Brain Struct Funct. 2008; 213: 93-118
        • Belleau E.L.
        • Treadway M.T.
        • Pizzagalli D.A.
        The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology..
        Biol Psychiatry. 2019; 85: 443-453
        • van Harmelen A.L.
        • van Tol M.J.
        • van der Wee N.J.A.
        • Veltman D.J.
        • Aleman A.
        • Spinhoven P.
        • et al.
        Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment.
        Biol Psychiatry. 2010; 68: 832-838
        • Chaney A.
        • Carballedo A.
        • Amico F.
        • Fagan A.
        • Skokauskas N.
        • Meaney J.
        • Frodl T.
        Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants.
        J Psychiatry Neurosci. 2014; 39: 50-59
        • Holmes S.E.
        • Hinz R.
        • Conen S.
        • Gregory C.J.
        • Matthews J.C.
        • Anton-Rodriguez J.M.
        • et al.
        Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A positron emission tomography study.
        Biol Psychiatry. 2018; 83: 61-69
        • van Velzen L.S.
        • Schmaal L.
        • Milaneschi Y.
        • van Tol M.J.
        • van der Wee N.J.A.
        • Veltman D.J.
        • Penninx B.W.J.H.
        Immunometabolic dysregulation is associated with reduced cortical thickness of the anterior cingulate cortex.
        Brain Behav Immun. 2017; 60: 361-368
        • Delgado M.R.
        • Nearing K.I.
        • LeDoux J.E.
        • Phelps E.A.
        Neural circuitry underlying the regulation of conditioned fear and its relation to extinction.
        Neuron. 2008; 59: 829-838
        • Johnstone T.
        • van Reekum C.M.
        • Urry H.L.
        • Kalin N.H.
        • Davidson R.J.
        Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression.
        J Neurosci. 2007; 27: 8877-8884
        • Urry H.L.
        • van Reekum C.M.
        • Johnstone T.
        • Kalin N.H.
        • Thurow M.E.
        • Schaefer H.S.
        • et al.
        Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults.
        J Neurosci. 2006; 26: 4415-4425
        • Koenigs M.
        • Grafman J.
        Posttraumatic stress disorder: The role of medial prefrontal cortex and amygdala.
        Neuroscientist. 2009; 15: 540-548
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Milad M.R.
        • Rauch S.L.
        • Pitman R.K.
        • Quirk G.J.
        Fear extinction in rats: Implications for human brain imaging and anxiety disorders.
        Biol Psychol. 2006; 73: 61-71
        • Rauch S.L.
        • Shin L.M.
        • Phelps E.A.
        Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research—Past, present, and future.
        Biol Psychiatry. 2006; 60: 376-382
        • Andrewes D.G.
        • Jenkins L.M.
        The role of the amygdala and the ventromedial prefrontal cortex in emotional regulation: Implications for post-traumatic stress disorder.
        Neuropsychol Rev. 2019; 29: 220-243
        • Koenigs M.
        • Huey E.D.
        • Calamia M.
        • Raymont V.
        • Tranel D.
        • Grafman J.
        Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression.
        J Neurosci. 2008; 28: 12341-12348
        • Koenigs M.
        • Huey E.D.
        • Raymont V.
        • Cheon B.
        • Solomon J.
        • Wassermann E.M.
        • Grafman J.
        Focal brain damage protects against post-traumatic stress disorder in combat veterans.
        Nat Neurosci. 2008; 11: 232-237
        • Philippi C.L.
        • Koenigs M.
        The neuropsychology of self-reflection in psychiatric illness.
        J Psychiatr Res. 2014; 54: 55-63
        • Beck A.T.
        The evolution of the cognitive model of depression and its neurobiological correlates.
        Am J Psychiatry. 2008; 165: 969-977
        • Chang S.W.C.
        • Gariépy J.F.
        • Platt M.L.
        Neuronal reference frames for social decisions in primate frontal cortex.
        Nat Neurosci. 2013; 16: 243-250
        • Challis C.
        • Berton O.
        Top-down control of serotonin systems by the prefrontal cortex: A path toward restored socioemotional function in depression.
        ACS Chem Neurosci. 2015; 6: 1040-1054
        • Golden S.A.
        • Covington H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice.
        Nat Protoc. 2011; 6: 1183-1191
        • Kumar S.
        • Hultman R.
        • Hughes D.
        • Michel N.
        • Katz B.M.
        • Dzirasa K.
        Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress.
        Nat Commun. 2014; 5: 4537
        • Pringle A.
        • Browning M.
        • Cowen P.J.
        • Harmer C.J.
        A cognitive neuropsychological model of antidepressant drug action.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 1586-1592
        • MacNamara A.
        • Rabinak C.A.
        • Kennedy A.E.
        • Fitzgerald D.A.
        • Liberzon I.
        • Stein M.B.
        • Phan K.L.
        Emotion regulatory brain function and SSRI treatment in PTSD: Neural correlates and predictors of change.
        Neuropsychopharmacology. 2016; 41: 611-618
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Wohleb E.S.
        • Gerhard D.
        • Thomas A.
        • Duman R.S.
        Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine.
        Curr Neuropharmacol. 2017; 15: 11-20
        • Murrough J.W.
        • Collins K.A.
        • Fields J.
        • DeWilde K.E.
        • Phillips M.L.
        • Mathew S.J.
        • et al.
        Regulation of neural responses to emotion perception by ketamine in individuals with treatment-resistant major depressive disorder.
        Transl Psychiatry. 2015; 5 (e509–e509)
        • Abdallah C.G.
        • Averill L.A.
        • Collins K.A.
        • Geha P.
        • Schwartz J.
        • Averill C.
        • et al.
        Ketamine treatment and global brain connectivity in major depression.
        Neuropsychopharmacology. 2017; 42: 1210-1219
        • Liriano F.
        • Hatten C.
        • Schwartz T.L.
        Ketamine as treatment for post-traumatic stress disorder: A review.
        Drugs Context. 2019; 8: 1-7
        • Brody A.L.
        • Saxena S.
        • Mandelkern M.A.
        • Fairbanks L.A.
        • Ho M.L.
        • Baxter L.R.
        Brain metabolic changes associated with symptom factor improvement in major depressive disorder.
        Biol Psychiatry. 2001; 50: 171-178