Advertisement

Floating Rodents and Stress-Coping Neurobiology

      To indicate the forced swim test (FST) as an animal model of depression is an anthropomorphic qualification. While this anthropomorphism excludes validity of the FST as a model of a complex mental disorder, progress has been made in understanding the mechanistic underpinning of the displayed passive coping response. In response to your invitation, we comment on the scientific merit of the forced swim stressor if the focus is on coping mechanisms, rather than on disease modeling.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Porsolt R.D.
        • Le Pichon M.
        • Jalfre M.L.
        Depression: A new animal model sensitive to antidepressant treatments.
        Nature. 1977; 266: 730-732
        • De Pablo J.M.
        • Parra A.
        • Segovia S.
        • Guillamón A.
        Learned immobility explains the behavior of rats in the forced swimming test.
        Physiol Behav. 1989; 46: 229-237
        • Jefferys D.
        • Boublik J.
        • Funder J.W.
        A κ-selective opioidergic pathway is involved in the reversal of a behavioural effect of adrenalectomy.
        Eur J Pharmacol. 1985; 107: 331-335
        • de Kloet E.R.
        • De Kock S.
        • Schild V.
        • Veldhuis H.D.
        Antiglucocorticoid RU 38486 attenuates retention of a behaviour and disinhibits the hypothalamic-pituitary adrenal axis at different brain sites.
        Neuroendocrinology. 1988; 47: 109-115
        • Jefferys D.E.
        • Funder J.W.
        The thyroadrenal axis, food deprivation and retention of a behavioural response.
        Eur J Pharmacol. 1993; 239: 189-193
        • Hawkins J.
        • Hicks R.A.
        • Phillips N.
        • Moore J.D.
        Swimming rats and human depression.
        Nature. 1978; 274: 512-513
        • Weger M.
        • Alpern D.
        • Cherix A.
        • Ghosal S.
        • Grosse J.
        • Russeil J.
        • et al.
        Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress.
        Sci Rep. 2020; 10: 18308
        • Gebara E
        • Zanoletti O
        • Ghosal S
        • Grosse J
        • Schneider BL
        • Knott G
        • et al.
        Mitofusin-2 in the nucleus accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions.
        Biol Psychiatry. 2021; 89: 1033-1044
        • Castagné V.
        • Moser P.
        • Porsolt R.D.
        Behavioral assessment of antidepressant activity in rodents.
        in: Buccafusco J.J. Methods of Behavior Analysis in Neuroscience. CRC Press/Taylor & Francis,, Boca Raton,2009 (73–85)
        • Molendijk M.L.
        • de Kloet E.R.
        Immobility in the forced swim test is adaptive and does not reflect depression.
        Psychoneuroendocrinology. 2015; 62: 389-391
        • de Kloet E.R.
        • Molendijk M.L.
        Coping with the forced swim stressor: Towards understanding an adaptive mechanism.
        Neural Plast. 2016; 2016: 6503162
        • Molendijk M.L.
        • de Kloet E.R.
        Coping with the forced swim stressor: Current state-of-the-art.
        Behav Brain Res. 2019; 364: 1-10
        • Molendijk M.L.
        • de Kloet E.R.
        Forced swim stressor: Trends in usage and mechanistic consideration [published online ahead of print Feb 6].
        Eur J Neurosci. 2021;
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Dantzer R.
        • O’Connor J.C.
        • Lawson M.A.
        • Kelley K.W.
        Inflammation-associated depression: From serotonin to kynurenine.
        Psychoneuroendocrinology. 2011; 36: 426-436
        • de Kloet E.R.
        • de Kloet S.F.
        • de Kloet C.S.
        • de Kloet A.D.
        Top-down and bottom-up control of stress-coping.
        J Neuroendocrinol. 2019; 31e12675
        • Keay K.A.
        • Bandler R.
        Parallel circuits mediating distinct emotional coping reactions to different types of stress.
        Neurosci Biobehav Rev. 2001; 25: 669-678
        • Giachero M.
        • Pavesi E.
        • Calfa G.
        • Motta S.C.
        • Canteras N.S.
        • Molina V.A.
        • Carobrez A.P.
        Inactivation of the dorsolateral periaqueductal gray matter impairs the promoting influence of stress on fear memory during retrieval.
        Brain Struct Funct. 2019; 224: 3117-3132
        • Tye K.M.
        • Mirzabekov J.J.
        • Warden M.R.
        • Ferenczi E.A.
        • Tsai H.-C.
        • Finkelstein J.
        • et al.
        Dopamine neurons modulate neural encoding and expression of depression-related behaviour.
        Nature. 2013; 493: 537-541
        • Douma E.H.
        • de Kloet E.R.
        Stress-induced plasticity and functioning of ventral tegmental dopamine neurons.
        Neurosci Biobehav Rev. 2020; 108: 48-77
        • Warden M.R.
        • Selimbeyoglu A.
        • Mirzabekov J.J.
        • Lo M.
        • Thompson K.R.
        • Kim S.-Y.
        • et al.
        A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge.
        Nature. 2012; 492: 428-432
        • Lammel S.
        • Tye K.M.
        • Warden M.R.
        Progress in understanding mood disorders: Optogenetic dissection of neural circuits.
        Genes Brain Behav. 2014; 13: 38-51
        • Maier S.F.
        • Seligman M.E.P.
        Learned helplessness at fifty: Insights from neuroscience.
        Psychol Rev. 2016; 123: 349-367
        • Herman J.P.
        • Nawreen N.
        • Smail M.A.
        • Cotella E.M.
        Brain mechanisms of HPA axis regulation: Neurocircuitry and feedback in context Richard Kvetnansky lecture.
        Stress. 2020; 23: 617-632
        • Pace S.A.
        • Christensen C.
        • Schackmuth M.K.
        • Wallace T.
        • McKlveen J.M.
        • Beischel W.
        • et al.
        Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress.
        Neurobiol Stress. 2020; 13: 100274
        • Radley J.J.
        • Johnson S.B.
        Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017.
        Psychoneuroendocrinology. 2018; 89: 239-249
        • Lingg R.T.
        • Johnson S.B.
        • Emmons E.B.
        • Anderson R.M.
        • Romig-Martin S.A.
        • Narayanan N.S.
        • et al.
        Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits.
        Proc Natl Acad Sci U S A. 2020; 117: 8104-8114
        • Saunderson E.A.
        • Spiers H.
        • Mifsud K.R.
        • Gutierrez-Mecinas M.
        • Trollope A.F.
        • Shaikh A.
        • et al.
        Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus.
        Proc Natl Acad Sci. 2016; 113: 4830-4835
        • Paré W.P.
        Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats.
        Physiol Behav. 1994; 55: 433-439
        • Nicolas S.
        • Veyssière J.
        • Gandin C.
        • Zsürger N.
        • Pietri M.
        • Heurteaux C.
        • et al.
        Neurogenesis-independent antidepressant-like effects of enriched environment is dependent on adiponectin.
        Psychoneuroendocrinology. 2015; 57: 72-83
        • He J.-G.
        • Zhou H.-Y.
        • Xue S.-G.
        • Lu J.-J.
        • Xu J.-F.
        • Zhou B.
        • et al.
        Transcription factor TWIST1 integrates dendritic remodeling and chronic stress to promote depressive-like behaviors.
        Biol Psychiatry. 2021; 89: 615-626
        • Kokras N.
        • Antoniou K.
        • Mikail H.G.
        • Kafetzopoulos V.
        • Papadopoulou-Daifoti Z.
        • Dalla C.
        Forced swim test: What about females?.
        Neuropharmacology. 2015; 99: 408-421
        • Daskalakis N.P.
        • Bagot R.C.
        • Parker K.J.
        • Vinkers C.H.
        • de Kloet E.R.
        The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome.
        Psychoneuroendocrinology. 2013; 38: 1858-1873
        • Koolhaas J.M.
        • de Boer S.F.
        • Coppens C.M.
        • Buwalda B.
        Neuroendocrinology of coping styles: Towards understanding the biology of individual variation.
        Front Neuroendocrinol. 2010; 31: 307-321
        • Veenema A.H.
        • Meijer O.C.
        • De Kloet E.R.
        • Koolhaas J.M.
        Genetic selection for coping style predicts stressor susceptibility.
        J Neuroendocrinol. 2003; 15: 256-267
        • Campus P.
        • Canterini S.
        • Orsini C.
        • Fiorenza M.T.
        • Puglisi-Allegra S.
        • Cabib S.
        Stress-induced reduction of dorsal striatal D2 dopamine receptors prevents retention of a newly acquired adaptive coping strategy.
        Front Pharmacol. 2017; 8: 621
        • Fitzgerald P.J.
        • Yen J.Y.
        • Watson B.O.
        Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test.
        PLoS One. 2019; 14e0215554
        • Horovitz O.
        • Ardi Z.
        • Ashkenazi S.K.
        • Ritov G.
        • Anunu R.
        • Richter-Levin G.
        Network neuromodulation of opioid and GABAergic receptors following a combination of “juvenile” and “adult stress” in rats.
        Int J Mol Sci. 2020; 21: 5422