Advertisement

Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking

Published:February 22, 2021DOI:https://doi.org/10.1016/j.biopsych.2021.02.017

      Abstract

      Background

      Leptin reduces the motivation to obtain food by modulating activity of the mesolimbic dopamine (DA) system upon presentation of cues that predict a food reward. Although leptin directly reduces the activity of ventral tegmental area (VTA) DA neurons, the majority of leptin receptor (LepR)-expressing DA neurons do not project to the nucleus accumbens, the projection implicated in driving food reward seeking. Therefore, the precise locus of leptin action to modulate motivation for a food reward is unresolved.

      Methods

      We used transgenic mice expressing Cre recombinase under the control of the LepR promoter, anatomical tracing, optogenetics-assisted patch-clamp electrophysiology, in vivo optogenetics with fiber photometric calcium measurements, and chemogenetics to unravel how leptin-targeted neurocircuitry inhibits food reward seeking.

      Results

      A large number of DA neurons projecting to the nucleus accumbens are innervated by local VTA LepR-expressing GABA (gamma-aminobutyric acid) neurons. Leptin enhances the activity of these GABA neurons and thereby inhibits nucleus accumbens–projecting DA neurons. In addition, we find that lateral hypothalamic LepR-expressing neurons projecting to the VTA are inhibited by leptin and that these neurons modulate DA neurons indirectly via inhibition of VTA GABA neurons. In accordance with such a disinhibitory function, optogenetically stimulating lateral hypothalamic LepR projections to the VTA potently activates DA neurons in vivo. Moreover, we found that chemogenetic activation of lateral hypothalamic LepR neurons increases the motivation to obtain a food reward only when mice are in a positive energy balance.

      Conclusions

      We identify neurocircuitry through which leptin targets multiple inputs to the DA system to reduce food reward seeking.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Friedman J.
        The long road to leptin.
        J Clin Invest. 2016; 126: 4727-4734
        • Schoeller D.A.
        • Cella L.K.
        • Sinha M.K.
        • Caro J.F.
        Entrainment of the diurnal rhythm of plasma leptin to meal timing.
        J Clin Invest. 1997; 100: 1882-1887
        • Steelman S.M.
        • Michael-Eller E.M.
        • Gibbs P.G.
        • Potter G.D.
        Meal size and feeding frequency influence serum leptin concentration in yearling horses.
        J Anim Sci. 2006; 84: 2391-2398
        • Farooqi I.S.
        • O’Rahilly S.
        Leptin: A pivotal regulator of human energy homeostasis.
        Am J Clin Nutr. 2009; 89: 980S-984S
        • Schwartz M.W.
        • Seeley R.J.
        • Zeltser L.M.
        • Drewnowski A.
        • Ravussin E.
        • Redman L.M.
        • Leibel R.L.
        Obesity pathogenesis: An Endocrine Society scientific statement.
        Endocr Rev. 2017; 38: 267-296
        • Rosenbaum M.
        • Sy M.
        • Pavlovich K.
        • Leibel R.L.
        • Hirsch J.
        Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli.
        J Clin Invest. 2008; 118: 2583-2591
        • Schlögl H.
        • Müller K.
        • Horstmann A.
        • Miehle K.
        • Püschel J.
        • Villringer A.
        • et al.
        Leptin substitution in patients with lipodystrophy: Neural correlates for long-term success in the normalization of eating behavior.
        Diabetes. 2016; 65: 2179-2186
        • Farooqi I.S.
        • Bullmore E.
        • Keogh J.
        • Gillard J.
        • O’Rahilly S.
        • Fletcher P.C.
        Leptin regulates striatal regions and human eating behavior.
        Science. 2007; 317: 1355
        • Domingos A.I.
        • Vaynshteyn J.
        • Voss H.U.
        • Ren X.
        • Gradinaru V.
        • Zang F.
        • et al.
        Leptin regulates the reward value of nutrient.
        Nat Neurosci. 2011; 14: 1562-1568
        • Fulton S.
        • Woodside B.
        • Shizgal P.
        Modulation of brain reward circuitry by leptin.
        Science. 2000; 287 ([published correction appears in Science 2000; 287:1931]): 125-128
        • Figlewicz D.P.
        • Higgins M.S.
        • Ng-Evans S.B.
        • Havel P.J.
        Leptin reverses sucrose-conditioned place preference in food-restricted rats.
        Physiol Behav. 2001; 73: 229-234
        • Figlewicz D.P.
        • Bennett J.
        • Evans S.B.
        • Kaiyala K.
        • Sipols A.J.
        • Benoit S.C.
        Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats.
        Behav Neurosci. 2004; 118: 479-487
        • Salamone J.D.
        • Wisniecki A.
        • Carlson B.B.
        • Correa M.
        Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement.
        Neuroscience. 2001; 105: 863-870
        • Zhang M.
        • Balmadrid C.
        • Kelley A.E.
        Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: Contrasting effects revealed by a progressive ratio study in the rat.
        Behav Neurosci. 2003; 117: 202-211
        • Boender A.J.
        • de Jong J.W.
        • Boekhoudt L.
        • Luijendijk M.C.
        • van der Plasse G.
        • Adan R.A.
        Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo.
        PLoS One. 2014; 9e95392
        • Roitman M.F.
        • Stuber G.D.
        • Phillips P.E.
        • Wightman R.M.
        • Carelli R.M.
        Dopamine operates as a subsecond modulator of food seeking.
        J Neurosci. 2004; 24: 1265-1271
        • van der Plasse G.
        • van Zessen R.
        • Luijendijk M.C.
        • Erkan H.
        • Stuber G.D.
        • Ramakers G.M.
        • Adan R.A.
        Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin.
        Int J Obes (Lond). 2015; 39: 1742-1749
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Elmquist J.K.
        • Bjørbaek C.
        • Ahima R.S.
        • Flier J.S.
        • Saper C.B.
        Distributions of leptin receptor mRNA isoforms in the rat brain.
        J Comp Neurol. 1998; 395: 535-547
        • Figlewicz D.P.
        • Evans S.B.
        • Murphy J.
        • Hoen M.
        • Baskin D.G.
        Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat.
        Brain Res. 2003; 964: 107-115
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Leshan R.L.
        • Opland D.M.
        • Louis G.W.
        • Leinninger G.M.
        • Patterson C.M.
        • Rhodes C.J.
        • et al.
        Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala.
        J Neurosci. 2010; 30: 5713-5723
        • Liu J.
        • Perez S.M.
        • Zhang W.
        • Lodge D.J.
        • Lu X.Y.
        Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala.
        Mol Psychiatry. 2011; 16: 1024-1038
        • DiLeone R.J.
        • Georgescu D.
        • Nestler E.J.
        Lateral hypothalamic neuropeptides in reward and drug addiction.
        Life Sci. 2003; 73: 759-768
        • Harris G.C.
        • Wimmer M.
        • Aston-Jones G.
        A role for lateral hypothalamic orexin neurons in reward seeking.
        Nature. 2005; 437: 556-559
        • Leinninger G.M.
        • Jo Y.H.
        • Leshan R.L.
        • Louis G.W.
        • Yang H.
        • Barrera J.G.
        • et al.
        Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding.
        Cell Metab. 2009; 10: 89-98
        • Boekhoudt L.
        • Omrani A.
        • Luijendijk M.C.
        • Wolterink-Donselaar I.G.
        • Wijbrans E.C.
        • van der Plasse G.
        • Adan R.A.
        Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats.
        Eur Neuropsychopharmacol. 2016; 26: 1784-1793
        • Pandit R.
        • Omrani A.
        • Luijendijk M.C.
        • de Vrind V.A.
        • Van Rozen A.J.
        • Ophuis R.J.
        • et al.
        Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward.
        Neuropsychopharmacology. 2016; 41: 2241-2251
        • Zhao S.
        • Maxwell S.
        • Jimenez-Beristain A.
        • Vives J.
        • Kuehner E.
        • Zhao J.
        • et al.
        Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons.
        Eur J Neurosci. 2004; 19: 1133-1140
        • Labouèbe G.
        • Lomazzi M.
        • Cruz H.G.
        • Creton C.
        • Luján R.
        • Li M.
        • et al.
        RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area.
        Nat Neurosci. 2007; 10: 1559-1568
        • Maxwell S.L.
        • Ho H.Y.
        • Kuehner E.
        • Zhao S.
        • Li M.
        Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development.
        Dev Biol. 2005; 282: 467-479
        • Breton J.M.
        • Charbit A.R.
        • Snyder B.J.
        • Fong P.T.K.
        • Dias E.V.
        • Himmels P.
        • et al.
        Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat.
        J Comp Neurol. 2019; 527: 916-941
        • Lammel S.
        • Hetzel A.
        • Häckel O.
        • Jones I.
        • Liss B.
        • Roeper J.
        Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.
        Neuron. 2008; 57: 760-773
        • Nieh E.H.
        • Vander Weele C.M.
        • Matthews G.A.
        • Presbrey K.N.
        • Wichmann R.
        • Leppla C.A.
        • et al.
        Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation.
        Neuron. 2016; 90: 1286-1298
        • Zalocusky K.A.
        • Ramakrishnan C.
        • Lerner T.N.
        • Davidson T.J.
        • Knutson B.
        • Deisseroth K.
        Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making.
        Nature. 2016; 531: 642-646
        • Barbano M.F.
        • Wang H.L.
        • Morales M.
        • Wise R.A.
        Feeding and reward are differentially induced by activating GABAergic lateral hypothalamic projections to VTA.
        J Neurosci. 2016; 36: 2975-2985
        • Boekhoudt L.
        • Wijbrans E.C.
        • Man J.H.K.
        • Luijendijk M.C.M.
        • de Jong J.W.
        • van der Plasse G.
        • et al.
        Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation.
        Eur Neuropsychopharmacol. 2018; 28: 171-184
        • Nieh E.H.
        • Matthews G.A.
        • Allsop S.A.
        • Presbrey K.N.
        • Leppla C.A.
        • Wichmann R.
        • et al.
        Decoding neural circuits that control compulsive sucrose seeking.
        Cell. 2015; 160: 528-541
        • Jennings J.H.
        • Ung R.L.
        • Resendez S.L.
        • Stamatakis A.M.
        • Taylor J.G.
        • Huang J.
        • et al.
        Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors.
        Cell. 2015; 160: 516-527
        • Schiffino F.L.
        • Siemian J.N.
        • Petrella M.
        • Laing B.T.
        • Sarsfield S.
        • Borja C.B.
        • et al.
        Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation.
        PLoS One. 2019; 14e0219522
        • Davis J.F.
        • Choi D.L.
        • Schurdak J.D.
        • Fitzgerald M.F.
        • Clegg D.J.
        • Lipton J.W.
        • et al.
        Leptin regulates energy balance and motivation through action at distinct neural circuits.
        Biol Psychiatry. 2011; 69: 668-674
        • Liu J.
        • Guo M.
        • Lu X.Y.
        Leptin/LepRb in the ventral tegmental area mediates anxiety-related behaviors.
        Int J Neuropsychopharmacol. 2015; 19: pyv115
        • Leinninger G.M.
        • Opland D.M.
        • Jo Y.H.
        • Faouzi M.
        • Christensen L.
        • Cappellucci L.A.
        • et al.
        Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance.
        Cell Metab. 2011; 14: 313-323
        • Laque A.
        • Yu S.
        • Qualls-Creekmore E.
        • Gettys S.
        • Schwartzenburg C.
        • Bui K.
        • et al.
        Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons.
        Mol Metab. 2015; 4: 706-717
        • Myers Jr., M.G.
        • Leibel R.L.
        • Seeley R.J.
        • Schwartz M.W.
        Obesity and leptin resistance: Distinguishing cause from effect.
        Trends Endocrinol Metab. 2010; 21: 643-651