Advertisement

Posttraumatic Stress Disorder Brain Transcriptomics: Convergent Genomic Signatures Across Biological Sex

  • Jiawei Wang
    Affiliations
    Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut

    Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
    Search for articles by this author
  • Hongyu Zhao
    Affiliations
    Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut

    Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
    Search for articles by this author
  • Matthew J. Girgenti
    Correspondence
    Address correspondence to Matthew J. Girgenti, Ph.D.
    Affiliations
    Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut

    Psychiatry Service, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut

    Veterans Administration National Center for PTSD, West Haven, Connecticut
    Search for articles by this author
Published:February 21, 2021DOI:https://doi.org/10.1016/j.biopsych.2021.02.012

      Abstract

      While a definitive understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is far from a current reality, it has become increasingly clear that many of the molecular effects of PTSD are sex specific. Women are twice as likely as men to develop PTSD after a traumatic event, and neurobiological evidence suggests that there are structural differences between the brains of males versus females with PTSD. Recent advances in genomic technologies have begun to shed light on the sex-specific molecular determinants of PTSD, which seem to be governed predominantly by dysfunction of GABAergic (gamma-aminobutyric acidergic) signaling and immune function. We review the current state of the field of PTSD genomics focusing on the effect of sex. We provide an overview of difference in heritability of PTSD based on sex, how difference in gene regulation based on sex impacts the PTSD brain, and what is known about genomic regulation that is dysregulated in specific cell types in PTSD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Breslau N.
        The epidemiology of posttraumatic stress disorder: What is the extent of the problem?.
        J Clin Psychiatry. 2001; 62: 16-22
        • McLaughlin K.A.
        • Koenen K.C.
        • Friedman M.J.
        • Ruscio A.M.
        • Karam E.G.
        • Shahly V.
        • et al.
        Subthreshold posttraumatic stress disorder in the World Health Organization world mental health surveys.
        Biol Psychiatry. 2015; 77: 375-384
        • Bromet E.
        • Sonnega A.
        • Kessler R.C.
        Risk factors for DSM-III-R posttraumatic stress disorder: Findings from the National Comorbidity Survey.
        Am J Epidemiol. 1998; 147: 353-361
        • Jovanovic T.
        • Ressler K.J.
        How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD.
        Am J Psychiatry. 2010; 167: 648-662
        • Jovanovic T.
        • Norrholm S.D.
        • Blanding N.Q.
        • Davis M.
        • Duncan E.
        • Bradley B.
        • Ressler K.J.
        Impaired fear inhibition is a biomarker of PTSD but not depression.
        Depress Anxiety. 2010; 27: 244-251
        • Rauch S.L.
        • Shin L.M.
        • Phelps E.A.
        Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research—past, present, and future.
        Biol Psychiatry. 2006; 60: 376-382
        • Yehuda R.
        • LeDoux J.
        Response variation following trauma: A translational neuroscience approach to understanding PTSD.
        Neuron. 2007; 56: 19-32
        • Mellman T.A.
        • David D.
        • Bustamante V.
        • Fins A.I.
        • Esposito K.
        Predictors of post-traumatic stress disorder following severe injury.
        Depress Anxiety. 2001; 14: 226-231
        • True W.R.
        • Rice J.
        • Eisen S.A.
        • Heath A.C.
        • Goldberg J.
        • Lyons M.J.
        • Nowak J.
        A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms.
        Arch Gen Psychiatry. 1993; 50: 257-264
        • Xian H.
        • Chantarujikapong S.I.
        • Scherrer J.F.
        • Eisen S.A.
        • Lyons M.J.
        • Goldberg J.
        • et al.
        Genetic and environmental influences on posttraumatic stress disorder, alcohol and drug dependence in twin pairs.
        Drug Alcohol Depend. 2000; 61: 95-102
        • Stein M.B.
        • Jang K.L.
        • Taylor S.
        • Vernon P.A.
        • Livesley W.J.
        Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: A twin study.
        Am J Psychiatry. 2002; 159: 1675-1681
        • Koenen K.C.
        • Lyons M.J.
        • Goldberg J.
        • Simpson J.
        • Williams W.M.
        • Toomey R.
        • et al.
        A high risk twin study of combat-related PTSD comorbidity.
        Twin Res. 2003; 6: 218-226
        • Koenen K.C.
        • Hitsman B.
        • Lyons M.J.
        • Niaura R.
        • McCaffery J.
        • Goldberg J.
        • et al.
        A twin registry study of the relationship between posttraumatic stress disorder and nicotine dependence in men.
        Arch Gen Psychiatry. 2005; 62: 1258-1265
        • Gelernter J.
        • Sun N.
        • Polimanti R.
        • Pietrzak R.
        • Levey D.F.
        • Bryois J.
        • et al.
        Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans.
        Nat Neurosci. 2019; 22: 1394-1401
        • Kessler R.C.
        • Sonnega A.
        • Bromet E.
        • Hughes M.
        • Nelson C.B.
        Posttraumatic stress disorder in the National Comorbidity Survey.
        Arch Gen Psychiatry. 1995; 52: 1048-1060
        • Kessler R.C.
        • Aguilar-Gaxiola S.
        • Alonso J.
        • Chatterji S.
        • Lee S.
        • Ormel J.
        • et al.
        The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys.
        Epidemiol Psichiatr Soc. 2009; 18: 23-33
        • Breslau N.
        • Kessler R.C.
        • Chilcoat H.D.
        • Schultz L.R.
        • Davis G.C.
        • Andreski P.
        Trauma and posttraumatic stress disorder in the community.
        Arch Gen Psychiatry. 1998; 55: 626-628
        • Holbrook T.L.
        • Hoyt D.B.
        • Stein M.B.
        • Sieber W.J.
        Gender differences in long-term posttraumatic stress disorder outcomes after major trauma: Women are at higher risk of adverse outcomes than men.
        J Trauma. 2002; 53: 882-888
        • Seedat S.
        • Stein D.J.
        • Carey P.D.
        Post-traumatic stress disorder in women: Epidemiological and treatment issues.
        CNS Drugs. 2005; 19: 411-427
        • Baran S.E.
        • Armstrong C.E.
        • Niren D.C.
        • Conrad C.D.
        Prefrontal cortex lesions and sex differences in fear extinction and perseveration.
        Learn Mem. 2010; 17: 267-278
        • Ter Horst G.J.
        • Wichmann R.
        • Gerrits M.
        • Westenbroek C.
        • Lin Y.
        Sex differences in stress responses: Focus on ovarian hormones.
        Physiol Behav. 2009; 97: 239-249
        • Goldstein J.M.
        • Jerram M.
        • Abbs B.
        • Whitfield-Gabrieli S.
        • Makris N.
        Sex differences in stress response circuitry activation dependent on female hormonal cycle.
        J Neurosci. 2010; 30: 431-438
        • Kogler L.
        • Gur R.C.
        • Derntl B.
        Sex differences in cognitive regulation of psychosocial achievement stress: Brain and behavior.
        Hum Brain Mapp. 2014; 36: 1028-1042
        • Brivio E.
        • Lopez J.P.
        • Chen A.
        Sex differences: Transcriptional signatures of stress exposure in male and female brains.
        Genes Brain Behav. 2020; 19e12643
        • Herman J.P.
        • McKlveen J.M.
        • Ghosal S.
        • Kopp B.
        • Wulsin A.
        • Makinson R.
        • et al.
        Regulation of the hypothalamic-pituitary-adrenocortical stress response.
        Compr Physiol. 2016; 6: 603-621
        • Gunnar M.
        • Quevedo K.
        The neurobiology of stress and development.
        Annu Rev Psychol. 2007; 58: 145-173
        • Viau V.
        • Meaney M.J.
        Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat.
        Endocrinology. 1991; 129: 2503-2511
        • Heim C.
        • Newport D.J.
        • Heit S.
        • Graham Y.P.
        • Wilcox M.
        • Bonsall R.
        • et al.
        Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood.
        JAMA. 2000; 284: 592-597
        • Kudielka B.M.
        • Kirschbaum C.
        Sex differences in HPA axis responses to stress: A review.
        Biol Psychol. 2005; 69: 113-132
        • Yehuda R.
        • Bell A.
        • Bierer L.M.
        • Schmeidler J.
        Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors.
        J Psychiatr Res. 2008; 42: 1104-1111
        • Kokras N.
        • Hodes G.E.
        • Bangasser D.A.
        • Dalla C.
        Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development?.
        Br J Pharmacol. 2019; 176: 4090-4106
        • Duncan L.E.
        • Ratanatharathorn A.
        • Aiello A.E.
        • Almli L.M.
        • Amstadter A.B.
        • Ashley-Koch A.E.
        • et al.
        Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability.
        Mol Psychiatry. 2017; 23: 666-673
        • Breen M.S.
        • Tylee D.S.
        • Maihofer A.X.
        • Neylan T.C.
        • Mehta D.
        • Binder E.B.
        • et al.
        PTSD blood transcriptome mega-analysis: Shared inflammatory pathways across biological sex and modes of trauma.
        Neuropsychopharmacology. 2017; 43: 469-481
        • Nemeroff C.B.
        • Bremner J.D.
        • Foa E.B.
        • Mayberg H.S.
        • North C.S.
        • Stein M.B.
        Posttraumatic stress disorder: A state-of-the-science review.
        J Psychiatr Res. 2006; 40: 1-21
        • Sartor C.E.
        • McCutcheon V.V.
        • Pommer N.E.
        • Nelson E.C.
        • Grant J.D.
        • Duncan A.E.
        • et al.
        Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women.
        Psychol Med. 2011; 41: 1497-1505
        • Nievergelt C.M.
        • Maihofer A.X.
        • Klengel T.
        • Atkinson E.G.
        • Chen C.Y.
        • Choi K.W.
        • et al.
        International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
        Nat Commun. 2019; 10: 4558
        • Kasckow J.W.
        • Baker D.
        • Geracioti T.D.
        Corticotropin-releasing hormone in depression and post-traumatic stress disorder.
        Peptides. 2001; 22: 845-851
        • McFarlane A.C.
        • Barton C.A.
        • Yehuda R.
        • Wittert G.
        Cortisol response to acute trauma and risk of posttraumatic stress disorder.
        Psychoneuroendocrinology. 2011; 36: 720-727
        • Gusev A.
        • Ko A.
        • Shi H.
        • Bhatia G.
        • Chung W.
        • Penninx B.W.J.H.
        • et al.
        Integrative approaches for large-scale transcriptome-wide association studies.
        Nat Genet. 2016; 48: 245-252
        • Huckins L.M.
        • Chatzinakos C.
        • Breen M.S.
        • Hartmann J.
        • Klengel T.
        • da Silva Almeida A.C.
        • et al.
        Analysis of genetically regulated gene expression identifies a prefrontal PTSD gene, SNRNP35, specific to military cohorts.
        Cell Rep. 2020; 31: 107716
        • Hu Y.
        • Li M.
        • Lu Q.
        • Weng H.
        • Wang J.
        • Zekavat S.M.
        • et al.
        A statistical framework for cross-tissue transcriptome-wide association analysis.
        Nat Genet. 2019; 51: 568-576
        • Stein M.B.
        • Levey D.F.
        • Cheng Z.
        • Wendt F.R.
        • Harrington K.
        • Pathak G.A.
        • et al.
        Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program.
        Nat Genet. 2021; 53: 174-184
        • Girgenti M.J.
        • Wang J.
        • Ji D.
        • Cruz D.
        • Stein M.B.
        • Gelernter J.
        • et al.
        Transcriptomic organization of human post-traumatic stress disorder.
        Nat Neurosci. 2021; 24: 24-33
        • Dunn H.A.
        • Patil D.N.
        • Cao Y.
        • Orlandi C.
        • Martemyanov K.A.
        Synaptic adhesion protein ELFN1 is a selective allosteric modulator of group III metabotropic glutamate receptors in trans.
        Proc Natl Acad Sci U S A. 2018; 115: 5022-5027
        • Stachniak T.J.
        • Sylwestrak E.L.
        • Scheiffele P.
        • Hall B.J.
        • Ghosh A.
        Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of somatostatin interneurons.
        J Neurosci. 2019; 39: 4461-4474
        • Przanowski P.
        • Dabrowski M.
        • Ellert-Miklaszewska A.
        • Kloss M.
        • Mieczkowski J.
        • Kaza B.
        • et al.
        The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia.
        J Mol Med. 2013; 92: 239-254
        • Passos I.C.
        • Vasconcelos-Moreno M.P.
        • Costa L.G.
        • Kunz M.
        • Brietzke E.
        • Quevedo J.
        • et al.
        Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression.
        Lancet Psychiatry. 2015; 2: 1002-1012
        • Neylan T.C.
        • Sun B.
        • Rempel H.
        • Ross J.
        • Lenoci M.
        • O’Donovan A.
        • Pulliam L.
        Suppressed monocyte gene expression profile in men versus women with PTSD.
        Brain Behav Immunity. 2011; 25: 524-531
        • Ressler K.J.
        • Mercer K.B.
        • Bradley B.
        • Jovanovic T.
        • Mahan A.
        • Kerley K.
        • et al.
        Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor.
        Nature. 2011; 477: 492-497
        • Friedman M.J.
        • Huber B.R.
        • Brady C.B.
        • Ursano R.J.
        • Benedek D.M.
        • Kowall N.W.
        • et al.
        VA’s National PTSD Brain Bank: A national resource for research.
        Curr Psychiatry Rep. 2017; 19: 73
        • Uddin M.
        • Sipahi L.
        • Li J.
        • Koenen K.C.
        Sex differences in DNA methylation may contribute to risk of PTSD and depression: A review of existing evidence.
        Depress Anxiety. 2013; 30: 1151-1160
        • Kim G.S.
        • Smith A.K.
        • Nievergelt C.M.
        • Uddin M.
        Neuroepigenetics of post-traumatic stress disorder.
        Prog Mol Biol Transl. 2018; 158: 227-253
        • Sawamura T.
        • Klengel T.
        • Armario A.
        • Jovanovic T.
        • Norrholm S.D.
        • Ressler K.J.
        • Andero R.
        Dexamethasone treatment leads to enhanced fear extinction and dynamic Fkbp5 regulation in amygdala.
        Neuropsychopharmacology. 2015; 41: 832-846
        • Seney M.L.
        • Tripp A.
        • McCune S.
        • Lewis D.A.
        • Sibille E.
        Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression.
        Neurobiol Dis. 2015; 73: 213-219
        • Bhatt S.
        • Hillmer A.T.
        • Girgenti M.J.
        • Rusowicz A.
        • Kapinos M.
        • Nabulsi N.
        • et al.
        PTSD is associated with neuroimmune suppression: Evidence from PET imaging and postmortem transcriptomic studies.
        Nat Commun. 2020; 11: 2360
        • Wang D.
        • Liu S.
        • Warrell J.
        • Won H.
        • Shi X.
        • Navarro F.C.P.
        • et al.
        Comprehensive functional genomic resource and integrative model for the human brain.
        Science. 2018; 362eaat8464
        • Newman A.M.
        • Steen C.B.
        • Liu C.L.
        • Gentles A.J.
        • Chaudhuri A.A.
        • Scherer F.
        • et al.
        Determining cell type abundance and expression from bulk tissues with digital cytometry.
        Nat Biotechnol. 2019; 37: 773-782
        • Zhu Y.
        • Sousa A.M.M.
        • Gao T.
        • Skarica M.
        • Li M.
        • Santpere G.
        • et al.
        Spatiotemporal transcriptomic divergence across human and macaque brain development.
        Science. 2018; 362eaat8077
        • Labonté B.
        • Engmann O.
        • Purushothaman I.
        • Menard C.
        • Wang J.
        • Tan C.
        • et al.
        Sex-specific transcriptional signatures in human depression.
        Nat Med. 2017; 23: 1102-1111
        • Seney M.L.
        • Huo Z.
        • Cahill K.
        • French L.
        • Puralewski R.
        • Zhang J.
        • et al.
        Opposite molecular signatures of depression in men and women.
        Biol Psychiatry. 2018; 84: 18-27
        • Breslau N.
        • Davis G.C.
        • Peterson E.L.
        • Schultz L.
        Psychiatric sequelae of posttraumatic stress disorder in women.
        Arch Gen Psychiatry. 1997; 54: 81-87
        • Caramanica K.
        • Brackbill R.M.
        • Liao T.
        • Stellman S.D.
        Comorbidity of 9/11-related PTSD and depression in the World Trade Center Health Registry 10–11 years postdisaster.
        J Trauma Stress. 2014; 27: 680-688
        • Rytwinski N.K.
        • Scur M.D.
        • Feeny N.C.
        • Youngstrom E.A.
        The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: A meta-analysis.
        J Trauma Stress. 2013; 26: 299-309
        • Gandal M.J.
        • Haney J.R.
        • Parikshak N.N.
        • Leppa V.
        • Ramaswami G.
        • Hartl C.
        • et al.
        Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
        Science. 2018; 359: 693-697
        • Labonté B.
        • Jeong Y.H.
        • Parise E.
        • Issler O.
        • Fatma M.
        • Engmann O.
        • et al.
        Gadd45b mediates depressive-like role through DNA demethylation.
        Sci Rep. 2019; 9: 4615
        • Ma D.K.
        • Jang M.H.
        • Guo J.U.
        • Kitabatake Y.
        • Chang M.L.
        • Pow-Anpongkul N.
        • et al.
        Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.
        Science. 2009; 323: 1074-1077
        • Geuze E.
        • van Berckel B.N.
        • Lammertsma A.A.
        • Boellaard R.
        • de Kloet C.S.
        • Vermetten E.
        • Westenberg H.G.
        Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder.
        Mol Psychiatry. 2008; 13: 74-83
        • Möller A.T.
        • Bäckström T.
        • Nyberg S.
        • Söndergaard H.P.
        • Helström L.
        Women with PTSD have a changed sensitivity to GABA-A receptor active substances.
        Psychopharmacology. 2016; 233: 2025-2033
        • Rosso I.M.
        • Weiner M.R.
        • Crowley D.J.
        • Silveri M.M.
        • Rauch S.L.
        • Jensen J.E.
        Insula and anterior cingulate GABA levels in posttraumatic stress disorder: Preliminary findings using magnetic resonance spectroscopy.
        Depress Anxiety. 2014; 31: 115-123
        • Sheth C.
        • Prescot A.P.
        • Legarreta M.
        • Renshaw P.F.
        • McGlade E.
        • Yurgelun-Todd D.
        Reduced gamma-amino butyric acid (GABA) and glutamine in the anterior cingulate cortex (ACC) of veterans exposed to trauma.
        J Affect Disorders. 2019; 248: 166-174
        • Vaiva G.
        • Boss V.
        • Ducrocq F.
        • Fontaine M.
        • Devos P.
        • Brunet A.
        • et al.
        Relationship between posttrauma GABA plasma levels and PTSD at 1-year follow-up.
        Am J Psychiatry. 2006; 163: 1446-1448
        • Barbeira A.N.
        • Dickinson S.P.
        • Bonazzola R.
        • Zheng J.
        • Wheeler H.E.
        • Torres J.M.
        • et al.
        Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics.
        Nat Commun. 2018; 9: 1825