Advertisement

Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited

Published:February 11, 2021DOI:https://doi.org/10.1016/j.biopsych.2021.02.003

      Abstract

      The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fine C.
        Is there neurosexism in functional neuroimaging investigations of sex differences?.
        Neuroethics. 2013; 6: 369-409
        • Romanes G.
        Mental Differences Between Men and Women.
        Routledge, London1887/2001
        • Liu S.
        • Seidlitz J.
        • Blumenthal J.D.
        • Clasen L.S.
        • Raznahan A.
        Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans.
        Proc Natl Acad Sci U S A. 2020; 117: 18788-18798
        • Ruigrok A.N.
        • Salimi-Khorshidi G.
        • Lai M.C.
        • Baron-Cohen S.
        • Lombardo M.V.
        • Tait R.J.
        • Suckling J.
        A meta-analysis of sex differences in human brain structure.
        Neurosci Biobehav Rev. 2014; 39: 34-50
        • Ingalhalikar M.
        • Smith A.
        • Parker D.
        • Satterthwaite T.D.
        • Elliott M.A.
        • Ruparel K.
        • et al.
        Sex differences in the structural connectome of the human brain.
        Proc Natl Acad Sci U S A. 2014; 111: 823-828
        • Rippon G.
        • Jordan-Young R.
        • Kaiser A.
        • Fine C.
        Recommendations for sex/gender neuroimaging research: Key principles and implications for research design, analysis, and interpretation.
        Front Hum Neurosci. 2014; 8: 650
        • Fine C.
        Neuroscience. His brain, her brain?.
        Science. 2014; 346: 915-916
        • Kreukels B.P.
        • Guillamon A.
        Neuroimaging studies in people with gender incongruence.
        Int Rev Psychiatry. 2016; 28: 120-128
        • Burke S.M.
        • Manzouri A.H.
        • Dhejne C.
        • Bergström K.
        • Arver S.
        • Feusner J.D.
        • Savic-Berglund I.
        Testosterone effects on the brain in transgender men.
        Cereb Cortex. 2018; 28: 1582-1596
        • Uribe C.
        • Junque C.
        • Gómez-Gil E.
        • Abos A.
        • Mueller S.C.
        • Guillamon A.
        Brain network interactions in transgender individuals with gender incongruence.
        Neuroimage. 2020; 211: 116613
        • Xenophontos A.
        • Seidlitz J.
        • Liu S.
        • Clasen L.S.
        • Blumenthal J.D.
        • Giedd J.N.
        • et al.
        Altered sex chromosome dosage induces coordinated shifts in cortical anatomy and anatomical covariance.
        Cereb Cortex. 2020; 30: 2215-2228
        • Mankiw C.
        • Park M.T.M.
        • Reardon P.K.
        • Fish A.M.
        • Clasen L.S.
        • Greenstein D.
        • et al.
        Allometric analysis detects brain size-independent effects of sex and sex chromosome complement on human cerebellar organization.
        J Neurosci. 2017; 37: 5221-5231
        • Fish A.M.
        • Cachia A.
        • Fischer C.
        • Mankiw C.
        • Reardon P.K.
        • Clasen L.S.
        • et al.
        Influences of brain size, sex, and sex chromosome complement on the architecture of human cortical folding.
        Cereb Cortex. 2017; 27: 5557-5567
        • Reardon P.K.
        • Clasen L.
        • Giedd J.N.
        • Blumenthal J.
        • Lerch J.P.
        • Chakravarty M.M.
        • Raznahan A.
        An allometric analysis of sex and sex chromosome dosage effects on subcortical anatomy in humans.
        J Neurosci. 2016; 36: 2438-2448
        • Green T.
        • Flash S.
        • Reiss A.L.
        Sex differences in psychiatric disorders: What we can learn from sex chromosome aneuploidies.
        Neuropsychopharmacology. 2019; 44: 9-21
        • Green T.
        • Hosseini H.
        • Piccirilli A.
        • Ishak A.
        • Grill-Spector K.
        • Reiss A.L.
        X-chromosome insufficiency alters receptive fields across the human early visual cortex.
        J Neurosci. 2019; 39: 8079-8088
        • Bangasser D.A.
        • Curtis A.
        • Reyes B.A.
        • Bethea T.T.
        • Parastatidis I.
        • Ischiropoulos H.
        • et al.
        Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology.
        Mol Psychiatry. 2010; 15: 896-904
        • Jain A.
        • Huang G.Z.
        • Woolley C.S.
        Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus.
        J Neurosci. 2019; 39: 1552-1565
        • Solomon M.B.
        • Furay A.R.
        • Jones K.
        • Packard A.E.
        • Packard B.A.
        • Wulsin A.C.
        • Herman J.P.
        Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females.
        Neuroscience. 2012; 203: 135-143
        • Shors T.J.
        • Chua C.
        • Falduto J.
        Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus.
        J Neurosci. 2001; 21: 6292-6297
        • Shors T.J.
        Opposite effects of stressful experience on memory formation in males versus females.
        Dialogues Clin Neurosci. 2002; 4: 139-147
        • Maren S.
        • De Oca B.
        • Fanselow M.S.
        Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: Positive correlation between LTP and contextual learning.
        Brain Res. 1994; 661: 25-34
        • Dalla C.
        • Edgecomb C.
        • Whetstone A.S.
        • Shors T.J.
        Females do not express learned helplessness like males do.
        Neuropsychopharmacology. 2008; 33: 1559-1569
        • Gruene T.M.
        • Flick K.
        • Stefano A.
        • Shea S.D.
        • Shansky R.M.
        Sexually divergent expression of active and passive conditioned fear responses in rats.
        eLife. 2015; 4e11352
        • Shen E.Y.
        • Ahern T.H.
        • Cheung I.
        • Straubhaar J.
        • Dincer A.
        • Houston I.
        • et al.
        Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.
        Exp Neurol. 2015; 268: 21-29
        • Ghahramani N.M.
        • Ngun T.C.
        • Chen P.Y.
        • Tian Y.
        • Krishnan S.
        • Muir S.
        • et al.
        The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging.
        Biol Sex Differ. 2014; 5: 8
        • Nugent B.M.
        • Wright C.L.
        • Shetty A.C.
        • Hodes G.E.
        • Lenz K.M.
        • Mahurkar A.
        • et al.
        Brain feminization requires active repression of masculinization via DNA methylation.
        Nat Neurosci. 2015; 18: 690-697
        • Hodes G.E.
        • Pfau M.L.
        • Purushothaman I.
        • Ahn H.F.
        • Golden S.A.
        • Christoffel D.J.
        • et al.
        Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress.
        J Neurosci. 2015; 35: 16362-16376
        • Morgan C.P.
        • Bale T.L.
        Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage.
        J Neurosci. 2011; 31: 11748-11755
        • Dunn G.A.
        • Morgan C.P.
        • Bale T.L.
        Sex-specificity in transgenerational epigenetic programming.
        Horm Behav. 2011; 59: 290-295
        • Bangasser D.A.
        • Valentino R.J.
        Sex differences in molecular and cellular substrates of stress.
        Cell Mol Neurobiol. 2012; 32: 709-723
        • de Vries G.J.
        • Forger N.G.
        Sex differences in the brain: A whole body perspective.
        Biol Sex Differ. 2015; 6: 15
        • McCarthy M.M.
        A new view of sexual differentiation of mammalian brain.
        J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020; 206: 369-378
        • Labonté B.
        • Engmann O.
        • Purushothaman I.
        • Menard C.
        • Wang J.
        • Tan C.
        • et al.
        Sex-specific transcriptional signatures in human depression.
        Nat Med. 2017; 23: 1102-1111
        • Seney M.L.
        • Huo Z.
        • Cahill K.
        • French L.
        • Puralewski R.
        • Zhang J.
        • et al.
        Opposite molecular signatures of depression in men and women.
        Biol Psychiatry. 2018; 84: 18-27
        • Seney M.L.
        • Glausier J.
        • Sibille E.
        Large-scale transcriptomics studies provide insight into sex differences in depression.
        Biological Psychiatry. 2022; 91: 14-24
        • Gershoni M.
        • Pietrokovski S.
        The landscape of sex-differential transcriptome and its consequent selection in human adults.
        BMC Biol. 2017; 15: 7
        • Trabzuni D.
        • Ramasamy A.
        • Imran S.
        • Walker R.
        • Smith C.
        • Weale M.E.
        • et al.
        Widespread sex differences in gene expression and splicing in the adult human brain.
        Nat Commun. 2013; 4: 2771
        • Lopes-Ramos C.M.
        • Chen C.Y.
        • Kuijjer M.L.
        • Paulson J.N.
        • Sonawane A.R.
        • Fagny M.
        • et al.
        Sex differences in gene expression and regulatory networks across 29 human tissues.
        Cell Rep. 2020; 31: 107795
        • Melé M.
        • Ferreira P.G.
        • Reverter F.
        • DeLuca D.S.
        • Monlong J.
        • Sammeth M.
        • et al.
        Human genomics. The human transcriptome across tissues and individuals.
        Science. 2015; 348: 660-665
        • Lovén J.
        • Rehnman J.
        • Wiens S.
        • Lindholm T.
        • Peira N.
        • Herlitz A.
        Who are you looking at? The influence of face gender on visual attention and memory for own- and other-race faces.
        Memory. 2012; 20: 321-331
        • Olderbak S.
        • Wilhelm O.
        • Hildebrandt A.
        • Quoidbach J.
        Sex differences in facial emotion perception ability across the lifespan.
        Cogn Emot. 2019; 33: 579-588
        • Stayer C.
        • Sporn A.
        • Gogtay N.
        • Tossell J.
        • Lenane M.
        • Gochman P.
        • Rapoport J.L.
        Looking for childhood schizophrenia: Case series of false positives.
        J Am Acad Child Adolesc Psychiatry. 2004; 43: 1026-1029
        • Giambra L.M.
        • Quilter R.E.
        Sex differences in sustained attention across the adult life span.
        J Appl Psychol. 1989; 74: 91-95
        • Grissom N.M.
        • Reyes T.M.
        Let’s call the whole thing off: Evaluating gender and sex differences in executive function.
        Neuropsychopharmacology. 2019; 44: 86-96
        • Rahman Q.
        • Abrahams S.
        • Jussab F.
        Sex differences in a human analogue of the Radial Arm Maze: The “17-Box Maze Test”.
        Brain Cogn. 2005; 58: 312-317
        • Duff S.J.
        • Hampson E.
        A sex difference on a novel spatial working memory task in humans.
        Brain Cogn. 2001; 47: 470-493
        • Lejbak L.
        • Vrbancic M.
        • Crossley M.
        The female advantage in object location memory is robust to verbalizability and mode of presentation of test stimuli.
        Brain Cogn. 2009; 69: 148-153
        • Paik D.T.
        • Tian L.
        • Williams I.M.
        • Rhee S.
        • Zhang H.
        • Liu C.
        • et al.
        Single-cell RNA-sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells.
        Circulation. 2020; 142: 1848-1862
        • Menard C.
        • Pfau M.L.
        • Hodes G.E.
        • Kana V.
        • Wang V.X.
        • Bouchard S.
        • et al.
        Social stress induces neurovascular pathology promoting depression.
        Nat Neurosci. 2017; 20: 1752-1760
        • Dudek K.A.
        • Dion-Albert L.
        • Lebel M.
        • LeClair K.
        • Labrecque S.
        • Tuck E.
        • et al.
        Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression.
        Proc Natl Acad Sci U S A. 2020; 117: 3326-3336
        • Stanhewicz A.E.
        • Wenner M.M.
        • Stachenfeld N.S.
        Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan.
        Am J Physiol Heart Circ Physiol. 2018; 315: H1569-H1588
        • Goldstein D.S.
        • McEwen B.
        Allostasis, homeostats, and the nature of stress.
        Stress. 2002; 5: 55-58
        • Ribatti D.
        Hans Selye and his studies on the role of mast cells in calciphylaxis and calcergy.
        Inflamm Res. 2019; 68: 177-180
        • Maclaughlin B.W.
        • Wang D.
        • Noone A.M.
        • Liu N.
        • Harazduk N.
        • Lumpkin M.
        • et al.
        Stress biomarkers in medical students participating in a mind body medicine skills program.
        Evid Based Complement Alternat Med. 2011; 2011: 950461
        • Webster Marketon J.I.
        • Glaser R.
        Stress hormones and immune function.
        Cell Immunol. 2008; 252: 16-26
        • Selye H.
        A syndrome produced by diverse nocuous agents. 1936.
        J Neuropsychiatry Clin Neurosci. 1998; 10: 230-231
        • Russo S.J.
        • Murrough J.W.
        • Han M.H.
        • Charney D.S.
        • Nestler E.J.
        Neurobiology of resilience.
        Nat Neurosci. 2012; 15: 1475-1484
        • Lisowski P.
        • Wieczorek M.
        • Goscik J.
        • Juszczak G.R.
        • Stankiewicz A.M.
        • Zwierzchowski L.
        • Swiergiel A.H.
        Effects of chronic stress on prefrontal cortex transcriptome in mice displaying different genetic backgrounds.
        J Mol Neurosci. 2013; 50: 33-57
        • Gray J.D.
        • Rubin T.G.
        • Hunter R.G.
        • McEwen B.S.
        Hippocampal gene expression changes underlying stress sensitization and recovery.
        Mol Psychiatry. 2014; 19: 1171-1178
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Lorsch Z.S.
        • Walker D.M.
        • Wang J.
        • et al.
        Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility.
        Neuron. 2016; 90: 969-983
        • Scarpa J.R.
        • Fatma M.
        • Loh Y.E.
        • Traore S.R.
        • Stefan T.
        • Chen T.H.
        • et al.
        Shared transcriptional signatures in major depressive disorder and mouse chronic stress models.
        Biol Psychiatry. 2020; 88: 159-168
        • Barko K.
        • Paden W.
        • Cahill K.M.
        • Seney M.L.
        • Logan R.W.
        Sex-specific effects of stress on mood-related gene expression.
        Mol Neuropsychiatry. 2019; 5: 162-175
        • Anacker C.
        • Scholz J.
        • O’Donnell K.J.
        • Allemang-Grand R.
        • Diorio J.
        • Bagot R.C.
        • et al.
        Neuroanatomic differences associated with stress susceptibility and resilience.
        Biol Psychiatry. 2016; 79: 840-849
        • Bagot R.C.
        • Parise E.M.
        • Peña C.J.
        • Zhang H.X.
        • Maze I.
        • Chaudhury D.
        • et al.
        Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression.
        Nat Commun. 2015; 6: 7062
        • Christoffel D.J.
        • Golden S.A.
        • Walsh J.J.
        • Guise K.G.
        • Heshmati M.
        • Friedman A.K.
        • et al.
        Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress.
        Nat Neurosci. 2015; 18: 962-964
        • Vialou V.
        • Bagot R.C.
        • Cahill M.E.
        • Ferguson D.
        • Robison A.J.
        • Dietz D.M.
        • et al.
        Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: Role of ΔFosB.
        J Neurosci. 2014; 34: 3878-3887
        • Cao J.L.
        • Covington 3rd, H.E.
        • Friedman A.K.
        • Wilkinson M.B.
        • Walsh J.J.
        • Cooper D.C.
        • et al.
        Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action.
        J Neurosci. 2010; 30: 16453-16458
        • Covington 3rd, H.E.
        • Lobo M.K.
        • Maze I.
        • Vialou V.
        • Hyman J.M.
        • Zaman S.
        • et al.
        Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex.
        J Neurosci. 2010; 30: 16082-16090
        • Heshmati M.
        • Christoffel D.J.
        • LeClair K.
        • Cathomas F.
        • Golden S.A.
        • Aleyasin H.
        • et al.
        Depression and social defeat stress are associated with inhibitory synaptic changes in the nucleus accumbens.
        J Neurosci. 2020; 40: 6228-6233
        • Williams E.S.
        • Manning C.E.
        • Eagle A.L.
        • Swift-Gallant A.
        • Duque-Wilckens N.
        • Chinnusamy S.
        • et al.
        Androgen-dependent excitability of mouse ventral hippocampal afferents to nucleus accumbens underlies sex-specific susceptibility to stress.
        Biol Psychiatry. 2020; 87: 492-501
        • Takahashi A.
        • Chung J.R.
        • Zhang S.
        • Zhang H.
        • Grossman Y.
        • Aleyasin H.
        • et al.
        Establishment of a repeated social defeat stress model in female mice.
        Sci Rep. 2017; 7: 12838
        • Sterley T.L.
        • Baimoukhametova D.
        • Füzesi T.
        • Zurek A.A.
        • Daviu N.
        • Rasiah N.P.
        • et al.
        Social transmission and buffering of synaptic changes after stress.
        Nat Neurosci. 2018; 21: 393-403
        • Proaño S.B.
        • Meitzen J.
        Estradiol decreases medium spiny neuron excitability in female rat nucleus accumbens core.
        J Neurophysiol. 2020; 123: 2465-2475
        • Proaño S.B.
        • Krentzel A.A.
        • Meitzen J.
        Differential and synergistic roles of 17β-estradiol and progesterone in modulating adult female rat nucleus accumbens core medium spiny neuron electrophysiology.
        J Neurophysiol. 2020; 123: 2390-2405
        • Meitzen J.
        • Meisel R.L.
        • Mermelstein P.G.
        Sex differences and the effects of estradiol on striatal function.
        Curr Opin Behav Sci. 2018; 23: 42-48
        • Baratta M.V.
        • Gruene T.M.
        • Dolzani S.D.
        • Chun L.E.
        • Maier S.F.
        • Shansky R.M.
        Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males, but not females.
        Brain Struct Funct. 2019; 224: 1831-1843
        • Brancato A.
        • Bregman D.
        • Ahn H.F.
        • Pfau M.L.
        • Menard C.
        • Cannizzaro C.
        • et al.
        Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens.
        Neuroscience. 2017; 350: 180-189
        • Parel S.T.
        • Peña C.J.
        Genome-wide signatures of early-life stress: Influence of sex.
        Biol Psychiatry. 2022; 91: 36-42
        • Howerton C.L.
        • Morgan C.P.
        • Fischer D.B.
        • Bale T.L.
        O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development.
        Proc Natl Acad Sci U S A. 2013; 110: 5169-5174
        • Peña C.J.
        • Kronman H.G.
        • Walker D.M.
        • Cates H.M.
        • Bagot R.C.
        • Purushothaman I.
        • et al.
        Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2.
        Science. 2017; 356: 1185-1188
        • Lorsch Z.S.
        • Loh Y.E.
        • Purushothaman I.
        • Walker D.M.
        • Parise E.M.
        • Salery M.
        • et al.
        Estrogen receptor α drives pro-resilient transcription in mouse models of depression.
        Nat Commun. 2018; 9: 1116
        • Issler O.
        • van der Zee Y.Y.
        • Ramakrishnan A.
        • Wang J.
        • Tan C.
        • Loh Y.E.
        • et al.
        Sex-specific role for the long non-coding RNA LINC00473 in depression.
        Neuron. 2020; 106: 912-926.e5
        • Peña C.J.
        • Smith M.
        • Ramakrishnan A.
        • Cates H.M.
        • Bagot R.C.
        • Kronman H.G.
        • et al.
        Early life stress alters transcriptomic patterning across reward circuitry in male and female mice.
        Nat Commun. 2019; 10: 5098
        • Intlekofer K.A.
        • Petersen S.L.
        Distribution of mRNAs encoding classical progestin receptor, progesterone membrane components 1 and 2, serpine mRNA binding protein 1, and progestin and ADIPOQ receptor family members 7 and 8 in rat forebrain.
        Neuroscience. 2011; 172: 55-65
        • Petersen S.L.
        • Intlekofer K.A.
        • Moura-Conlon P.J.
        • Brewer D.N.
        • Del Pino Sans J.
        • Lopez J.A.
        Novel progesterone receptors: Neural localization and possible functions.
        Front Neurosci. 2013; 7: 164
        • Koch M.
        • Ehret G.
        Immunocytochemical localization and quantitation of estrogen-binding cells in the male and female (virgin, pregnant, lactating) mouse brain.
        Brain Res. 1989; 489: 101-112
        • Wilson M.E.
        • Westberry J.M.
        • Trout A.L.
        Estrogen receptor-alpha gene expression in the cortex: Sex differences during development and in adulthood.
        Horm Behav. 2011; 59: 353-357
        • Handa R.J.
        • Ogawa S.
        • Wang J.M.
        • Herbison A.E.
        Roles for oestrogen receptor β in adult brain function.
        J Neuroendocrinol. 2012; 24: 160-173
        • Schwarz J.M.
        • Nugent B.M.
        • McCarthy M.M.
        Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span.
        Endocrinology. 2010; 151: 4871-4881
        • Vrtačnik P.
        • Ostanek B.
        • Mencej-Bedrač S.
        • Marc J.
        The many faces of estrogen signaling.
        Biochem Med (Zagreb). 2014; 24: 329-342
        • Cornil C.A.
        On the role of brain aromatase in females: Why are estrogens produced locally when they are available systemically?.
        J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018; 204: 31-49
        • Mukai H.
        • Takata N.
        • Ishii H.T.
        • Tanabe N.
        • Hojo Y.
        • Furukawa A.
        • et al.
        Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: Synaptocrinology.
        Neuroscience. 2006; 138: 757-764
        • Micevych P.
        • Sinchak K.
        Estradiol regulation of progesterone synthesis in the brain.
        Mol Cell Endocrinol. 2008; 290: 44-50
        • Micevych P.
        • Soma K.K.
        • Sinchak K.
        Neuroprogesterone: Key to estrogen positive feedback?.
        Brain Res Rev. 2008; 57: 470-480
        • Vasudevan N.
        • Pfaff D.W.
        Non-genomic actions of estrogens and their interaction with genomic actions in the brain.
        Front Neuroendocrinol. 2008; 29: 238-257
        • Konkle A.T.
        • McCarthy M.M.
        Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain.
        Endocrinology. 2011; 152: 223-235
        • McCarthy M.M.
        • Arnold A.P.
        • Ball G.F.
        • Blaustein J.D.
        • De Vries G.J.
        Sex differences in the brain: The not so inconvenient truth.
        J Neurosci. 2012; 32: 2241-2247
        • Lenz K.M.
        • Nugent B.M.
        • Haliyur R.
        • McCarthy M.M.
        Microglia are essential to masculinization of brain and behavior.
        J Neurosci. 2013; 33: 2761-2772
        • Matsuda K.I.
        • Mori H.
        • Nugent B.M.
        • Pfaff D.W.
        • McCarthy M.M.
        • Kawata M.
        Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior.
        Endocrinology. 2011; 152: 2760-2767
        • Morrison K.E.
        • Rodgers A.B.
        • Morgan C.P.
        • Bale T.L.
        Epigenetic mechanisms in pubertal brain maturation.
        Neuroscience. 2014; 264: 17-24
        • Ober C.
        • Loisel D.A.
        • Gilad Y.
        Sex-specific genetic architecture of human disease.
        Nat Rev Genet. 2008; 9: 911-922
        • Gegenhuber B.
        • Tollkuhn J.
        Signatures of sex: Sex differences in gene expression in the vertebrate brain.
        Wiley Interdiscip Rev Dev Biol. 2020; 9: e348
        • Gegenhuber B.
        • Wu M.V.
        • Bronstein R.
        • Tollkuhn J.
        Regulation of neural gene expression by estrogen receptor alpha: bioRxiv.
        2020https://doi.org/10.1101/2020.10.21.349290
        • Warling A.
        • Liu S.
        • Wilson K.
        • Whitman E.
        • Lalonde F.M.
        • Clasen L.S.
        • et al.
        Sex chromosome aneuploidy alters the relationship between neuroanatomy and cognition.
        Am J Med Genet C Semin Med Genet. 2020; 184: 493-505
        • Tartaglia N.R.
        • Howell S.
        • Sutherland A.
        • Wilson R.
        • Wilson L.
        A review of trisomy X (47,XXX).
        Orphanet J Rare Dis. 2010; 5: 8
        • Raznahan A.
        • Parikshak N.N.
        • Chandran V.
        • Blumenthal J.D.
        • Clasen L.S.
        • Alexander-Bloch A.F.
        • et al.
        Sex-chromosome dosage effects on gene expression in humans.
        Proc Natl Acad Sci U S A. 2018; 115: 7398-7403
        • Arnold A.P.
        Sexual differentiation of brain and other tissues: Five questions for the next 50 years.
        Horm Behav. 2020; 120: 104691
        • Bellott D.W.
        • Hughes J.F.
        • Skaletsky H.
        • Brown L.G.
        • Pyntikova T.
        • Cho T.J.
        • et al.
        Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators.
        Nature. 2014; 508: 494-499
        • Migeon B.R.
        Why females are mosaics, X-chromosome inactivation, and sex differences in disease.
        Gend Med. 2007; 4: 97-105
        • Carrel L.
        • Willard H.F.
        X-inactivation profile reveals extensive variability in X-linked gene expression in females.
        Nature. 2005; 434: 400-404
        • Tukiainen T.
        • Villani A.C.
        • Yen A.
        • Rivas M.A.
        • Marshall J.L.
        • Satija R.
        • et al.
        Landscape of X chromosome inactivation across human tissues.
        Nature. 2017; 550: 244-248
        • Berletch J.B.
        • Ma W.
        • Yang F.
        • Shendure J.
        • Noble W.S.
        • Disteche C.M.
        • Deng X.
        Escape from X inactivation varies in mouse tissues.
        PLoS Genet. 2015; 11e1005079
        • Wu H.
        • Luo J.
        • Yu H.
        • Rattner A.
        • Mo A.
        • Wang Y.
        • et al.
        Cellular resolution maps of X chromosome inactivation: Implications for neural development, function, and disease.
        Neuron. 2014; 81: 103-119
        • Shvetsova E.
        • Sofronova A.
        • Monajemi R.
        • Gagalova K.
        • Draisma H.H.M.
        • White S.J.
        • et al.
        Skewed X-inactivation is common in the general female population.
        Eur J Hum Genet. 2019; 27: 455-465
        • Bianchi I.
        • Lleo A.
        • Gershwin M.E.
        • Invernizzi P.
        The X chromosome and immune associated genes.
        J Autoimmun. 2012; 38: J187-J192
        • Case L.K.
        • Wall E.H.
        • Dragon J.A.
        • Saligrama N.
        • Krementsov D.N.
        • Moussawi M.
        • et al.
        The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
        Genome Res. 2013; 23: 1474-1485
        • Prokop J.W.
        • Deschepper C.F.
        Chromosome Y genetic variants: Impact in animal models and on human disease.
        Physiol Genomics. 2015; 47: 525-537
        • Arnold A.P.
        • Chen X.
        What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues?.
        Front Neuroendocrinol. 2009; 30: 1-9
        • Arnold A.P.
        Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues.
        J Neuroendocrinol. 2009; 21: 377-386
        • Douillard-Guilloux G.
        • Lewis D.
        • Seney M.L.
        • Sibille E.
        Decrease in somatostatin-positive cell density in the amygdala of females with major depression.
        Depress Anxiety. 2017; 34: 68-78
        • Seney M.L.
        • Chang L.C.
        • Oh H.
        • Wang X.
        • Tseng G.C.
        • Lewis D.A.
        • Sibille E.
        The role of genetic sex in affect regulation and expression of GABA-related genes across species.
        Front Psychiatry. 2013; 4: 104
        • Paden W.
        • Barko K.
        • Puralewski R.
        • Cahill K.M.
        • Huo Z.
        • Shelton M.A.
        • et al.
        Sex differences in adult mood and in stress-induced transcriptional coherence across mesocorticolimbic circuitry.
        Transl Psychiatry. 2020; 10: 59
        • Park H.J.
        • Choi J.M.
        Sex-specific regulation of immune responses by PPARs.
        Exp Mol Med. 2017; 49: e364
        • Gal-Oz S.T.
        • Maier B.
        • Yoshida H.
        • Seddu K.
        • Elbaz N.
        • Czysz C.
        • et al.
        ImmGen report: Sexual dimorphism in the immune system transcriptome.
        Nat Commun. 2019; 10: 4295
        • Willyard C.
        Squeaky clean mice could be ruining research.
        Nature. 2018; 556: 16-18
        • Beura L.K.
        • Hamilton S.E.
        • Bi K.
        • Schenkel J.M.
        • Odumade O.A.
        • Casey K.A.
        • et al.
        Normalizing the environment recapitulates adult human immune traits in laboratory mice.
        Nature. 2016; 532: 512-516
        • Hector R.F.
        • Domer J.E.
        • Carrow E.W.
        Immune responses to Candida albicans in genetically distinct mice.
        Infect Immun. 1982; 38: 1020-1028
        • Elderman M.
        • Hugenholtz F.
        • Belzer C.
        • Boekschoten M.
        • van Beek A.
        • de Haan B.
        • et al.
        Sex and strain dependent differences in mucosal immunology and microbiota composition in mice.
        Biol Sex Differ. 2018; 9: 26
        • Mostafavi S.
        • Yoshida H.
        • Moodley D.
        • LeBoite H.
        • Rothamel K.
        • Raj T.
        • et al.
        Parsing the Interferon Transcriptional Network and its disease associations.
        Cell. 2016; 164: 564-578
        • Hodes G.E.
        • Walker D.M.
        • Labonté B.
        • Nestler E.J.
        • Russo S.J.
        Understanding the epigenetic basis of sex differences in depression.
        J Neurosci Res. 2017; 95: 692-702
        • Hodes G.E.
        Sex, stress, and epigenetics: Regulation of behavior in animal models of mood disorders.
        Biol Sex Differ. 2013; 4: 1
        • Morgan C.P.
        • Bale T.L.
        Sex differences in microRNA-mRNA networks: Examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus.
        Biol Sex Differ. 2017; 8: 27
        • Pfau M.L.
        • Purushothaman I.
        • Feng J.
        • Golden S.A.
        • Aleyasin H.
        • Lorsch Z.S.
        • et al.
        Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens.
        Front Mol Neurosci. 2016; 9: 144
        • Cisternas C.D.
        • Cortes L.R.
        • Golynker I.
        • Castillo-Ruiz A.
        • Forger N.G.
        Neonatal inhibition of DNA methylation disrupts testosterone-dependent masculinization of neurochemical phenotype.
        Endocrinology. 2020; 161: bqz022
        • Kolodkin M.H.
        • Auger A.P.
        Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development.
        J Neuroendocrinol. 2011; 23: 577-583
        • Cisternas C.D.
        • Cortes L.R.
        • Bruggeman E.C.
        • Yao B.
        • Forger N.G.
        Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain.
        Epigenetics. 2020; 15: 72-84
        • Lomniczi A.
        • Loche A.
        • Castellano J.M.
        • Ronnekleiv O.K.
        • Bosch M.
        • Kaidar G.
        • et al.
        Epigenetic control of female puberty.
        Nat Neurosci. 2013; 16: 281-289
        • LaPlant Q.
        • Vialou V.
        • Covington 3rd, H.E.
        • Dumitriu D.
        • Feng J.
        • Warren B.L.
        • et al.
        Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.
        Nat Neurosci. 2010; 13: 1137-1143
        • Dang S.
        • Lu Y.
        • Su Q.
        • Lin T.
        • Zhang X.
        • Zhang H.
        • et al.
        H3K9 acetylation of Tph2 involved in depression-like behavior in male, but not female, juvenile offspring rat induced by prenatal stress.
        Neuroscience. 2018; 381: 138-148
        • Singh G.
        • Singh V.
        • Schneider J.S.
        Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders.
        Biochim Biophys Acta Mol Basis Dis. 2019; 1865: 1968-1981
        • Chaudhury D.
        • Walsh J.J.
        • Friedman A.K.
        • Juarez B.
        • Ku S.M.
        • Koo J.W.
        • et al.
        Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.
        Nature. 2013; 493: 532-536
        • Zhang S.
        • Zhang H.
        • Ku S.M.
        • Juarez B.
        • Morel C.
        • Tzavaras N.
        • et al.
        Sex differences in the neuroadaptations of reward-related circuits in response to subchronic variable stress.
        Neuroscience. 2018; 376: 108-116
        • Golden L.C.
        • Itoh Y.
        • Itoh N.
        • Iyengar S.
        • Coit P.
        • Salama Y.
        • et al.
        Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes.
        Proc Natl Acad Sci U S A. 2019; 116: 26779-26787
        • Itoh Y.
        • Golden L.C.
        • Itoh N.
        • Matsukawa M.A.
        • Ren E.
        • Tse V.
        • et al.
        The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity.
        J Clin Invest. 2019; 129: 3852-3863