Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation?



      Corticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-containing neural systems are traditionally posited to generate aversive distress states that motivate overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively promote incentive motivation to increase reward pursuit and consumption without requiring aversive states.


      We optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre+ rats (n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron laser self-stimulation tasks.


      Channelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and focused “wanting” on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-related circuitry, as stimulation was avoided and suppressed motivation for sucrose.


      CRF-containing systems in the NAc and CeA can promote reward consumption by increasing incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional hedonic self-medication hypotheses.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Vale W.
        • Spiess J.
        • Rivier C.
        • Rivier J.
        Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.
        Science. 1981; 213: 1394-1397
        • Hupalo S.
        • Bryce C.A.
        • Bangasser D.A.
        • Berridge C.W.
        • Valentino R.J.
        • Floresco S.B.
        Corticotropin-releasing factor (CRF) circuit modulation of cognition and motivation.
        Neurosci Biobehav Rev. 2019; 103: 50-59
        • McEwen B.S.
        • Akil H.
        Revisiting the stress concept: Implications for affective disorders.
        J Neurosci. 2020; 40: 12-21
        • Stewart J.
        Pathways to relapse: The neurobiology of drug- and stress-induced relapse to drug-taking.
        J Psychiatry Neurosci. 2000; 25: 125-136
        • Dallman M.F.
        • Pecoraro N.
        • Akana S.F.
        • La Fleur S.E.
        • Gomez F.
        • Houshyar H.
        • et al.
        Chronic stress and obesity: A new view of “comfort food”.
        Proc Natl Acad Sci U S A. 2003; 100: 11696-11701
        • Koob G.F.
        • Bloom F.E.
        Corticotropin-releasing factor and behavior.
        Fed Proc. 1985; 44: 259-263
        • Dunn A.J.
        • Berridge C.W.
        Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses?.
        Brain Res Brain Res Rev. 1990; 15: 71-100
        • Bale T.L.
        • Vale W.W.
        Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: Sexually dichotomous responses.
        J Neurosci. 2003; 23: 5295-5301
        • Schulkin J.
        The CRF Signal: Uncovering an Information Molecule.
        Oxford University Press, Oxford, United Kingdom2017
        • Merali Z.
        • McIntosh J.
        • Anisman H.
        Anticipatory cues differentially provoke in vivo peptidergic and monoaminergic release at the medial prefrontal cortex.
        Neuropsychopharmacology. 2004; 29: 1409-1418
        • Merali Z.
        • McIntosh J.
        • Kent P.
        • Michaud D.
        • Anisman H.
        Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala.
        J Neurosci. 1998; 18: 4758-4766
        • Kim J.
        • Zhang X.
        • Muralidhar S.
        • LeBlanc S.A.
        • Tonegawa S.
        Basolateral to central amygdala neural circuits for appetitive behaviors.
        Neuron. 2017; 93: 1464-1479.e5
        • Peciña S.
        • Schulkin J.
        • Berridge K.C.
        Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: Paradoxical positive incentive effects in stress?.
        BMC Biol. 2006; 4: 8
        • Lemos J.C.
        • Wanat M.J.
        • Smith J.S.
        • Reyes B.A.S.
        • Hollon N.G.
        • Van Bockstaele E.J.
        • et al.
        Severe stress switches crf action in the nucleus accumbens from appetitive to aversive.
        Nature. 2012; 490: 402-406
        • Lemos J.C.
        • Alvarez V.A.
        The upside of stress: A mechanism for the positive motivational role of corticotropin releasing factor.
        Neuropsychopharmacology. 2020; 45: 219-220
        • Lemos J.C.
        • Shin J.H.
        • Alvarez V.A.
        Striatal cholinergic interneurons are a novel target of corticotropin releasing factor.
        J Neurosci. 2019; 39: 5647-5661
        • Swanson L.W.
        • Simmons D.M.
        Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: A hybridization histochemical study in the rat.
        J Comp Neurol. 1989; 285: 413-435
        • Makino S.
        • Gold P.W.
        • Schulkin J.
        Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus.
        Brain Res. 1994; 657: 141-149
        • Makino S.
        • Gold P.W.
        • Schulkin J.
        Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus.
        Brain Res. 1994; 640: 105-112
        • Itoga C.A.
        • Chen Y.
        • Fateri C.
        • Echeverry P.A.
        • Lai J.M.
        • Delgado J.
        • et al.
        New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions.
        J Comp Neurol. 2019; 527: 2474-2487
        • Pomrenze M.B.
        • Millan E.Z.
        • Hopf F.W.
        • Keiflin R.
        • Maiya R.
        • Blasio A.
        • et al.
        A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits.
        Front Neurosci. 2015; 9: 487
        • Gray T.S.
        • Magnuson D.J.
        Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat.
        Peptides. 1992; 13: 451-460
        • Giardino W.J.
        • Eban-Rothschild A.
        • Christoffel D.J.
        • Li S.B.
        • Malenka R.C.
        • de Lecea L.
        Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states.
        Nat Neurosci. 2018; 21: 1084-1095
        • Dabrowska J.
        • Martinon D.
        • Moaddab M.
        • Rainnie D.G.
        Targeting corticotropin-releasing factor projections from the oval nucleus of the bed nucleus of the stria terminalis using cell-type specific neuronal tracing studies in mouse and rat brain.
        J Neuroendocrinol. 2016; 28
        • Mantsch J.R.
        • Baker D.A.
        • Funk D.
        • Lê A.D.
        • Shaham Y.
        Stress-induced reinstatement of drug seeking: 20 years of progress.
        Neuropsychopharmacology. 2016; 41: 335-356
        • Grilo C.M.
        • Pagano M.E.
        • Stout R.L.
        • Markowitz J.C.
        • Ansell E.B.
        • Pinto A.
        • et al.
        Stressful life events predict eating disorder relapse following remission: Six-year prospective outcomes.
        Int J Eat Disord. 2012; 45: 185-192
        • Koob G.F.
        • Schulkin J.
        Addiction and stress: An allostatic view.
        Neurosci Biobehav Rev. 2019; 106: 245-262
        • Koob G.F.
        Addiction is a reward deficit and stress surfeit disorder.
        Front Psychiatry. 2013; 4: 72
        • Roberto M.
        • Spierling S.R.
        • Kirson D.
        • Zorrilla E.P.
        Corticotropin-releasing factor (crf) and addictive behaviors.
        Int Rev Neurobiol. 2017; 136: 5-51
        • Solomon R.L.
        • Corbit J.D.
        An opponent-process theory of motivation.
        Am Econ Rev. 1978; 68: 12-24
        • Solomon R.L.
        The opponent-process theory of acquired motivation: The costs of pleasure and the benefits of pain.
        Am Psychol. 1980; 35: 691-712
        • Koob G.F.
        • Le Moal M.
        Drug abuse: Hedonic homeostatic dysregulation.
        Science. 1997; 278: 52-58
        • Funk C.K.
        • O’Dell L.E.
        • Crawford E.F.
        • Koob G.F.
        Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats.
        J Neurosci. 2006; 26: 11324-11332
        • Zorrilla E.P.
        • Logrip M.L.
        • Koob G.F.
        Corticotropin releasing factor: A key role in the neurobiology of addiction.
        Front Neuroendocrinol. 2014; 35: 234-244
        • de Guglielmo G.
        • Kallupi M.
        • Pomrenze M.B.
        • Crawford E.
        • Simpson S.
        • Schweitzer P.
        • et al.
        Inactivation of a crf-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats.
        Nat Commun. 2019; 10: 1238
        • Lim M.M.
        • Liu Y.
        • Ryabinin A.E.
        • Bai Y.
        • Wang Z.
        • Young L.J.
        CRF receptors in the nucleus accumbens modulate partner preference in prairie voles.
        Horm Behav. 2007; 51: 508-515
        • Shaham Y.
        • Funk D.
        • Erb S.
        • Brown T.J.
        • Walker C.D.
        • Stewart J.
        Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats.
        J Neurosci. 1997; 17: 2605-2614
        • Shaham Y.
        • Stewart J.
        Stress reinstates heroin-seeking in drug-free animals: An effect mimicking heroin, not withdrawal.
        Psychopharmacology (Berl). 1995; 119: 334-341
        • Erb S.
        • Petrovic A.
        • Yi D.
        • Kayyali H.
        Central injections of CRF reinstate cocaine seeking in rats after postinjection delays of up to 3 h: An influence of time and environmental context.
        Psychopharmacology (Berl). 2006; 187: 112-120
        • Refojo D.
        • Schweizer M.
        • Kuehne C.
        • Ehrenberg S.
        • Thoeringer C.
        • Vogl A.M.
        • et al.
        Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1.
        Science. 2011; 333: 1903-1907
        • Wang B.
        • Shaham Y.
        • Zitzman D.
        • Azari S.
        • Wise R.A.
        • You Z.B.
        Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: A role in stress-induced relapse to drug seeking.
        J Neurosci. 2005; 25: 5389-5396
        • Vranjkovic O.
        • Van Newenhizen E.C.
        • Nordness M.E.
        • Blacktop J.M.
        • Urbanik L.A.
        • Mathy J.C.
        • et al.
        Enhanced CRFR1-dependent regulation of a ventral tegmental area to prelimbic cortex projection establishes susceptibility to stress-induced cocaine seeking.
        J Neurosci. 2018; 38: 10657-10671
        • Robinson M.J.F.
        • Warlow S.M.
        • Berridge K.C.
        Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another.
        J Neurosci. 2014; 34: 16567-16580
        • Baumgartner H.M.
        • Cole S.L.
        • Olney J.J.
        • Berridge K.C.
        Desire or dread from nucleus accumbens inhibitions: Reversed by same-site optogenetic excitations.
        J Neurosci. 2020; 40: 2737-2752
        • Warlow S.M.
        • Naffziger E.E.
        • Berridge K.C.
        The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain.
        Nat Commun. 2020; 11: 2716
        • Fadok J.P.
        • Krabbe S.
        • Markovic M.
        • Courtin J.
        • Xu C.
        • Massi L.
        • et al.
        A competitive inhibitory circuit for selection of active and passive fear responses.
        Nature. 2017; 542: 96-100
        • Torruella-Suárez M.L.
        • Vandenberg J.R.
        • Cogan E.S.
        • Tipton G.J.
        • Teklezghi A.
        • Dange K.
        • et al.
        Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice.
        J Neurosci. 2020; 40: 632-647
        • Soares-Cunha C.
        • Coimbra B.
        • David-Pereira A.
        • Borges S.
        • Pinto L.
        • Costa P.
        • et al.
        Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.
        Nat Commun. 2016; 7: 11829
        • Warlow S.M.
        • Robinson M.J.F.
        • Berridge K.C.
        Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine.
        J Neurosci. 2017; 37: 8330-8348
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        6th ed. Academic Press, Amsterdam, the Netherlands2007
        • Wang F.
        • Flanagan J.
        • Su N.
        • Wang L.C.
        • Bui S.
        • Nielson A.
        • et al.
        RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues.
        J Mol Diagn. 2012; 14: 22-29
        • Rodaros D.
        • Caruana D.A.
        • Amir S.
        • Stewart J.
        Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area.
        Neuroscience. 2007; 150: 8-13
        • Asok A.
        • Draper A.
        • Hoffman A.F.
        • Schulkin J.
        • Lupica C.R.
        • Rosen J.B.
        Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear.
        Mol Psychiatry. 2018; 23: 914-922
        • Pomrenze M.B.
        • Tovar-Diaz J.
        • Blasio A.
        • Maiya R.
        • Giovanetti S.M.
        • Lei K.
        • et al.
        A corticotropin releasing factor network in the extended amygdala for anxiety.
        J Neurosci. 2019; 39: 1030-1043
        • Ventura-Silva A.P.
        • Borges S.
        • Sousa N.
        • Rodrigues A.J.
        • Pêgo J.M.
        Amygdalar corticotropin-releasing factor mediates stress-induced anxiety.
        Brain Res. 2020; 1729: 146622
        • Erb S.
        • Salmaso N.
        • Rodaros D.
        • Stewart J.
        A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats.
        Psychopharmacology (Berl). 2001; 158: 360-365
        • Dabrowska J.
        • Hazra R.
        • Guo J.D.
        • Dewitt S.
        • Rainnie D.G.
        Central CRF neurons are not created equal: Phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis.
        Front Neurosci. 2013; 7: 156
        • Pomrenze M.B.
        • Giovanetti S.M.
        • Maiya R.
        • Gordon A.G.
        • Kreeger L.J.
        • Messing R.O.
        Dissecting the roles of GABA and neuropeptides from rat central amygdala CRF neurons in anxiety and fear learning.
        Cell Rep. 2019; 29: 13-21.e4
        • Partridge J.G.
        • Forcelli P.A.
        • Luo R.
        • Cashdan J.M.
        • Schulkin J.
        • Valentino R.J.
        • Vicini S.
        Stress increases GABAergic neurotransmission in CRF neurons of the central amygdala and bed nucleus stria terminalis.
        Neuropharmacology. 2016; 107: 239-250
        • Shimada S.
        • Inagaki S.
        • Kubota Y.
        • Ogawa N.
        • Shibasaki T.
        • Takagi H.
        Coexistence of peptides (corticotropin releasing factor/neurotensin and substance P/somatostatin) in the bed nucleus of the stria terminalis and central amygdaloid nucleus of the rat.
        Neuroscience. 1989; 30: 377-383
        • Schwandt M.L.
        • Cortes C.R.
        • Kwako L.E.
        • George D.T.
        • Momenan R.
        • Sinha R.
        • et al.
        The CRF1 antagonist verucerfont in anxious alcohol-dependent women: Translation of neuroendocrine, but not of anti-craving effects.
        Neuropsychopharmacology. 2016; 41: 2818-2829
        • Kwako L.E.
        • Spagnolo P.A.
        • Schwandt M.L.
        • Thorsell A.
        • George D.T.
        • Momenan R.
        • et al.
        The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: A randomized controlled experimental medicine study.
        Neuropsychopharmacology. 2015; 40: 1053-1063
        • Grillon C.
        • Hale E.
        • Lieberman L.
        • Davis A.
        • Pine D.S.
        • Ernst M.
        The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle.
        Neuropsychopharmacology. 2015; 40: 1064-1071
        • Shaham Y.
        • de Wit H.
        Lost in translation: CRF1 receptor antagonists and addiction treatment.
        Neuropsychopharmacology. 2016; 41: 2795-2797
        • Swanson L.W.
        Anatomy of the soul as reflected in the cerebral hemispheres: Neural circuits underlying voluntary control of basic motivated behaviors.
        J Comp Neurol. 2005; 493: 122-131
        • Heimer L.
        • Van Hoesen G.W.
        • Trimble M.
        • Zahm D.S.
        Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness.
        Academic Press, San Diego2008
        • Zahm D.S.
        The evolving theory of basal forebrain functional-anatomical ‘macrosystems’.
        Neurosci Biobehav Rev. 2006; 30: 148-172
        • Heimer L.
        • Van Hoesen G.W.
        The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior.
        Neurosci Biobehav Rev. 2006; 30: 126-147
        • Larimer M.E.
        • Palmer R.S.
        • Marlatt G.A.
        Relapse prevention. An overview of Marlatt’s cognitive-behavioral model.
        Alcohol Res Health. 1999; 23: 151-160
        • Maisto S.A.
        • O’Farrell T.J.
        • Connors G.J.
        • McKay J.R.
        • Pelcovits M.
        Alcoholics’ attributions of factors affecting their relapse to drinking and reasons for terminating relapse episodes.
        Addict Behav. 1988; 13: 79-82
        • Kaundal P.
        • Sharma I.
        • Jha T.
        Assessment of psychosocial factors associated with relapse in patients with alcohol dependence: A retrospective observational study.
        Int J Basic Clin Pharmacol. 2016; 5: 969-974
        • Annis H.M.
        • Graham J.M.
        Profile types on the inventory of drinking situations: Implications for relapse prevention counseling.
        Psychol Addict Behav. 1995; 9: 176-182

      Linked Article

      • Love it or Leave it: Differential Modulation of Incentive Motivation by Corticotropin-Releasing Factor Neurons
        Biological PsychiatryVol. 89Issue 12
        • Preview
          Corticotropin-releasing factor (CRF) is a neuropeptide critical to behavioral and physiological responses to stressors. CRF was originally discovered as an initiator of the hypothalamic-pituitary-adrenal axis, where it is released from neurons of the paraventricular nucleus of the hypothalamus into the pituitary gland. CRF was subsequently detected in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) and was found to mediate negative valence associated with stress, anxiety, and drug withdrawal.
        • Full-Text
        • PDF