Advertisement

Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation?

      Abstract

      Background

      Corticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-containing neural systems are traditionally posited to generate aversive distress states that motivate overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively promote incentive motivation to increase reward pursuit and consumption without requiring aversive states.

      Methods

      We optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre+ rats (n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron laser self-stimulation tasks.

      Results

      Channelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and focused “wanting” on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-related circuitry, as stimulation was avoided and suppressed motivation for sucrose.

      Conclusions

      CRF-containing systems in the NAc and CeA can promote reward consumption by increasing incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional hedonic self-medication hypotheses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vale W.
        • Spiess J.
        • Rivier C.
        • Rivier J.
        Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.
        Science. 1981; 213: 1394-1397
        • Hupalo S.
        • Bryce C.A.
        • Bangasser D.A.
        • Berridge C.W.
        • Valentino R.J.
        • Floresco S.B.
        Corticotropin-releasing factor (CRF) circuit modulation of cognition and motivation.
        Neurosci Biobehav Rev. 2019; 103: 50-59
        • McEwen B.S.
        • Akil H.
        Revisiting the stress concept: Implications for affective disorders.
        J Neurosci. 2020; 40: 12-21
        • Stewart J.
        Pathways to relapse: The neurobiology of drug- and stress-induced relapse to drug-taking.
        J Psychiatry Neurosci. 2000; 25: 125-136
        • Dallman M.F.
        • Pecoraro N.
        • Akana S.F.
        • La Fleur S.E.
        • Gomez F.
        • Houshyar H.
        • et al.
        Chronic stress and obesity: A new view of “comfort food”.
        Proc Natl Acad Sci U S A. 2003; 100: 11696-11701
        • Koob G.F.
        • Bloom F.E.
        Corticotropin-releasing factor and behavior.
        Fed Proc. 1985; 44: 259-263
        • Dunn A.J.
        • Berridge C.W.
        Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses?.
        Brain Res Brain Res Rev. 1990; 15: 71-100
        • Bale T.L.
        • Vale W.W.
        Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: Sexually dichotomous responses.
        J Neurosci. 2003; 23: 5295-5301
        • Schulkin J.
        The CRF Signal: Uncovering an Information Molecule.
        Oxford University Press, Oxford, United Kingdom2017
        • Merali Z.
        • McIntosh J.
        • Anisman H.
        Anticipatory cues differentially provoke in vivo peptidergic and monoaminergic release at the medial prefrontal cortex.
        Neuropsychopharmacology. 2004; 29: 1409-1418
        • Merali Z.
        • McIntosh J.
        • Kent P.
        • Michaud D.
        • Anisman H.
        Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala.
        J Neurosci. 1998; 18: 4758-4766
        • Kim J.
        • Zhang X.
        • Muralidhar S.
        • LeBlanc S.A.
        • Tonegawa S.
        Basolateral to central amygdala neural circuits for appetitive behaviors.
        Neuron. 2017; 93: 1464-1479.e5
        • Peciña S.
        • Schulkin J.
        • Berridge K.C.
        Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: Paradoxical positive incentive effects in stress?.
        BMC Biol. 2006; 4: 8
        • Lemos J.C.
        • Wanat M.J.
        • Smith J.S.
        • Reyes B.A.S.
        • Hollon N.G.
        • Van Bockstaele E.J.
        • et al.
        Severe stress switches crf action in the nucleus accumbens from appetitive to aversive.
        Nature. 2012; 490: 402-406
        • Lemos J.C.
        • Alvarez V.A.
        The upside of stress: A mechanism for the positive motivational role of corticotropin releasing factor.
        Neuropsychopharmacology. 2020; 45: 219-220
        • Lemos J.C.
        • Shin J.H.
        • Alvarez V.A.
        Striatal cholinergic interneurons are a novel target of corticotropin releasing factor.
        J Neurosci. 2019; 39: 5647-5661
        • Swanson L.W.
        • Simmons D.M.
        Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: A hybridization histochemical study in the rat.
        J Comp Neurol. 1989; 285: 413-435
        • Makino S.
        • Gold P.W.
        • Schulkin J.
        Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus.
        Brain Res. 1994; 657: 141-149
        • Makino S.
        • Gold P.W.
        • Schulkin J.
        Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus.
        Brain Res. 1994; 640: 105-112
        • Itoga C.A.
        • Chen Y.
        • Fateri C.
        • Echeverry P.A.
        • Lai J.M.
        • Delgado J.
        • et al.
        New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions.
        J Comp Neurol. 2019; 527: 2474-2487
        • Pomrenze M.B.
        • Millan E.Z.
        • Hopf F.W.
        • Keiflin R.
        • Maiya R.
        • Blasio A.
        • et al.
        A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits.
        Front Neurosci. 2015; 9: 487
        • Gray T.S.
        • Magnuson D.J.
        Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat.
        Peptides. 1992; 13: 451-460
        • Giardino W.J.
        • Eban-Rothschild A.
        • Christoffel D.J.
        • Li S.B.
        • Malenka R.C.
        • de Lecea L.
        Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states.
        Nat Neurosci. 2018; 21: 1084-1095
        • Dabrowska J.
        • Martinon D.
        • Moaddab M.
        • Rainnie D.G.
        Targeting corticotropin-releasing factor projections from the oval nucleus of the bed nucleus of the stria terminalis using cell-type specific neuronal tracing studies in mouse and rat brain.
        J Neuroendocrinol. 2016; 28
        • Mantsch J.R.
        • Baker D.A.
        • Funk D.
        • Lê A.D.
        • Shaham Y.
        Stress-induced reinstatement of drug seeking: 20 years of progress.
        Neuropsychopharmacology. 2016; 41: 335-356
        • Grilo C.M.
        • Pagano M.E.
        • Stout R.L.
        • Markowitz J.C.
        • Ansell E.B.
        • Pinto A.
        • et al.
        Stressful life events predict eating disorder relapse following remission: Six-year prospective outcomes.
        Int J Eat Disord. 2012; 45: 185-192
        • Koob G.F.
        • Schulkin J.
        Addiction and stress: An allostatic view.
        Neurosci Biobehav Rev. 2019; 106: 245-262
        • Koob G.F.
        Addiction is a reward deficit and stress surfeit disorder.
        Front Psychiatry. 2013; 4: 72
        • Roberto M.
        • Spierling S.R.
        • Kirson D.
        • Zorrilla E.P.
        Corticotropin-releasing factor (crf) and addictive behaviors.
        Int Rev Neurobiol. 2017; 136: 5-51
        • Solomon R.L.
        • Corbit J.D.
        An opponent-process theory of motivation.
        Am Econ Rev. 1978; 68: 12-24
        • Solomon R.L.
        The opponent-process theory of acquired motivation: The costs of pleasure and the benefits of pain.
        Am Psychol. 1980; 35: 691-712
        • Koob G.F.
        • Le Moal M.
        Drug abuse: Hedonic homeostatic dysregulation.
        Science. 1997; 278: 52-58
        • Funk C.K.
        • O’Dell L.E.
        • Crawford E.F.
        • Koob G.F.
        Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats.
        J Neurosci. 2006; 26: 11324-11332
        • Zorrilla E.P.
        • Logrip M.L.
        • Koob G.F.
        Corticotropin releasing factor: A key role in the neurobiology of addiction.
        Front Neuroendocrinol. 2014; 35: 234-244
        • de Guglielmo G.
        • Kallupi M.
        • Pomrenze M.B.
        • Crawford E.
        • Simpson S.
        • Schweitzer P.
        • et al.
        Inactivation of a crf-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats.
        Nat Commun. 2019; 10: 1238
        • Lim M.M.
        • Liu Y.
        • Ryabinin A.E.
        • Bai Y.
        • Wang Z.
        • Young L.J.
        CRF receptors in the nucleus accumbens modulate partner preference in prairie voles.
        Horm Behav. 2007; 51: 508-515
        • Shaham Y.
        • Funk D.
        • Erb S.
        • Brown T.J.
        • Walker C.D.
        • Stewart J.
        Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats.
        J Neurosci. 1997; 17: 2605-2614
        • Shaham Y.
        • Stewart J.
        Stress reinstates heroin-seeking in drug-free animals: An effect mimicking heroin, not withdrawal.
        Psychopharmacology (Berl). 1995; 119: 334-341
        • Erb S.
        • Petrovic A.
        • Yi D.
        • Kayyali H.
        Central injections of CRF reinstate cocaine seeking in rats after postinjection delays of up to 3 h: An influence of time and environmental context.
        Psychopharmacology (Berl). 2006; 187: 112-120
        • Refojo D.
        • Schweizer M.
        • Kuehne C.
        • Ehrenberg S.
        • Thoeringer C.
        • Vogl A.M.
        • et al.
        Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1.
        Science. 2011; 333: 1903-1907
        • Wang B.
        • Shaham Y.
        • Zitzman D.
        • Azari S.
        • Wise R.A.
        • You Z.B.
        Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: A role in stress-induced relapse to drug seeking.
        J Neurosci. 2005; 25: 5389-5396
        • Vranjkovic O.
        • Van Newenhizen E.C.
        • Nordness M.E.
        • Blacktop J.M.
        • Urbanik L.A.
        • Mathy J.C.
        • et al.
        Enhanced CRFR1-dependent regulation of a ventral tegmental area to prelimbic cortex projection establishes susceptibility to stress-induced cocaine seeking.
        J Neurosci. 2018; 38: 10657-10671
        • Robinson M.J.F.
        • Warlow S.M.
        • Berridge K.C.
        Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another.
        J Neurosci. 2014; 34: 16567-16580
        • Baumgartner H.M.
        • Cole S.L.
        • Olney J.J.
        • Berridge K.C.
        Desire or dread from nucleus accumbens inhibitions: Reversed by same-site optogenetic excitations.
        J Neurosci. 2020; 40: 2737-2752
        • Warlow S.M.
        • Naffziger E.E.
        • Berridge K.C.
        The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain.
        Nat Commun. 2020; 11: 2716
        • Fadok J.P.
        • Krabbe S.
        • Markovic M.
        • Courtin J.
        • Xu C.
        • Massi L.
        • et al.
        A competitive inhibitory circuit for selection of active and passive fear responses.
        Nature. 2017; 542: 96-100
        • Torruella-Suárez M.L.
        • Vandenberg J.R.
        • Cogan E.S.
        • Tipton G.J.
        • Teklezghi A.
        • Dange K.
        • et al.
        Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice.
        J Neurosci. 2020; 40: 632-647
        • Soares-Cunha C.
        • Coimbra B.
        • David-Pereira A.
        • Borges S.
        • Pinto L.
        • Costa P.
        • et al.
        Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.
        Nat Commun. 2016; 7: 11829
        • Warlow S.M.
        • Robinson M.J.F.
        • Berridge K.C.
        Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine.
        J Neurosci. 2017; 37: 8330-8348
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        6th ed. Academic Press, Amsterdam, the Netherlands2007
        • Wang F.
        • Flanagan J.
        • Su N.
        • Wang L.C.
        • Bui S.
        • Nielson A.
        • et al.
        RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues.
        J Mol Diagn. 2012; 14: 22-29
        • Rodaros D.
        • Caruana D.A.
        • Amir S.
        • Stewart J.
        Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area.
        Neuroscience. 2007; 150: 8-13
        • Asok A.
        • Draper A.
        • Hoffman A.F.
        • Schulkin J.
        • Lupica C.R.
        • Rosen J.B.
        Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear.
        Mol Psychiatry. 2018; 23: 914-922
        • Pomrenze M.B.
        • Tovar-Diaz J.
        • Blasio A.
        • Maiya R.
        • Giovanetti S.M.
        • Lei K.
        • et al.
        A corticotropin releasing factor network in the extended amygdala for anxiety.
        J Neurosci. 2019; 39: 1030-1043
        • Ventura-Silva A.P.
        • Borges S.
        • Sousa N.
        • Rodrigues A.J.
        • Pêgo J.M.
        Amygdalar corticotropin-releasing factor mediates stress-induced anxiety.
        Brain Res. 2020; 1729: 146622
        • Erb S.
        • Salmaso N.
        • Rodaros D.
        • Stewart J.
        A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats.
        Psychopharmacology (Berl). 2001; 158: 360-365
        • Dabrowska J.
        • Hazra R.
        • Guo J.D.
        • Dewitt S.
        • Rainnie D.G.
        Central CRF neurons are not created equal: Phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis.
        Front Neurosci. 2013; 7: 156
        • Pomrenze M.B.
        • Giovanetti S.M.
        • Maiya R.
        • Gordon A.G.
        • Kreeger L.J.
        • Messing R.O.
        Dissecting the roles of GABA and neuropeptides from rat central amygdala CRF neurons in anxiety and fear learning.
        Cell Rep. 2019; 29: 13-21.e4
        • Partridge J.G.
        • Forcelli P.A.
        • Luo R.
        • Cashdan J.M.
        • Schulkin J.
        • Valentino R.J.
        • Vicini S.
        Stress increases GABAergic neurotransmission in CRF neurons of the central amygdala and bed nucleus stria terminalis.
        Neuropharmacology. 2016; 107: 239-250
        • Shimada S.
        • Inagaki S.
        • Kubota Y.
        • Ogawa N.
        • Shibasaki T.
        • Takagi H.
        Coexistence of peptides (corticotropin releasing factor/neurotensin and substance P/somatostatin) in the bed nucleus of the stria terminalis and central amygdaloid nucleus of the rat.
        Neuroscience. 1989; 30: 377-383
        • Schwandt M.L.
        • Cortes C.R.
        • Kwako L.E.
        • George D.T.
        • Momenan R.
        • Sinha R.
        • et al.
        The CRF1 antagonist verucerfont in anxious alcohol-dependent women: Translation of neuroendocrine, but not of anti-craving effects.
        Neuropsychopharmacology. 2016; 41: 2818-2829
        • Kwako L.E.
        • Spagnolo P.A.
        • Schwandt M.L.
        • Thorsell A.
        • George D.T.
        • Momenan R.
        • et al.
        The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: A randomized controlled experimental medicine study.
        Neuropsychopharmacology. 2015; 40: 1053-1063
        • Grillon C.
        • Hale E.
        • Lieberman L.
        • Davis A.
        • Pine D.S.
        • Ernst M.
        The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle.
        Neuropsychopharmacology. 2015; 40: 1064-1071
        • Shaham Y.
        • de Wit H.
        Lost in translation: CRF1 receptor antagonists and addiction treatment.
        Neuropsychopharmacology. 2016; 41: 2795-2797
        • Swanson L.W.
        Anatomy of the soul as reflected in the cerebral hemispheres: Neural circuits underlying voluntary control of basic motivated behaviors.
        J Comp Neurol. 2005; 493: 122-131
        • Heimer L.
        • Van Hoesen G.W.
        • Trimble M.
        • Zahm D.S.
        Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness.
        Academic Press, San Diego2008
        • Zahm D.S.
        The evolving theory of basal forebrain functional-anatomical ‘macrosystems’.
        Neurosci Biobehav Rev. 2006; 30: 148-172
        • Heimer L.
        • Van Hoesen G.W.
        The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior.
        Neurosci Biobehav Rev. 2006; 30: 126-147
        • Larimer M.E.
        • Palmer R.S.
        • Marlatt G.A.
        Relapse prevention. An overview of Marlatt’s cognitive-behavioral model.
        Alcohol Res Health. 1999; 23: 151-160
        • Maisto S.A.
        • O’Farrell T.J.
        • Connors G.J.
        • McKay J.R.
        • Pelcovits M.
        Alcoholics’ attributions of factors affecting their relapse to drinking and reasons for terminating relapse episodes.
        Addict Behav. 1988; 13: 79-82
        • Kaundal P.
        • Sharma I.
        • Jha T.
        Assessment of psychosocial factors associated with relapse in patients with alcohol dependence: A retrospective observational study.
        Int J Basic Clin Pharmacol. 2016; 5: 969-974
        • Annis H.M.
        • Graham J.M.
        Profile types on the inventory of drinking situations: Implications for relapse prevention counseling.
        Psychol Addict Behav. 1995; 9: 176-182