Advertisement

The Effects of Alcohol and Cannabis Use on the Cortical Thickness of Cognitive Control and Salience Brain Networks in Emerging Adulthood: A Co-twin Control Study

      Abstract

      Background

      Impairments in inhibitory control and its underlying brain networks (control/salience areas) are associated with substance misuse. Research often assumes a causal substance exposure effect on brain structure. This assumption remains largely untested, and other factors (e.g., familial risk) may confound exposure effects. We leveraged a genetically informative sample of twins aged 24 years and a quasi-experimental co-twin control design to separate alcohol or cannabis exposure effects during emerging adulthood from familial risk on control/salience network cortical thickness.

      Methods

      In a population-based sample of 436 twins aged 24 years, dimensional measures of alcohol and cannabis use (e.g., frequency, density, quantity, intoxications) across emerging adulthood were assessed. Cortical thickness of control/salience network areas were assessed using magnetic resonance imaging and defined by a fine-grained cortical atlas.

      Results

      Greater alcohol, but not cannabis, misuse was associated with reduced thickness of prefrontal (e.g., dorso/ventrolateral, right frontal operculum) and frontal medial cortices, as well as temporal lobe, intraparietal sulcus, insula, parietal operculum, precuneus, and parietal medial areas. Effects were predominately (pre)frontal and right lateralized. Co-twin control analyses suggested that the effects likely reflect both the familial predisposition to misuse alcohol and, specifically for lateral prefrontal, frontal/parietal medial, and right frontal operculum, an alcohol exposure effect.

      Conclusions

      This study provides novel evidence that alcohol-related reductions in cortical thickness of control/salience brain networks likely represent the effects of alcohol exposure and premorbid characteristics of the genetic predisposition to misuse alcohol. The dual effects of these two alcohol-related causal influences have important and complementary implications regarding public health and prevention efforts to curb youth drinking.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Substance Abuse and Mental Health Services Administration
        Key substance use and mental health indicators in the United States: Results from the 2018 National Survey on Drug Use and Health (HHS Publication No. PEP19-5068, NSDUH Series H-54).
        Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, Rockville2019
        • Shaw P.
        • Kabani N.J.
        • Lerch J.P.
        • Eckstrand K.
        • Lenroot R.
        • Gogtay N.
        • et al.
        Neurodevelopmental trajectories of the human cerebral cortex.
        J Neurosci. 2008; 28: 3586-3594
        • Sowell E.R.
        • Peterson B.S.
        • Thompson P.M.
        • Welcome S.E.
        • Henkenius A.L.
        • Toga A.W.
        Mapping cortical change across the human life span.
        Nat Neurosci. 2003; 6: 309-315
        • Grant B.F.
        • Chou S.P.
        • Saha T.D.
        • Pickering R.P.
        • Kerridge B.T.
        • Ruan W.J.
        • et al.
        Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001-2002 to 2012-2013: Results From the National Epidemiologic Survey on Alcohol and Related Conditions.
        JAMA Psychiatry. 2017; 74: 911-923
        • Vrieze S.I.
        • Hicks B.M.
        • Iacono W.G.
        • McGue M.
        Decline in genetic influence on the co-occurrence of alcohol, marijuana, and nicotine dependence symptoms from age 14 to 29.
        Am J Psychiatry. 2012; 169: 1073-1081
        • Everitt B.J.
        • Robbins T.W.
        Drug addiction: Updating actions to habits to compulsions ten years on.
        Annu Rev Psychol. 2016; 67: 23-50
        • Feil J.
        • Sheppard D.
        • Fitzgerald P.B.
        • Yücel M.
        • Lubman D.I.
        • Bradshaw J.L.
        Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control.
        Neurosci Biobehav Rev. 2010; 35: 248-275
        • Zilverstand A.
        • Huang A.S.
        • Alia-Klein N.
        • Goldstein R.Z.
        Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review.
        Neuron. 2018; 98: 886-903
        • Koob G.F.
        • Volkow N.D.
        Neurocircuitry of addiction [published correction appears in Neuropsychopharmacology 2010; 35:1051].
        Neuropsychopharmacology. 2010; 35: 217-238
        • Welch K.A.
        • Carson A.
        • Lawrie S.M.
        Brain structure in adolescents and young adults with alcohol problems: Systematic review of imaging studies.
        Alcohol Alcohol. 2013; 48: 433-444
        • Mackey S.
        • Allgaier N.
        • Chaarani B.
        • Spechler P.
        • Orr C.
        • Bunn J.
        • et al.
        Mega-analysis of gray matter volume in substance dependence: General and substance-specific regional effects.
        Am J Psychiatry. 2019; 176: 119-128
        • Bühler M.
        • Mann K.
        Alcohol and the human brain: A systematic review of different neuroimaging methods.
        Alcohol Clin Exp Res. 2011; 35: 1771-1793
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Ridderinkhof K.R.
        • van den Wildenberg W.P.M.
        • Segalowitz S.J.
        • Carter C.S.
        Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
        Brain Cogn. 2004; 56: 129-140
        • Botvinick M.M.
        • Braver T.S.
        • Barch D.M.
        • Carter C.S.
        • Cohen J.D.
        Conflict monitoring and cognitive control.
        Psychol Rev. 2001; 108: 624-652
        • Botvinick M.
        • Braver T.
        Motivation and cognitive control: From behavior to neural mechanism.
        Annu Rev Psychol. 2015; 66: 83-113
        • Ullsperger M.
        • Danielmeier C.
        • Jocham G.
        Neurophysiology of performance monitoring and adaptive behavior.
        Physiol Rev. 2014; 94: 35-79
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex: One decade on.
        Trends Cogn Sci. 2014; 18: 177-185
        • Huster R.J.
        • Enriquez-Geppert S.
        • Lavallee C.F.
        • Falkenstein M.
        • Herrmann C.S.
        Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions.
        Int J Psychophysiol. 2013; 87: 217-233
        • Goldstein R.Z.
        • Volkow N.D.
        Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications.
        Nat Rev Neurosci. 2011; 12: 652-669
        • Martín-Santos R.
        • Fagundo A.B.
        • Crippa J.A.
        • Atakan Z.
        • Bhattacharyya S.
        • Allen P.
        • et al.
        Neuroimaging in cannabis use: A systematic review of the literature.
        Psychol Med. 2010; 40: 383-398
        • Bloomfield M.A.P.
        • Hindocha C.
        • Green S.F.
        • Wall M.B.
        • Lees R.
        • Petrilli K.
        • et al.
        The neuropsychopharmacology of cannabis: A review of human imaging studies.
        Pharmacol Ther. 2019; 195: 132-161
        • Thayer R.E.
        • YorkWilliams S.
        • Karoly H.C.
        • Sabbineni A.
        • Ewing S.F.
        • Bryan A.D.
        • Hutchison K.E.
        Structural neuroimaging correlates of alcohol and cannabis use in adolescents and adults.
        Addiction. 2017; 112: 2144-2154
        • Hill S.Y.
        • Sharma V.
        • Jones B.L.
        Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate.
        Psychiatry Res Neuroimaging. 2016; 255: 24-34
        • Jacobus J.
        • Tapert S.F.
        Neurotoxic effects of alcohol in adolescence.
        Annu Rev Clin Psychol. 2013; 9: 703-721
        • Thayer R.E.
        • Hagerty S.L.
        • Sabbineni A.
        • Claus E.D.
        • Hutchison K.E.
        • Weiland B.J.
        Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry.
        Hum Brain Mapp. 2016; 37: 2276-2292
        • Kroenke C.D.
        • Rohlfing T.
        • Park B.
        • Sullivan E.V.
        • Pfefferbaum A.
        • Grant K.A.
        Monkeys that voluntarily and chronically drink alcohol damage their brains: A longitudinal MRI study.
        Neuropsychopharmacology. 2014; 39: 823-830
        • Shnitko T.A.
        • Liu Z.
        • Wang X.
        • Grant K.A.
        • Kroenke C.D.
        Chronic alcohol drinking slows brain development in adolescent and young adult nonhuman primates.
        eNeuro. 2019; 6 (ENEURO.0044–19.2019)
        • Luciana M.
        • Collins P.F.
        • Muetzel R.L.
        • Lim K.O.
        Effects of alcohol use initiation on brain structure in typically developing adolescents.
        Am J Drug Alcohol Abuse. 2013; 39: 345-355
        • Pfefferbaum A.
        • Kwon D.
        • Brumback T.
        • Thompson W.K.
        • Cummins K.
        • Tapert S.F.
        • et al.
        Altered brain developmental trajectories in adolescents after initiating drinking.
        Am J Psychiatry. 2018; 175: 370-380
        • Squeglia L.M.
        • Tapert S.F.
        • Sullivan E.V.
        • Jacobus J.
        • Meloy M.J.
        • Rohlfing T.
        • Pfefferbaum A.
        Brain development in heavy-drinking adolescents.
        Am J Psychiatry. 2015; 172: 531-542
        • Iacono W.G.
        • Malone S.M.
        • McGue M.
        Behavioral disinhibition and the development of early-onset addiction: Common and specific influences.
        Annu Rev Clin Psychol. 2008; 4: 325-348
        • Zucker R.A.
        • Heitzeg M.M.
        • Nigg J.T.
        Parsing the undercontrol/disinhibition pathway to substance use disorders: A multilevel developmental problem.
        Child Dev Perspect. 2011; 5: 248-255
        • Henderson K.E.
        • Vaidya J.G.
        • Kramer J.R.
        • Kuperman S.
        • Langbehn D.R.
        • O’Leary D.S.
        Cortical thickness in adolescents with a family history of alcohol use disorder.
        Alcohol Clin Exp Res. 2018; 42: 89-99
        • Thapar A.
        • Rutter M.
        Do natural experiments have an important future in the study of mental disorders?.
        Psychol Med. 2019; 49: 1079-1088
        • Rubin D.B.
        The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials.
        Stat Med. 2007; 26: 20-36
        • McGue M.
        • Osler M.
        • Christensen K.
        Causal inference and observational research: The utility of twins.
        Perspect Psychol Sci. 2010; 5: 546-556
        • Carlin J.B.
        • Gurrin L.C.
        • Sterne J.A.
        • Morley R.
        • Dwyer T.
        Regression models for twin studies: A critical review.
        Int J Epidemiol. 2005; 34: 1089-1099
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Schaefer A.
        • Kong R.
        • Gordon E.M.
        • Laumann T.O.
        • Zuo X.N.
        • Holmes A.J.
        • et al.
        Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI.
        Cereb Cortex. 2018; 28: 3095-3114
        • Levy B.J.
        • Wagner A.D.
        Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating.
        Ann N Y Acad Sci. 2011; 1224: 40-62
        • Gratton G.
        • Cooper P.
        • Fabiani M.
        • Carter C.S.
        • Karayanidis F.
        Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future.
        Psychophysiology. 2018; 55: 1-29
        • Becker J.B.
        • Koob G.F.
        Sex differences in animal models: Focus on addiction.
        Pharmacol Rev. 2016; 68: 242-263
        • Erol A.
        • Karpyak V.M.
        Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations.
        Drug Alcohol Depend. 2015; 156: 1-13
        • Wilhelm C.J.
        • Hashimoto J.G.
        • Roberts M.L.
        • Bloom S.H.
        • Andrew M.R.
        • Wiren K.M.
        Astrocyte dysfunction induced by alcohol in females but not males.
        Brain Pathol. 2016; 26: 433-451
        • Seo S.
        • Beck A.
        • Matthis C.
        • Genauck A.
        • Banaschewski T.
        • Bokde A.L.W.
        • et al.
        Risk profiles for heavy drinking in adolescence: Differential effects of gender.
        Addict Biol. 2019; 24: 787-801
        • Keyes M.A.
        • Malone S.M.
        • Elkins I.J.
        • Legrand L.N.
        • McGue M.
        • Iacono W.G.
        The enrichment study of the Minnesota twin family study: Increasing the yield of twin families at high risk for externalizing psychopathology.
        Twin Res Hum Genet. 2009; 12: 489-501
        • Robins L.N.
        • Babor T.F.
        • Cottler L.B.
        Composite International Diagnostic Interview.
        Expanded Substance Abuse Module, St Louis: Authors1987
        • Harper J.
        • Malone S.M.
        • Iacono W.G.
        Impact of alcohol use on EEG dynamics of response inhibition: A cotwin control analysis.
        Addict Biol. 2018; 23: 256-267
        • Harper J.
        • Malone S.M.
        • Iacono W.G.
        Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.
        Clin Neurophysiol. 2017; 128: 2358-2368
        • Harper J.
        • Malone S.M.
        • Iacono W.G.
        Parietal P3 and midfrontal theta prospectively predict the development of adolescent alcohol use.
        Psychol Med. 2021; : 416-425
        • Wilson S.
        • Malone S.M.
        • Thomas K.M.
        • Iacono W.G.
        Adolescent drinking and brain morphometry: A co-twin control analysis.
        Dev Cogn Neurosci. 2015; 16: 130-138
        • Wilson S.
        • Malone S.M.
        • Hunt R.H.
        • Thomas K.M.
        • Iacono W.G.
        Problematic alcohol use and hippocampal volume in a female sample: Disentangling cause from consequence using a co-twin control study design.
        Psychol Med. 2018; 48: 1673-1684
        • Malone S.M.
        • Luciana M.
        • Wilson S.
        • Sparks J.C.
        • Hunt R.H.
        • Thomas K.M.
        • Iacono W.G.
        Adolescent drinking and motivated decision-making: A cotwin-control investigation with monozygotic twins.
        Behav Genet. 2014; 44: 407-418
        • McGue M.
        • Malone S.
        • Keyes M.
        • Iacono W.G.
        Parent-offspring similarity for drinking: A longitudinal adoption study.
        Behav Genet. 2014; 44: 620-628
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Ségonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Ridderinkhof K.R.
        • Ullsperger M.
        • Crone E.A.
        • Nieuwenhuis S.
        The role of the medial frontal cortex in cognitive control.
        Science. 2004; 306: 443-447
        • Bates D.
        • Mächler M.
        • Bolker B.M.
        • Walker S.C.
        Fitting linear mixed-effects models using lme4.
        J Stat Softw. 2015; 67: 1-48
        • R Foundation for Statistical Computing
        R: A language and environment for statistical computing.
        (Available at:)
        https://www.R-project.org/
        Date accessed: July 5, 2019
        • Kuznetsova A.
        • Brockhoff P.B.
        • Christensen R.H.B.
        lmerTest package: Tests in linear mixed effects models.
        J Stat Soft. 2017; 82: 1-26
        • Storey J.D.
        • Tibshirani R.
        Statistical significance for genomewide studies.
        Proc Natl Acad Sci U S A. 2003; 100: 9440-9445
        • Storey J.D.
        The positive false discovery rate: A Bayesian interpretation and the q-value.
        Ann Statist. 2003; 31: 2013-2035
        • Storey J.D.
        • Bass A.J.
        • Dabney A.
        • Robinson D.
        qvalue: Q-value estimation for false discovery rate control. R package version 2.18.0.
        (Available at:) (Accessed July 10, 2020)
        • Rutter M.
        Proceeding from observed correlation to causal inference: The use of natural experiments.
        Perspect Psychol Sci. 2007; 2: 377-395
        • Begg M.D.
        • Parides M.K.
        Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data.
        Stat Med. 2003; 22: 2591-2602
        • Baranger D.A.A.
        • Demers C.H.
        • Elsayed N.M.
        • Knodt A.R.
        • Radtke S.R.
        • Desmarais A.
        • et al.
        Convergent evidence for predispositional effects of brain gray matter volume on alcohol consumption.
        Biol Psychiatry. 2020; 87: 645-655
        • Cavanagh J.F.
        • Frank M.J.
        Frontal theta as a mechanism for cognitive control.
        Trends Cogn Sci. 2014; 18: 414-421
        • van den Heuvel M.P.
        • Sporns O.
        Network hubs in the human brain.
        Trends Cogn Sci. 2013; 17: 683-696
        • Volkow N.D.
        • Wang G.J.
        • Tomasi D.
        • Baler R.D.
        Unbalanced neuronal circuits in addiction.
        Curr Opin Neurobiol. 2013; 23: 639-648
        • Orr J.M.
        • Paschall C.J.
        • Banich M.T.
        Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.
        Neuroimage Clin. 2016; 12: 47-56
        • Weiland B.J.
        • Thayer R.E.
        • Depue B.E.
        • Sabbineni A.
        • Bryan A.D.
        • Hutchison K.E.
        Daily marijuana use is not associated with brain morphometric measures in adolescents or adults.
        J Neurosci. 2015; 35: 1505-1512
        • Malone S.M.
        • Wilson S.
        • Bair J.L.
        • McGue M.
        • Iacono W.G.
        A cotwin-control analysis of adolescent and young adult drinking effects on learning and memory [published online ahead of print Nov 16].
        Addiction. 2020;
        • Pagliaccio D.
        • Barch D.M.
        • Bogdan R.
        • Wood P.K.
        • Lynskey M.T.
        • Heath A.C.
        • Agrawal A.
        Shared predisposition in the association between cannabis use and subcortical brain structure.
        JAMA Psychiatry. 2015; 72: 994-1001
        • Cohen M.X.
        A neural microcircuit for cognitive conflict detection and signaling.
        Trends Neurosci. 2014; 37: 480-490
        • Kranzler H.R.
        • Zhou H.
        • Kember R.L.
        • Vickers Smith R.
        • Justice A.C.
        • Damrauer S.
        • et al.
        Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations.
        Nat Commun. 2019; 10: 1499
        • Sanchez-Roige S.
        • Palmer A.A.
        • Clarke T.K.
        Recent efforts to dissect the genetic basis of alcohol use and abuse.
        Biol Psychiatry. 2020; 87: 609-618
        • Iacono W.G.
        • Malone S.M.
        • Vrieze S.I.
        Endophenotype best practices.
        Int J Psychophysiol. 2017; 111: 115-144
        • Gottesman I.I.
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Naish K.R.
        • Vedelago L.
        • MacKillop J.
        • Amlung M.
        Effects of neuromodulation on cognitive performance in individuals exhibiting addictive behaviors: A systematic review.
        Drug Alcohol Depend. 2018; 192: 338-351
        • Iacono W.G.
        • Heath A.C.
        • Hewitt J.K.
        • Neale M.C.
        • Banich M.T.
        • Luciana M.
        • et al.
        The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design.
        Dev Cogn Neurosci. 2018; 32: 30-42
        • Mowinckel A.M.
        • Vidal-Piñeiro D.
        Visualisation of brain statistics with R-packages ggseg and ggseg3d.
        (Available at:) (Accessed January 14, 2020)
        • Breheny P.
        • Burchett W.
        Visualization of regression models using visreg.
        R J. 2017; 9: 56-71

      CHORUS Manuscript

      View Open Manuscript